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Abstract: A promising production route for a high-quality base stock for lubricants is the oligomer-
ization of high molecular-weight olefins in a high energy efficiency system. Oligomerization of
1-decene (C10) was conducted in a microwave-assisted system over a HY zeolite catalyst at different
reaction temperatures and times. Higher reaction temperature resulted in increasing formation of
dimers and trimers. The oligomerization reaction yielded 80% conversion, 54.2% dimer product,
22.3% trimer product and 3.4% heavier product at 483 K for a reaction time of 3 h. The best fit kinetic
model for the dimerization reaction was formulated from an assumption of no vacant reaction sites.
For the trimerization reaction, a molecule of dimer (C20) formed on the active site, interacted with a
molecule of 1-decene in the bulk solution to form a molecule of trimer (C30). Apparent activation
energies for the dimerization and trimerization reactions were 70.8 ± 0.8 and 83.6 ± 0.9 kJ/mol,
respectively. The C13-NMR spectrum indicated that the oligomer product contained a significant
portion of highly branched hydrocarbons, causing a substantial reduction in the viscosity index
compared to conventional poly-alpha olefin lubricant (PAO).

Keywords: oligomerization; micro-kinetic modelling; zeolite; C13-NMR; microwave-assisted

1. Introduction

A lubricant base stock with high thermal stability is crucial to achieve long-term
machinery performance, especially for military equipment, aircraft and heavy-duty internal
combustion engines that operate under harsh environmental conditions. Over the last
decade, synthetic-type lubricant base stocks have dominated this high-end application.
Synthetic lubricants belonging to the poly-alpha olefin (PAO group IV) have higher retail
costs but offer more effective performance than other groups of lubricants, with better
thermal stability and longer oil change intervals. However, current production technology
of synthetic-type lubricants is based on the oligomerization of ethylene which is produced
from petroleum oil by an energy-intensive process, known as steam cracking, causing high
production costs. Ethylene also exists in a gaseous state, and expensive facilities are needed
to prevent gas leakage. Long chain alkenes, especially 1-decene can be used to produce
synthetic lubricant base stock. 1-Decene can be prepared from 1-decanol derived from the
hydrogenation of fatty acids of renewable vegetable oils [1]. 1-Decene is also in a liquid
state and much easier to handle compared with ethylene gas.

Oligomerization is a chemical reaction whereby olefin molecules combine to form
higher molecular-weight compounds. The reaction mechanism of oligomerization is
dependent on the characteristics of applied catalysts such as Ziegler-Natta or metallocene
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to propagate the reactant molecules through the insertion of monomers into the vacant
orbit sites of the transition metal catalysts [2]. In Lewis acid catalysis, oligomerization is
activated by a hydrogen donor agent such as water, called cationic oligomerization [3].
Other agents for oligomerization include heterogeneous acid catalysts such as sulfated-
alumina [1], tungsten-zirconia [4] and zeolite [5] that are cheaper than other types of
catalysts. One important feature of zeolite catalysts is that their inner structure can be
manipulated to tailor products [6,7], while spent zeolite catalysts can be simply regenerated
via chemical or thermal treatment [8]. The type of catalyst used has been found to affect
the properties of lubricant product obtained via oligomerization reaction [9]. Significant
properties used to benchmark different lubricant products are viscosity, viscosity index and
pour point [10]. The price of lubricant is also related with these properties. For instance, a
lubricant with a higher viscosity index is more expensive than another lubricant with a
lower viscosity index. This is because the higher viscosity index, the higher the thermal
stability of a lubricant oil [11]. However, an increase in viscosity index also results in an
increase in pour point temperature, causing a serious problem in use under an extremely
cold weather condition. Pour point temperature is the lowest temperature, at which that
particular liquid sample still remains in liquid form before turning into a solid state at a
temperature lower than the pout point [12].

Oligomerization over a zeolite catalyst is generally performed in a fixed-bed reactor
with conventional heat [13]. Several studies have investigated oligomerization in terms of
kinetics to gain a better understanding of the reaction mechanism and formulate mathe-
matical models to predict the oligomerization reaction concerning reactants and catalyst
characteristics. Recently, intensification processes for several reactions, especially under
microwave irradiation, have attracted increasing interest due to several advantages such as
fast heating rate and high heating efficiency [14]. Mahajani and Kamal (2020) formulated
microkinetic equations for the oligomerization of aldehyde over cation exchange resins.
Their experimental data fitted well with the Langmuir–Hinshelwood–Hougen–Watson
(LHHW) model, indicating that the adsorption rate of the reactant was proportional to the
concentration of vacant sites [15–18]. Another unique characteristic of zeolite catalyst is
the formation of branch molecules from the isomerization reaction that causes reduction
of the product pour point [19]. Oligomerization reaction kinetics were controlled by the
acid sites of the catalyst, while the formation of branch molecules increased with increas-
ing concentration of acid sites on the catalyst [20]. Deactivation of the zeolite catalysts
after the reaction is a serious issue that has been intensively studied over the last decade.
Both soft and hard cokes commonly occur during chemical reactions over heterogeneous
acid-catalysts, whereas the soft coke involves deactivation of the catalyst. The soft coke
can be effectively removed by thermal treatment at 473–673 K under nitrogen gas [21].
Accumulation of hard coke inside zeolite micropores exhibits a long-term negative effect
on catalyst performance and this can be oxidatively removed only at a high temperature
of 773 K [22]. To the best of our knowledge very little research work was performed to
investigate the impact of microwave irradiation on the oligomerization reaction.

