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Abstract: In recent years, advanced oxidation process (AOPs) based on sulfate radical (5O4°~) and
singlet oxygen (10,) has attracted a lot of attention because of its characteristics of rapid reaction,
efficient treatment, safety and stability, and easy operation. SO4*~ and 'O, mainly comes from the
activation reaction of peroxymonosulfate (PMS) or persulfate (PS), which represent the oxidation
reactions involving radicals and non-radicals, respectively. The degradation effects of target pollutants
will be different due to the type of oxidant, reaction system, activation methods, operating conditions,
and other factors. In this paper, according to the characteristics of PMS and PS, the activation
methods and mechanisms in these oxidation processes, respectively dominated by SO4*~ and 'O,,
are systematically introduced. The research progress of PMS and PS activation for the degradation
of organic pollutants in recent years is reviewed, and the existing problems and future research
directions are pointed out. It is expected to provide ideas for further research and practical application
of advanced oxidation processes dominated by SO4*~ and 'O,.
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1. Introduction

With the development of economy and science and technology, more and more new
substances are developed and manufactured to meet the growing needs of human beings.
At the same time, many emerging pollutants, such as pesticides, pharmaceuticals and
personal care products (PPCPs), polycyclic aromatic hydrocarbons (PAHs), perfluorinated
compounds (PFCs), food additives, surfactants, plasticizers, and pathogens, are released
into the aquatic environment during production, processing, use, and waste. As these
pollutants migrate and transform in the environment, they accumulate in organisms and
eventually harm human health. These emerging pollutants have relatively stable properties,
complex molecular structures and are difficult to degrade in the natural environment, so
they cannot be completely degraded by traditional biological processes [1,2].

In recent decades, water treatment technologies have achieved rapid development.
Especially, advanced oxidation processes (AOPs) have been applied to the degradation,
complete mineralization or pretreatment of complex and refractory organic pollutants.
Compared with traditional water treatment methods, advanced oxidation technology has
obvious advantages of strong oxidation capacity, fast reaction rate, simple operation, wide
application range, high treatment efficiency, less secondary pollution, high mineralization
rate, equipment, and large-scale application. AOPs relies on reactive oxygen species (ROS)
to degrade organic pollutants. Among them, sulfate radical (504°~) and singlet oxygen
(10,) have attracted more and more researchers’ attention due to their unique properties in
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the removal of organic pollutants [3,4]. Compared with the traditional hydroxyl radical
(*OH), SO4*~ has a higher redox potential (2.5-3.1 V), and the redox potential of *OH is
2.7 V and 1.8 V under acidic and alkaline conditions, respectively. In addition, SO;°*~
(3040 ps) has a longer half-life than *OH (20 ns) [5]. SO4°~ also degrades many organic
compounds more efficiently than *OH, due to its greater selectivity for electron transfer
reactions, giving SO4°~ a greater advantage in mineralizing a wide range of organic
pollutants [6]. Moreover, the oxidation efficiency of SO4°~ in carbonate and phosphate
buffer solutions is higher than that of *OH [7]. Therefore, sulfate radical-based AOPs will
have better oxidation efficiency and application than hydroxyl radical-based AOPs.

Unlike SO4*~ and *OH, 'O, is a non-free radical ROS, which can degrade organic
pollutants through non-free radical attack pathways [8]. 1O, is electrophilic and highly
selective for electron-rich organic matter, which facilitates selective removal of micropollu-
tants (e.g., drugs and endocrine disruptors) in the presence of salinity and other organic
matter [9,10]. Therefore, the non-radical oxidation reaction based on 1O, provides an idea
for the removal of refractory organic compounds in complex matrix.