Thus, here, to develop a more sustainable chemical process, oligomerization of 1-
decene over a HY zeolite catalyst was proposed to produce a lubricant base stock using
microwave irradiation to supply thermal energy for the oligomerization reaction. The
kinetics of both dimerization and trimerization from 1-decene over a HY zeolite catalyst
under microwave irradiation were investigated. The results could offer new perspective
on the shift in reaction mechanism as reaction temperature changes. Experimental data
were used to verify the proposed microkinetic behaviors of the 1-decene oligomerization
reaction over a HY zeolite catalyst. Activation energy of the oligomerization reaction was
also calculated, while the C13-NMR technique was employed to determine the chemical
structure of all produced oligomers.
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2. Results and Discussion
2.1. Effect of Temperature on Oligomer Product Composition

Figure 1 shows the process performance of the oligomerization reaction in terms of
1-decene conversion and product composition profiles with time at three different tem-
peratures (423, 443 and 483 K) over the HY zeolite catalyst under microwave irradiation.
As shown in Figure 1a, for any given reaction temperature, the conversion of 1-decene
increased with time and reached a maximum level at high reaction time. For any given reac-
tion time (lower than 120 min), an increase in reaction temperature significantly enhanced
the conversion of 1-decene. This result corresponded well with our previous investigation
on the 1-decene oligomerization [4,5]. The higher the reaction temperature, the shorter the
reaction time to reach the highest conversion of 1-decene. Highest conversion of 1-decene
at 423 K with reaction time greater than 150 min was 58.5%. Conversion increased to
around 82% when reaction temperature increased from 423 to 443 K. With further increase
in reaction temperature from 443 to 483 K, maximum conversion of 1-decene appeared
unchanged. As shown in Figure 1b, 1-decene concentrations for all three reaction tempera-
tures exhibited opposite trends to 1-decene conversions, as explained later by the activation
energy values.

Figure 1c illustrates the percentage of dimer (C20) produced from 1-decene over the
HY zeolite catalyst at different reaction temperatures and reaction times. The dimerization
reaction increased with increasing reaction temperature from 423 to 443 K. However, dimer
percentage at reaction temperature of 483 K was lower than at reaction temperature of
443 K when reaction time exceeded 80 min. This occurred because the conversion of dimer
to trimer (C30) increased with increasing reaction temperature. Results indicated that the
optimum reaction temperature for dimer production was around 443 K. Most diesel oils
contain C20 as the main fraction because the heating value of C20 is in a suitable range for
internal diesel combustion engines.

The profiles of trimer (C30) and heavier products (mostly C40) via the oligomerization
reaction from 1-decene over the HY zeolite catalyst as a function of reaction temperature
and reaction time are shown in Figure 1d,e, respectively. Concentrations of both products
increased at higher reaction temperature and longer reaction time. At reaction time longer
than 180 min for all reaction temperatures, concentrations of both trimer and C40 products
reached maximum levels. Highest trimer content (23%) was obtained at reaction temper-
ature 483 K and reaction time 80 min. Rapid increase in trimer content was observed at
reaction time from 20 to 120 min. Proper fractions of trimer and C40 are necessary for the
formulation of lubricant oil products. Fractions of trimer and C40 that are too high can
cause high viscosity of lubricants that exceeds permitted limits for diesel engines. Results
found here concurred with a previous study [23].
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Figure 1. Effects of reaction temperature and reaction time on (a) 1-decene conversion; (b) C10

content; (c) C20 content; (d) C30 content and (e) C40 content (operating conditions: 50 mL 1-decene,
5 g HY catalyst and 1 atm).
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The Arrhenius equation was used to find the activation energy of the oligomerization
reaction over the HY zeolite catalyst under microwave radiation. The rate of reaction
was calculated from the production rate of dimer and trimer found by taking derivative
of the dimer and trimer as a function of reaction time. The activation energy of the
oligomerization of 1-decene over the HY zeolite catalyst was calculated from the slope
of the Arrhenius plot, as shown in Figure 2. The y-intercept of the plot represented the
pre-exponential factor. Calculated activation energy values were 70.8 ± 0.8 kJ/mol for the
dimerization reaction and 83.6 ± 0.9 kJ/mol for the trimerization reaction. These values
were lower than for the oligomerization of isoamylene over acidic resin catalysts [24,25]
and a H-MRI zeolite catalyst [26]. Activation energy value of the ethylene oligomerization
reaction over a Chevron Phillips catalyst was reported as 99.1 kJ/mol [25], and very close
to the calculated values in this study. Activation energies of 21 ± 0.5 and 33 ± 0.6 kJ/mol
for the dimerization and trimerization of 1-decene over a tungsten-zirconia catalyst were
lower than results in this study, corresponding to higher concentration of acidity on the
tungsten-zirconia catalyst surface compared with the zeolite catalyst [4,27,28]. Lower
activation energy can also result from a reaction where the reactants have lower stability
than the product [29].

Catalysts 2021, 11, x FOR PEER REVIEW 5 of 18 
 

 

Figure 1. Effects of reaction temperature and reaction time on (a) 1-decene conversion; (b) C10 con-
tent; (c) C20 content; (d) C30 content and (e) C40 content (operating conditions: 50 mL 1-decene, 5 g 
HY catalyst and 1 atm). 

The Arrhenius equation was used to find the activation energy of the oligomerization 
reaction over the HY zeolite catalyst under microwave radiation. The rate of reaction was 
calculated from the production rate of dimer and trimer found by taking derivative of the 
dimer and trimer as a function of reaction time. The activation energy of the oligomeriza-
tion of 1-decene over the HY zeolite catalyst was calculated from the slope of the Arrhe-
nius plot, as shown in Figure 2. The y-intercept of the plot represented the pre-exponential 
factor. Calculated activation energy values were 70.8 ± 0.8 kJ/mol for the dimerization re-
action and 83.6 ± 0.9 kJ/mol for the trimerization reaction. These values were lower than 
for the oligomerization of isoamylene over acidic resin catalysts [24,25] and a H-MRI zeo-
lite catalyst [26]. Activation energy value of the ethylene oligomerization reaction over a 
Chevron Phillips catalyst was reported as 99.1 kJ/mol [25], and very close to the calculated 
values in this study. Activation energies of 21 ± 0.5 and 33 ± 0.6 kJ/mol for the dimerization 
and trimerization of 1-decene over a tungsten-zirconia catalyst were lower than results in 
this study, corresponding to higher concentration of acidity on the tungsten-zirconia cat-
alyst surface compared with the zeolite catalyst [4,27,28]. Lower activation energy can also 
result from a reaction where the reactants have lower stability than the product [29]. 

 
Figure 2. The Arrhenius plot to calculate the activation energy for the microwave assisted oligomerization reaction of 1-
decene over the HY zeolite catalyst. 

2.2. Oligomer Product Characterization Results 
Figure 3a demonstrates the C13-NMR spectrum of the oligomer product sample ob-

tained from the oligomerization experiment at reaction temperature of 483 K and reaction 
time of 180 min, compared to those of standard linear hydrocarbons consisting of 15 to 18 
carbon atoms and a conventional poly-alpha olefin lubricant (PAO). As shown in Figure 
3b, five peaks represent the backbone of the linear hydrocarbon structure at chemical 
shifts of 14.1, 22.9, 29.4, 29.9 and 32.0 ppm. Figure 3c shows the C13-NMR spectrum of a 
conventional PAO, indicating the presence of several short and long branching chains of 
hydrocarbons. As shown in Figure 3a, the liquid product sample obtained from this in-
vestigation contained a significant number of branched hydrocarbons, as indicated by the 
peaks located at 10.7, 19.8, 27.1, 37.0 and 37.5 ppm, with the longest branched structure at 

8

9

10

11

12

13

14

15

16

0.00205 0.0021 0.00215 0.0022 0.00225 0.0023 0.00235

In
 (r

i)

1/T (K)

Dimerization

Trimerization

y = −10277x + 34.067
R2 = 0.918

y = −8699.8x + 32.82
R2 = 0.9989
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ization reaction of 1-decene over the HY zeolite catalyst.

2.2. Oligomer Product Characterization Results

Figure 3a demonstrates the C13-NMR spectrum of the oligomer product sample
obtained from the oligomerization experiment at reaction temperature of 483 K and reaction
time of 180 min, compared to those of standard linear hydrocarbons consisting of 15
to 18 carbon atoms and a conventional poly-alpha olefin lubricant (PAO). As shown in
Figure 3b, five peaks represent the backbone of the linear hydrocarbon structure at chemical
shifts of 14.1, 22.9, 29.4, 29.9 and 32.0 ppm. Figure 3c shows the C13-NMR spectrum of
a conventional PAO, indicating the presence of several short and long branching chains
of hydrocarbons. As shown in Figure 3a, the liquid product sample obtained from this
investigation contained a significant number of branched hydrocarbons, as indicated by
the peaks located at 10.7, 19.8, 27.1, 37.0 and 37.5 ppm, with the longest branched structure
at 10.7 ppm. Calculated values of the branching ratio and short-chain percentages of
the oligomer product sample in this study and those of PAO are compared in Table 1.
Increases in branching ratio and short-chain branched hydrocarbons were observed in
the oligomer product sample compared to the PAO. Viscosity indices of the oligomer
product and the PAO lubricant correlated well with the number of short-chain branching
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hydrocarbons. An increase in the content of short-chain branching hydrocarbons derived
from the isomerization reaction resulted in reduction of the viscosity index, causing lower
thermal stability of the lubricant product [30,31]