SO,* -based and 10,-based AOPs have attracted increasing interest. Most of the
recent studies focus on the generation of SO4*~ and 'O, and the degradation of one or
several organic pollutants. However, there are few reports on the comprehensive evaluation
of the formation, mechanism, and application of SO4°*~ and 10,. This paper reviews
the recent progress and prospect about sulfate radicals-based and singlet oxygen-based
advanced oxidation technologies. The production of SO4*~ and 'O, mainly comes from
the activation of persulfate (PS) and peroxymonosulfate (PMS). The chemical properties of
PMS and PS are briefly introduced in this paper, and the generation, reaction mechanism,
and treatment effect of SO,*~-based and 1O,-based AOPs are emphasized. The obstacles
in the current research work are pointed out and the future research is prospected. It is
expected to provide ideas for further research and practical application of AOPs based
on SO4*~ and 'O,. This paper has a certain reference and guiding significance for the
applications of PMS or PS activation technologies in environmental pollution control
and remediation.

2. Characteristics of Persulfate and Peroxymonosulfate

At present, the production of SO4°~ mainly comes from the activation of PMS and
PS, which are the monosubstituted or symmetrically substituted derivatives of hydrogen
peroxide by sulfonic acid group (-SO3), respectively. PMS has been widely used in organic
compound synthesis and as a chlorine-free additive for disinfecting swimming pools at
a rate of about 1-2 pounds per 10,000 gallons of pool water [11]. Under the presence of
25 mg/L PMS and 0.1 mg/L Co?*, the removal rate of E. coli reached 99.99% after 1 h of
reaction [12]. PMS is white solid powder. It is stable when pH is less than 6 or pH is 12.
When pH is 9, it showed the poorest stability where half of HSOs~ decomposes to SO5%~ [4].
At present, the widely used potassium bisulfate complex salt 2KHSO5-KHSO,-K;SOy)
is composed of three components, potassium peroxymonosulfate, potassium hydrogen
sulfate, and potassium sulphate, and its main active substance is potassium peroxymono-
sulfate (KHSOs). The salt is marketed under the trade names Caroat and Oxone registered
by Evonik and DuPont, respectively. Oxone is a white granular powder crystal salt, which
is stable, non-toxic, inexpensive, and soluble in water. The peroxide bond (O-O) distance is
1.453 A, and the bond energy is 140-213.3 k] /mol. PMS is most stable when the solution
pH is less than 6 and equal to 12. When pH is 9, the stability is worst, and the concentration
of HSO5~ and SOs52~ in the solution is almost equal. When pH is less than 1, PMS will un-
dergo hydrolysis reaction to produce H,O, [13]. PS, an oxidant with symmetrical structure,
was first known as the initiator of polymerization reaction. The O-O distance is 1.497 A, and
the bond energy is 140 kJ /mol [14]. PS, often in the form of potassium persulfate or sodium
persulfate, has been widely used as bleaching agents, oxidants, emulsion polymerization
promoters, and water or soil remediation agents. The related properties of PMS and PS
are shown in Table 1. Both PMS and PS are strong oxidants, but their direct reaction rates



Catalysts 2022, 12, 1092

30f18

with most pollutants are very low. Therefore, it is necessary to activate them through
appropriate ways to destroy the O-O bond and generate strong oxidizing free radicals, 'O,
and other ROS to degrade organic pollutants quickly and efficiently.

Table 1. Properties of PMS and PS.

PS (Take Potassium PMS (Take Potassium

Properties Persulfate as an Example) Peroxymonosulfate as an
Example)
CAS Registry Number 7727-21-1 10058-23-8
Chemical formula K55,0¢ KHSOs5
Molecular mass 270.309 614.738
Solubility in water (20 °C) 520g/L >250 g/L
Redox potential 201V 1.82V

Because PS and PMS are solid powders, they can be transported and stored more
easily. Compared with H,O,, the anions of PS and PMS remain stable in water for a much
longer time until they are properly activated. In addition, PMS and PS-based AOPs can
proceed smoothly in a wide solution pH range from acidic to alkaline (pH = 2-10), while
H,0;-based Fenton process requires strict acidic conditions (pH = 2.7-3). Generally, PS and
PMS can be activated with the assistance of ultraviolet light, heat, alkali, or metal catalysts,
etc. Different types of oxidants and activation methods will produce different ROS. The
advanced oxidation processes dominated by SO4*~ and 'O, were discussed in this paper.