Catalysts 2021, 11, x FOR PEER REVIEW 6 of 18 
 

 

10.7 ppm. Calculated values of the branching ratio and short-chain percentages of the ol-
igomer product sample in this study and those of PAO are compared in Table 1. Increases 
in branching ratio and short-chain branched hydrocarbons were observed in the oligomer 
product sample compared to the PAO. Viscosity indices of the oligomer product and the 
PAO lubricant correlated well with the number of short-chain branching hydrocarbons. 
An increase in the content of short-chain branching hydrocarbons derived from the isom-
erization reaction resulted in reduction of the viscosity index, causing lower thermal sta-
bility of the lubricant product [30,31] 

 

 

 
Figure 3. The C13-NMR spectrum of (a) the oligomer product obtained from the oligomerization 
experiment operated at a reaction temperature of 483 K and a reaction time of 180 min, (b) standard 
linear hydrocarbons in the range of C12 to C18 and (c) a conventional poly-alpha-olefin lubricant oil 
(PAO) where BRI is a branch hydrocarbon at any carbon location. 

  

PN17TFLC20.001.001.1r.esp

Chemical Shif t (ppm)
40 35 30 25 20 15 10

N
or

m
al

ize
d 

In
te

ns
ity

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45
123

α
β

γ
δ

n(a)

19.8
27.1

37.5 37.0

10.7
BRI

BRI

BRI

n-BHD.001.001.1r.esp

Chemical Shif t (ppm)
40 35 30 25 20 15 10

N
or

m
al

ize
d 

In
te

ns
ity

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

4

n

12
3

14.1
22.9

29.4

29.9

32.0

(b)

Figure 3. The C13-NMR spectrum of (a) the oligomer product obtained from the oligomerization
experiment operated at a reaction temperature of 483 K and a reaction time of 180 min, (b) standard
linear hydrocarbons in the range of C12 to C18 and (c) a conventional poly-alpha-olefin lubricant oil
(PAO) where BRI is a branch hydrocarbon at any carbon location.
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Table 1. Branching properties from C13-NMR analysis and viscosity index (VI) of the liquid product obtained from the
experiment at a reaction temperature of 483 ◦C and a reaction time of 150 min, compared to the conventional PAO.

Sample 11–17 ppm 18–44 ppm Short-Chain Methyl Branching
Ratio

Short-Chain Branching VI
Integral Integral Integral (%)

Oligomer product
(this study) 3.1 27.1 1.45 0.11 46.8 111.5

Conventional PAO 4.3 43.4 1.5 0.10 35.1 123.7

2.3. Kinetic Modeling Results

The ∆AIC values of all developed kinetic equations for the dimerization and trimeriza-
tion reactions are compared in Figures S1 and S2, respectively. The lower the ∆AIC value,
the better the validity of a developed kinetic model, while zero value of ∆AIC indicates
the absolute best fit condition. Generally, any formulated kinetic model is acceptable as
long as the value of ∆AIC is below 4. Values of ∆AIC greater than 4 result in unreasonable
kinetic constants, with high variance and wide standard deviation [32,33].

According to the lowest ∆AIC value corresponding to the best fit model, RD,2.1 was
the best kinetic model, reflecting dominance of the dimerization reaction at reaction tem-
perature of 423 K and neglecting the vacant sites. This result was in good agreement with
a previous investigation [34]. Increase in temperature beyond 423 K resulted in a signif-
icant increase in the reaction rate of trimerization, as previously mentioned. At reaction
temperature of 443 K, the best fit model was RD,2.3, confirming that the concentration of
vacant sites on the catalyst was negligible. The dimer adsorption equilibrium was also
omitted from the kinetic model equation. At reaction temperature of 483 K, the best fit
model was RD,1.1, also confirming that the higher the reaction temperature, the higher
the activity of trimerization at the expense of dimerization. It was not physically possible
for the oligomerization reaction to proceed with a relatively large number of vacant sites
at high temperature because increasing temperature promoted the formation rate of the
trimer. The trimer had high affinity toward an acidic site, resulting in rapid vacant site
attachment to subsequently form coke [35]. Therefore, the reaction model of RD,2.3 was
reasonable to use instead of the RD,1.1 model due to a low ∆AIC value of 1.34. The effect of
reaction temperature in this investigation was in good agreement with previous research [4].
Significant reduction in the dimer adsorption equilibrium constant was also observed in
previous research [4] as reaction temperature increased beyond 423 K. The selected kinetic
model for the dimerization reaction of decene is shown in Equation (1).

RD =
kD,2.1KDE, AC2

DE
KDE,ACDE + KDM,ACDM + KTM,ACTM

; KDM,A = 0, T ≥ 443K (1)

At reaction temperature of 423 K, trimerization proceeded via the reaction between
an adsorbed dimer and an un-adsorbed molecule of 1-decene (RT,3.2 model). The best fit
model at this reaction temperature also suggested that the adsorption of trimer should
be omitted. All other proposed models were invalid because of high values of ∆AIC, as
shown in Figure S2. Increase in reaction temperature to 443 and 483 K resulted in greater
trimer formation. As more trimers were generated from the trimerization reaction, their
adsorption behavior on the catalyst could no longer be neglected. The best fit models
of RT,3.1 at 443 K and RT,4.1 at 483 K were derived from the assumption of interaction
between the adsorbed dimer and 1-decene in the presence of the vacant sites. These
models also included all the adsorption equilibrium constants. For reaction temperature
of 483 K, the RT,4.1 model that shifted in the reaction mechanism suggested that at a very
high temperature, active vacant sites should be neglected in a mathematical equation. At
high temperature, the rapid deposition of trimer molecules on active sites resulted in the
formation of coke cluster, leading to permanent loss in free vacant sites [36]. Consequently,
the number of free vacant sites could be eliminated from the formulated equation. The
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selected kinetic model for the trimerization reaction of decene is shown in Equation (2).
The formation of soft and hard coke on the spent catalyst at 483 K are revealed by two
regions by using TGA technique, as shown in Figure 4. The first sharp drop in weight loss
(Region I) of approximately 30% of the spent catalyst with increasing reaction temperature
from 473 to 523 K was due to the increasing decomposition of soft coke. The second
weight loss (Region II) of 20.8% with increasing temperature from 523 to 823 K indicated
the decomposition of hard coke. The deposition of hard coke usually associates with the
permanent deactivation of a particular site.

RT =
kT,4.1KDM, ACDMCDE

1 + KDE,ACDE + KDM,ACDM + KTM,ACTM
;
{

KTM,A = 0, T ≤ 423 K
KTM,ACTM � 1, T ≥ 483K

(2)
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Figure 4. Decomposition of spent HY catalyst at 483 K based on TGA method.

Table 2 displays all values of rate constants and adsorption equilibrium constants using
the non-linear regression technique. The kinetic rate constants of oligomerization over the
HY zeolite catalyst in this experiment were relatively lower than those of oligomerization
over a tungsten-zirconia catalyst [4]. The adsorption equilibrium constant represented the
forward and backward rate constants. The dimerization reaction demonstrated relatively
higher adsorption equilibrium constants compared with the trimerization reaction.

Table 2. Kinetic constant values derived from the non-linear regression method of the best-fit kinetic models.

Kinetic Constant Unit 423 K 443 K 483 K

Dimerization reaction:
kD,i.j L mol s−1 0.0002 ± 0.000 0.0001 ± 0.000 0.1611 ± 0.003
KDE,A mL mol−1 1.2750 ± 0.002 10.014 ± 0.394 0.0002 ± 0.000
KDM,A mL mol−1 3.6220 ± 0.004 - -
KTM,A mL mol−1 102.00 ± 1.834 63.565 ± 0.985 25.218 ± 0.029
Trimerization reaction:
kT,i.j L mol s−1 3.6272 ± 0.031 0.0259 ± 0.001 0.0159 ± 0.002
KDE,A mL mol−1 0.5900 ± 0.003 0.9872 ± 0.004 1.0291 ± 0.003
KDM,A mL mol−1 102.00 ± 2.941 0.0010 ± 0.000 0.0012 ± 0.000
KTM,A mL mol−1 - 18.0646 ± 0.783 15.948 ± 0.894

I = the main alternative group: vacant site condition variation. J = the sub-alternative groups: denominator variation.
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Figure 5 shows the comparison between the kinetic constants calculated from the best
fit models and those from the experimental data. This figure indicates high validity of all
formulated kinetic models except for the case of the trimerization reaction at 423 K, the
formulated model to show a significant deviation from the actual values. The plots between
the reaction rate constants obtained from the experimental data and those calculated from
the proposed models for the dimerization and trimerization reactions showed the R2 values
close to 1, indicating the validity of the proposed models as shown in Figures 6 and 7.
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Figure 6. Fitting of the proposed dimerization rate equation with experimental data at (a) 423 K, (b)
443 K and (c) 483 K. Experimental data are plotted as symbol and calculated data are plotted as dash
line.
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Figure 7. Fitting of the proposed trimerization rate equation with experimental data at (a) 423 K, (b)
443 K and (c) 483 K. Experimental data are plotted as symbol and calculated data are plotted as dash
line.