3. Sulfate Radicals-Based Advanced Oxidation

Studies have shown that AOPs based on SO4°*~ and *OH is an effective method for the
degradation of refractory organic pollutants, such as pharmaceuticals, pesticides, personal
care products, steroids, endocrine disruptors, etc. [15]. However, AOPs based on *OH
degrades organic pollutants through a non-selective, multi-step approach that typically
requires an acidic environment. In addition, the oxidation process is severely limited by the
large amount of dissolved organic matter and anions in complex environments, which are
the main scavengers of *OH. SO4°~ is inherently more oxidizing than *OH and lasts longer
in aqueous solutions, and in some cases SO4°*~ can oxidize contaminants that *OH cannot.
In recent years, SO4°*~-based AOPs have replaced *OH-based AOPs to some extent.

The essence of the advanced oxidation process based on SO4*~ is to activate PMS or
PS to form SO,4°*~ to achieve the removal of organic matter. Besides SO4°~, there are also
associated or indirect generation of *OH, superoxide radical (O2*~), or other radicals, but
504°~ plays a leading role in the degradation of pollutants. These free radicals (5O4°~,
*OH, and O,°7) could be detected by using 5,5-dimethyl-1-pyrroline-1- oxide (DMPO)
as a spin trapping agent in an electron paramagnetic resonance spectroscopy (EPR) [16].
Both ethanol (Et) and tert-butanol (TBA) could quench *OH rapidly (kg = 1.2-2.8 x 10°
M~ 1571 krga = 3.8-7.6 x 108 M~1s71), and the reaction rate between Et and SO,*~ is
much faster than that of TBA (kg = 1.6-7.7 x 107 M~ 1s™1, krga = 4.0-9.1 x 10° M~ 1s71).
Therefore, Et and TBA can be used as capture agents to identify who contributes more to
the degradation of pollutants [17]. PMS and PS can be activated to produce SO4°~ through
energy input, transition metal ions and their oxides, non-metallic materials, etc. Studies
on the degradation of pollutants by activating PMS and PS in different ways to generate
SO4°*~ are summarized in Table 2.
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Table 2. PMS and PS radical activation with various method for the removal of pollutants.

Reaction System Pollutant Conditions Reactivity Dominant ROS Ref.
UV(254 nm)/PMS benzoic acid (BA) [BA] =9.90 uM; [PI\;IS{] = ﬁ’o 1M as 1/2 Oxone; >90% with 10 min SO4*~ and *OH [18]
[Chlorophene] =1 uM, [PS] =50 uM, pH =7, o . o
UV(254 nm)/PS Chlorophene UV intensity (254 nm, 15 W) = 423 mWem™2. 100% with 5 min SOy [19]
Iyy = 25 mW/cm?2, [PS] = 1.0 mM,
UV-C laser/PS TIohexol (I0X) [IOX] = 10 uM, initial pH=7.0 £ 0.5, 93.8% within only 40 s SO4°~ [20]
temperature 25 °C.
[phosphate buffer] = 0.09 M, pH = 7.0, o) . - .
Heat/PS Ibuprofen (IBU) [IBU] = 20.36 uM, [PS] = 1.0 mM, T = 70 °C. 100% with 20 min SO4°*~ and *OH [21]
1-alkyl-3- . _ _ no
Heat/PS methylimidazolium bromides [C4mimBr] = 0.1 mM, [PS] = 10 mM, T = 60 °C, 100% with 120 min SO4°~ [22]
. pH=7,V =100 mL.
(C4mimBr)
L [TCA] =25.0mg/L, [PS] =250.0 mg/L pH 7.0, o . o
Ultrasound /PS 1,1,1-trichloroethane (TCA) T =20+ 2°C, ultrasound: 400 kHz, 100 W. 100% with 120 min SOy [23]
Electrolysis(boron-doped R [Ampicillin] = 1.1 mg/L, [PS] = 250 mg /L, o . o o
diamond anode)/PS Ampicillin current density (BDD anode) = 25 mAcm 2. 100% with 120 min 504" and *OH [24]
0 [SMX] =39.5 uM, [PS] = 1.0 mM, o s . o
Fe”/PS sulfamethoxazole (SMX) [Fe®] = 2.23 mM; m (Fe®) = 2.5 mg, pH = 3.52. 100% with 30 min SOy [25]
_ 247 _ _
Fe2* /PS Acetaminophen (ACT) ~ ACTI=005mM, [Fe™] =1 mM, [PS] = 0.8 mM, 70% with 30 min S0, [26]
pH=3T=20°C.
) . ) [2-CB] = 0.0212 mM; [Fe(I)] = 0.11 mM; o . .
Fe(Il)/PMS 2-chlorobiphenyl (2-CB) [PMS], = 0.11 mM. 90% with 240 min SOy [27]
0y nuclear grade cationic IRN-77  initial pH =9, [Co%] = 4 mM, [PMS] = 60 mM ~90% COD removal (1000 o o
Co™/PMS resin T=60°C. mg/L) with 60 min 504°" and *OH (28]
[TCS] =9 mg/L (0.031 mM), initial pH =7,
Cu?*/PMS Triclosan (TCS) molar ratio of oxidant to metal = 1:1, molar ratio 95% with 10 min SO, [29]
of oxidant to triclosan = 5:1.
[2,4-DCP] = 0.311 mM,
Ru®t /PMS 2 4-dichlorophenol (2,4-DCP) [RuCl3-xH,0] = 2.553 mM, 98% in less than 1 min SO, [30]
[KHSOs5] =1.244 mM, pH="7.
. . Bisphenol S = 25 uM, chalcopyrite =2 g/L, o . . .
Natural chalcopyrite/PMS Bisphenol S PMS = 0.4 mM, initial pH = 6.2, T = 303 K. 83% with 30 min SO4*~ and *OH [31]
CoFe;O4/eggshell =04 g/L,
Eggshell-loaded Florfenicol (FF) [PMS] =0.96 mmol/L, [FF] =10 mg/L, 96.8% within 40 min SO4*" and *OH [32]