3. Experimental Setup
3.1. Experimental Setup and Operation

Figure 8 illustrates the experimental setup of a batch reactor using a 150 mL three-neck
glass connected with a reflux condenser under microwave irradiation as the heating source.
The microwave system (45 × 45 × 50 cm in dimension with multi-mode cavity and double-
feed magnetrons, 2 × 1000 W and 2.45 GHz) was designed to have the ability to control
any desired uniform reaction temperature. To enhance the conversion effectiveness of
microwave radiation to thermal energy inside the reactor, activated carbon as a microwave
receptor was added into the reactor and mixed well with the 1-decene feed [37,38]. For
each experiment, a fixed amount of 50 mL of 1-decene (94%, Sigma-Aldrich, St. Louis,
MO, USA) was added into the reactor with 5 g of HY zeolite catalyst (CBV700, Zeolyst,
Groningen, The Netherlands) and 5 g of activated carbon (Biocat). The catalyst was heated
at 383 K for 12 h to remove moisture before use. The reactor was placed into the microwave
chamber, and a condenser was attached to the top of the reactor to trap vapors of the
1-decene feed. All products were located outside the microwave unit. Temperature of the
condenser circulating water was set at 283 K using a cool water circulation bath (CTL-901,
Siam Zimmerman Ltd., Bangkok, Thailand), and the effects of temperature and time on
the oligomerization reaction were investigated at controlled reaction temperatures (423,
443 and 483 K). Microwave irradiation was terminated at different reaction time intervals
from 10 to 180 min and the reactor was then allowed to cool down for 60 min. The added
catalyst and activated carbon in the mixed liquor samples taken from the reactor were
separated by vacuum filtration technique. The clear liquor samples obtained from the
vacuum filtration step were further removed from the remaining fractions of 1-decene
and C20 hydrocarbon molecules by vacuum distillation at 463 and at 523 K, respectively.
The resultant liquid samples after the vacuum distillation step contained C30 hydrocarbon
and heavier hydrocarbons with a brown and opaque appearance. The fraction of heavier
hydrocarbons contained mainly C40 with a tiny number of other products. The color of C20
hydrocarbon was transparent yellow. Each experiment was repeated three times to obtain
average data. The conversion of 1-decene and all products were calculated as percentage
weight basis.
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magnetic stirrer.

3.2. Lubricant Product Characterization Techniques

The structures of oligomers obtained from the reaction experiments on the HY zeolite
catalyst were determined using Carbon 13 nuclear magnetic resonance (C13-NMR). A
Bruker AVANCE III 400 spectrometer was used to generate a NMR spectra at frequencies of
400 and 100 Hz. The oligomer liquid products were transferred to a glass vial and dissolved
in chloroform-D solvent (CDCl3). The NMR analysis was focused in the chemical shift
range of 5 to 50 ppm, representing the carbon and hydrocarbon configurations, respectively.
The values of branching ratio and short-chain were calculated by using the peak areas of
the C13-NMR spectra, as shown in Equations (3) and (4) [16].

Branching ratio =
15× integrated peak area (11− 17 ppm)

(15× integrated peakarea (11− 17 ppm)) + (14× integrated peak area (18− 44 ppm))
(3)

Short chain (%) =
15× integrated peak area (11− 17 ppm)

Integrated peak area o f short chain methyl
× 100 (4)

3.3. Microkinetics of 1-Decene Oligomerization

The microkinetics were based on the three sequential steps of adsorption, reaction
and desorption with interactions of catalyst active sites and reactant in the solution. Molec-
ular diffusion of the 1-decene reactant from the bulk liquid phase to the surface of the
catalyst was neglected because of thorough mixing by the magnetic stirrer. The purpose
of microkinetic modeling was to obtain a better understanding of the oligomerization
mechanism. Determining the best fit mathematical equation of the reaction rate could
be used to simulate industrial production of oligomers over HY zeolite catalyst under
microwave irradiation.

In this research, the reactor system was assumed to be an ideal batch type with perfect
mixing of catalyst, reactant and products. Hence, the solid catalyst did not have mass
transfer limitations and the reactor system was operated under isotherm conditions. Both
the adsorption and desorption steps were fast compared with the surface reaction step.
The oligomerization reaction includes dimerization to produce a hydrocarbon (HC) with
20 carbon atoms as a dimer, and trimerization to produce an HC with 30 carbon atoms
as a trimer. Production of heavier HC molecules can also occur in the presence of strong
active catalyst acid sites. Under the studied conditions, the surface reaction was a rate-
determining step since the adsorption and desorption steps were very fast relative to the
rate of surface reaction, as confirmed experimentally by a previous study [4]. Formulation
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of the reaction rate equations followed the Eley–Rideal mechanism, which has been widely
used for the oligomerization reaction [39,40]. The Eley–Rideal expression refers to a single
site reaction where the reactant molecules adsorb on the active sites to directly interact with
other reactant molecules in the bulk liquid phase or un-adsorbed reactant molecules [41].