CoFe;O4 /PMS

T =30 °C, initial
pH =6.61.
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Reaction System Pollutant Conditions Reactivity Dominant ROS Ref.
[catalyst] = 0.2 g/L, [PMS] = 0.5 mM,
CoFe layered double [paracetamol] = 10 mg/L, o . o
oxide/g-C3Ny/PMS paracetamol temperature = 25 + 0.5 °C, initial 100% in less than 10 min SOy [33]
pH=7+02.
. [AO7] = 0.2 mM, [PMS] =2 mM and o . -
Co304/PMS Acid Orange 7 [nano-Co3O4] = 0.5 g/L, pH = 7. 100% with 60 min SOy [34]
. . [CAF] = 0.05 mM, [PMS] = 0.2 mM, o s . - .
Co-MCM41 Caffeine (CAF) [catalyst] = 200 mg /L, pH = 7.10. 100% with 15 min SO4*” and *OH [35]
. . [catalysts] = 300 mg/L, [PS] =5 mM, o . o o
Agp 4-BiFeO3/PS tetracycline (TC) [TC] = 10 mg/L, pH = 45, T = 298 K. 91% with 60 min SO4*~ and *OH [36]
[CBZ] =2 mg/L, [PS]p = 0.2 mM,
S-doped x-Fe,O3/PS carbamazepine (CBZ) [catalyst] =0.2 g/L, T =25 £ 1 °C and initial 93.13% with 30 min SO4°~ [37]
pH=6.8£0.5.
: . [CBZ] =5 mg/L, [catalyst] = 25 mg/L, o . o
Fe;04@Zn/Co-ZIFs/PMS carbamazepine (CBZ) [PMS] = 0.4 mM, initial pH = 6.8, T = 30 °C. 100% with 30 min SOy [38]
3 . [catalyst] = 0.3 g/L, [pollutant] = 20 mg/L, o) il . o
Co30,4/C-BC/PMS Bisphenol A (BPA) [PMS] = 1.0 mmol/L, [pH] = 7.0, [T] = 30 °C. 100% within less than 30 min SOy [39]
. tetracycline hydrochloride [TC]=0.05g/L, [ZnO200/BC] =0.1g/L, o s . o .
ZnO/biochar/PS (TC) [PS] = 1.0 mM, pH = 7.0 + 0.1, T = 25 + 2 °C. 44.98% with 50 min SO4°*~ and *OH [40]
microwave [PS]=04g/L, [CuO] =40 mg/L,
irradiation(MW)/CuO/PS 2,4-dichlorophenol (2,4-DCP)  (2,4-DCP) =50 mg / L,. initial pH = 9, MW power >98% with 90 min SOy [41]
intensity = 180 W.
[SD] =20 mg/L, [Fe®] = 0.92 Mm,
Ultrasound /Fe% /PS Sulfadiazine (SD) [PS] = 1.84 mM, US input power = 90 W, initial 99.1% with 60 min SO4°~ [42]
pH =7, room temperature.
ranular activated carbon [AO7] =20 mg/L, [PMS]: [AO7] = 1001,
& Acid Orange 7 (AO7) [GAC] =1.0 g/L, without pH adjustment, 85% with 5 h SO4°*~ [43]
(GAQ)/PMS A
T=20+0.5°C.
Fe304@Graphene oxide . [RhB] = 20 ppm, [Fe30,@GO] = 500 mg/L, o . o
(GO)/PS Rhodamine B (RhB) [PS] = 1.5 mM, pH = 4.34, T = 20 °C. 89% with 120 min SOy [44]
Cu-ethylenediamine [Cu(I-EDTA] = 3.14 mM,
alkali and CuO/PS y [PS]/[Cu(Il)-EDTA] = 15:1, [CuO] =2 g/L, Nearly 100% with 120 min SO4°~,*OH and O,°*~ [45]

tetraacetic acid (Cu(II)-EDTA)

pH maintained at 11.
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3.1. Energy Activation

The activation process of PMS and PS through energy is shown in Figure 1. Energy
input methods include heating, ultraviolet light, electricity, ultrasound, and radiation. It
has been reported that at least 33.5 kcal /mol is required to break the O-O bond of S,0g2~ by
heat [46]. Therefore, PS activation occurs only when the temperature reaches the required
activation energy. Liang et al. found that PS could not be activated to achieve degradation
of trichloroethylene and 1,1, 1-trichloroethane at 20 °C, whereas pollutants degradation
could occur at 40-60 °C, and they found that the reaction with higher activation energy
was more sensitive to temperature [47,48]. Yang et al. found that heating activation of
PS is effective, but the activation efficiency of PMS is very low [49]. The combination of
ultrasound and light with PS or PMS has received much attention in recent years as a
potential alternative method for removal of refractory or toxic compounds. When H,O,,
PS and PMS were activated by UV light, the removal rate of was 100% in the presence
of PS and PMS, but only 75% in the presence of HyO, [50]. 1,1, 1-trichloroethane could
be completely removed by ultrasonic activation of sodium persulfate, and the main ROS
were SO4°~ and *OH [23]. It has also been reported that laser can activate PS to produce
SO4°*~, but there are few studies on its application in pollutant removal in recent years [51].
Although energy input can activate PMS and PS to produce free radicals, the genera-
tion efficiency of free radicals is generally low, accompanied by large energy output and
high cost.

@) O
\/ Energy O\/ ©
-O/ \O—OH -o/ \

-OH (a)

0] o O @)

\/ \O/ Energy o) O\/ ©
itk (b)

& No—o” N\

Figure 1. The activation reactions of PMS (a) and PS (b) by energy.

3.2. Transition Metal Ions Activation

In addition to energy activation, transition metal ions such as Co%*, Ce®t, Mn2+, Ni2t,
and Fe?*can also activate PMS and PS. The reaction processes are redox reaction, as shown
in Equations (1) and (2) [46]. There are many studies on the activation of PMS by Co?*,
and the relevant mechanism is basically clear, as shown in Figure 2. It mainly converts
Co%* into CoOH™, then generates SO4°~ radical and CoO™, further converts into Co®*, and
finally turns into Co?* to complete the catalytic process [52]. The results show that Co?*
is the most efficient metal for activating PMS, while Ag+ is the most efficient metal for
activating PS [30]. Co?* /PMS system is better than traditional Fenton oxidation, which can
not only react under neutral conditions, but also has lower drug consumption [30]. CoOH*
is the most effective intermediate substance in the reaction process of Co?* activation of
PMS, and its formation is the rate-limiting step of the reaction, as shown in Equation (3).
The regeneration of Co?* is realized through the reduction reaction of Co®*, which is a key
step to maintain the low usage of cobalt, as shown in Equation (4) [5].
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CoOH*

H+

Figure 2. Mechanism diagram of Co catalyst activated PMS for degradation of organic pollutants.