For the dimerization reaction, a molecule of 1-decene travels from the reaction medium
to a catalyst pore and then diffuses inside the pore. Next, it adsorbs on the active site and
then reacts with an unattached molecule of 1-decene to form a dimer. The produced dimer
then desorbs from the reaction site, diffuses through the pores of the catalyst and finally
moves back to the reaction medium. The trimerization reaction involves two alternative
routes. First, an adsorbed 1-decene molecule reacts with two molecules of un-adsorbed
1-decene, and second, an adsorbed dimer further reacts with an un-adsorbed 1-decene
molecule to form a molecule of trimer, as shown below:

Surface reactions:
Dimerization reaction

DEA + DE→DM (5)

Trimerization reaction; Alternative I

DEA + 2DE→TM

Trimerization reaction; Alternative II

DMA + 2DE→TM (6)

where
DE—represents a molecule of un-adsorbed 1-decene;
DEA—represents a 1-decene molecule adsorbing on an active site;
DMA—represents the dimer adsorbing on an active site;
DM—represents a molecule of dimer to be produced; and
TM—represents a molecule of trimer to be produced.
Adsorption mechanism of 1-decene on an active site:

DE + A � DEA (7)

where
A—represents the vacant site on the catalyst surface and
DEA—represents the adsorbed 1-decene.
The adsorption equilibrium equation can be expressed as:

CDEA = KDE,ACDEθA (8)

The concentration of vacant sites on the surface of catalyst can be described as:

θA =
1

1 + KDE,ACDE + KDM,ACDM + KTM,ACTM
(9)

where
θA—is the fraction of vacant sites on the catalyst’s surface;
CDE—is the concentration of 1- decene in the bulk liquid medium;
CDM—is the concentration of dimer in the bulk liquid medium;
CTM—is the concentration of trimer in the bulk liquid medium;
CDEA —is the concentration of 1-decene adsorbing on the active sites;
KDE,A—is the adsorption equilibrium constant of 1-decene;
KDM,A—is the adsorption equilibrium constant of dimer; and
KTM,A—is the adsorption equilibrium constant of trimer.
All reaction rate equations were formulated by assuming that the number of free

active sites was small compared to the occupied sites; therefore, the free active sites
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could be neglected. The two main dimerization reaction rate equations are shown in
Equations (10) and (12). With the same assumptions, there were four potential groups of
possible trimerization reaction rate equations, as shown in Equations (13) to (18).

Dimerization reactions:
RD,i = kD,iKDE,AC2

DEθA (10)

RD,1.1 =
kD,1.1KDE, AC2

DE
1 + KDE,ACDE + KDM,ACDM + KTM,ACTM

(11)

RD,2.1 =
kD,2.1KDE, AC2

DE
KDE,ACDE + KDM,ACDM + KTM,ACTM

(12)

Route I—trimerization reactions:

RT,i = kT,iKDE, AC3
DEθA (13)

RT,1.1 =
kT,1.1KDE, AC3

DE
1 + KDE,ACDE + KDM,ACDM + KTM,ACTM

(14)

RT,2.1 =
kT,2.1KDE, AC3

DE
KDE,ACDE + KDM,ACDM + KTM,ACTM

(15)

Route II—trimerization reactions:

RT,i = kT,iKDM, ACDMCDEθA (16)

RT,3.1 =
kT,3.1KDM, ACDMCDE

1 + KDE,ACDE + KDM,ACDM + KTM,ACTM
(17)

RT,4.1 =
kT,4.1KDM, ACDMCDE

KDE,ACDE + KDM,ACDM + KTM,ACTM
(18)

where
kD,i—is the rate constant of the dimerization of 1 for model RD,i;
kT,i—is the rate constant of the dimerization of 1 for model RT,i.
Table 3 shows the proposed reaction rate equations of the oligomerization. For the

first case, all molecules of 1-decene and both the products (dimer and trimer) can adsorb on
the active sites of the HY zeolite catalyst. For the second case, because of the very narrow
pore structure of the HY zeolite catalyst, trimers cannot be formed on the strong acid sites
inside the pores of the catalyst. Therefore, the adsorption equilibrium of trimer product
(KTM,A) can be omitted. For the third case, 1-decene and the trimer can adsorb on the active
sites, except for the dimer. For the fourth case, the dimer and trimer cannot adsorb on the
active sites, except for 1-decene.



Catalysts 2021, 11, 1105 15 of 18

Table 3. All proposed reaction rate equations for the dimerization and trimerization reactions from 1-decene over the HY zeolite catalyst under microwave irradiation.

Alternatives Dimerization Reaction Equations
Trimerization Reaction Equations Additional Assumption

Alternative I Alternative II

Case I:
All compounds can
adsorb on the active

sites.

RD,1.1 =
kD,1.1KDE, AC2

DE
1 + KDE,ACDE + KDM,ACDM + KTM,ACTM

RT,1.1 =
kT,1.1KDE, AC3

DE
1 + KDE,ACDE + KDM,ACDM + KTM,ACTM

RT,3.1 =
kT,4.1KDM, ACDMCDE

1 + KDE,ACDE + KDM,ACDM + KTM,ACTM

-

RD,2.1 =
kD,2.1KDE, AC2

DE
KDE,ACDE + KDM,ACDM + KTM,ACTM

RT,2.1 =
kT,2.1KDE, AC3

DE
KDE,ACDE + KDM,ACDM + KTM,ACTM

RT,4.1 =
kT,4.1KDM, ACDMCDE

KDE,ACDE + KDM,ACDM + KTM,ACTM

Neglect the vacant active
site.

Case II:
Trimers cannot adsorb

on the active sites.

RD,1.2 =
kD,1.2KDE, AC2

DE
1 + KDE,ACDE + KDM,ACDM

RT,1.2 =
kT,1.2KDE, AC3

DE
1 + KDE,ACDE + KDM,ACDM

RT,3.2 =
kT,3.2KDM, ACDMCDE

1 + KDE,ACDE + KDM,ACDM
-

RD,2.2 =
kD,2.2KDE, AC2

DE
KDE,ACDE + KDM,ACDM

RT,2.2 =
kT,2.2KDE, AC3

DE
KDE,ACDE + KDM,ACDM

RT,4.2 =
kT,4.2KDM, ACDMCDE

KDE,ACDE + KDM,ACDM

Neglect the vacant active
site.

Case III:
Dimers cannot adsorb

on the active sites.

RD,1.3 =
kD,1.3KDE, AC2

DE
1 + KDE,ACDE + KTM,ACTM

RT,1.3 =
kT,1.3KDE, AC3

DE
1 + KDE,ACDE + KTM,ACTM

RT,3.3 =
kT,3.3KDM, ACDMCDE

1 + KDE,ACDE + KTM,ACTM
-

RD,2.3 =
kD,2.3KDE, AC2

DE
KDE,ACDE + KTM,ACTM

RT,2.3 =
kT,2.3KDE, AC3

DE
KDE,ACDE + KTM,ACTM

RT,4.3 =
kT,4.3KDM, ACDMCDE

KDE,ACDE + KTM,ACTM

Neglect the vacant active
site.

Case IV:
Only 1-decene adsorbs

on the active sites.

RD,1.4 =
kD,1.4KDE, AC2

DE
1 + KDE,ACDE

RT,1.4 =
kT,1.4KDE, AC3

DE
1 + KDE,ACDE

RT,3.4 =
kT,3.4KDM, ACDMCDE

1 + KDE,ACDE
-

RD,2.4 =
kD,2.4KDE, AC2

DE
KDE,ACDE

RT,2.4 =
kT,2.4KDE, AC3

DE
KDE,ACDE

RT,4.4 =
kT,4.4KDM, ACDMCDE

KDE,ACDE

Neglect the vacant active
site.
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3.4. Solving Kinetic Equation

Kinetic coefficient and constants were obtained by performing a non-linear regression
method on the proposed kinetic equation. Specifically, the Levenberg-Marquardt (LM)
algorithm was employed to derive the parameter values. This algorithm is in the form of
an objective function with a built-in parameter to minimize the sum of squares of the errors
between the experimental and calculated data. All rate constants and coefficients derived
from at least 3 experimental trails were used to calculate the standard deviation of the data,
as shown in Equation (19)

Standard deviation =

√
∑|x− µ|

N
(19)

where x is kinetic coefficient derived from best-fitted model, µ is the mean of the kinetic
coefficient derived from best-fitted model and N is the number of experimental trials.

3.5. Verification of Proposed Kinetic Equations

Model evaluation criteria is usually employed to verify competing kinetic models
based on experimental data. The Akaike Information Criterion (AIC) was employed to test
all proposed kinetic models by fitting with experimental data to determine the AIC score.
One of the main advantages of the AIC method is that it can be used to rapidly evaluate
many different models by using marginal likelihood data. AIC calculates the Kullback–
Leibler (K–L) divergence presented in two or more alternative probability distribution
data.

The kinetic expression with the lowest AIC score indicating the best-fit model was
used to simulate the oligomerization reaction over the HY zeolite catalyst. The level of
fitness (∆AIC) was calculated by subtracting the minimum AIC value of each reaction
equation. Any candidate model having AIC < 2 was considered as valid, 4 < ∆AIC < 7 was
considered as less valid, while ∆AIC >7 was unacceptable. The equations for determining
the AIC value and level of fitness or ∆AIC are shown below [32,33].

AIC = nlog
(

∑ εi
2

n

)
+ 2K (20)

∆AIC = AIC− AICminimum (21)

where
n—is the number of experimental data;
εi—is the residual between experimental data and calculated data;
K—is the number of predicted constants; and
AICminimum—is the lowest value of AIC calculated with a specific group of group of

equation models.

4. Conclusions

The oligomerization of 1-decene over an HY zeolite catalyst under microwave irradi-
ation to produce designed oligomer products for lubricant application was investigated.
Optimum conditions for the production of lubricant products were 483 K and 150 min
to yield 80% conversion of 1-decene with 54.2% dimer, 22.3% trimer and 3.4% heavier
products. The AIC evaluation results indicated that the best fit model for dimerization
was based on the exclusion of vacant sites. The formation of trimer occurred through
the interaction between adsorbed dimer and un-adsorbed 1-decene. Calculated apparent
activation energies of dimerization and trimerization from 1-decene were 70.8 ± 0.8 and
83.6 ± 0.9 kJ/mol, respectively. The oligomer product synthesized from 1-decene over
the HY zeolite catalyst contained a significant portion of highly branched hydrocarbons
derived from the isomerization reaction, causing reduction in the viscosity index of the
oligomer products.
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