$,08%” + M™ — M™! 4+ 50,° + 50,2~ 1)
HSO5 ™+ My — M™! +504°~ + *OH ()
CoOH* + HSO5~ — CoO™ + S04*~ + H,0 ©)
Co* + HSO5~ — Co*" +505°~ + H,0 (4)

Although cobalt ions have good activation ability of PMS, cobalt metals are toxic.
The average concentration of cobalt in human serum and urine is about 0.1-0.3 pg/L and
0.1 pg/L, respectively [53]. Studies have shown that excessive cobalt may be potentially
toxic and carcinogenic to human body, causing some diseases, such as asthma, pneumonia,
and cardiomyopathy [5]. Therefore, the activation of PMS with cobalt-based materials has
great environmental risks. Ag* has better activation effect on PS, but silver is a precious
metal, which is not easy to achieve large-scale application because of high cost. Iron-based
materials have attracted widespread attention because of their non-toxic, large reserves
and low price. Fe?* can activate PMS and PS effectively, while Fe** has poor activation
effect [54]. For homogeneous reaction systems, dissolved metal ions can react freely with
PS and PMS, so mass transfer has little influence on the activation of PS and PMS. However,
homogeneous reaction also has some disadvantages: (1) the dissolved metal ions are
difficult to recover; (2) high concentration of organic wastewater will use a lot of metal
salts, resulting in secondary pollution of metal ions in sewage; (3) transition metal ions are
easily affected by water quality components and pH, such as precipitation under alkaline
conditions, hydrolysis under acidic conditions, thus reducing the activation efficiency; and
(4) in addition, some organic compounds in sewage will be complex with metal ions, which
will also affect the activation of PS or PMS.

3.3. Transition Metal Oxide Activation

In order to overcome the problem of secondary contamination of homogeneous cata-
lysts, researchers gradually shifted their research focus to heterogeneous catalytic reactions.
Transition metal oxides also have good activation effect on persulfate. For example, five typ-
ical cobalt oxides (CoO, CoO,, Co,03, CoO(OH), and Co304) have been reported. Among
them, CoO and Co304 have been studied the most frequently, while CoO; has thermal
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instability and receives less attention. Dionysiou’s group first studied the activation of PMS
by CoO or Co30y4, and found that CoO/PMS systems tend to be homogeneous reactions be-
cause CoO has a high solubility in water (0.313 mg/100 g H,O) [7]. When Co304 was used
to activate PMS, the amount of cobalt dissolved was significantly reduced, mainly because
CoO was inserted into the lattice of Co,O3, which made the structure relatively stable [55].
Co304 has been widely studied for activating PMS due to its relatively high stability. In
addition to the synthesis of Co3O4 nanomaterials with various morphs, researchers also
composite it with various carriers to prepare a variety of cobalt-supported materials to
activate PMS. Carbon fiber, activated carbon, graphene, red mud, zeolite, SBA-15, and other
materials are used as support materials [13]. Potential environmental risks and high cost
limit the application of cobalt materials. In order to replace cobalt-based materials, other
metal oxides such as MnO,, CuO, Fe30y4, Fe;O3, ZnO, and MFe,O4 (M = Cu, Co, Mn, and
Zn) have also been applied to PMS and PS activation studies, as shown in Figure 3. The
mechanisms of PMS and PS activation by metal oxides are similar to that of homogeneous
metal ions, which mainly depends on the redox action of metal ions [6]. According to the
reduction mechanism, the activation of PS and PMS is positively correlated with the redox
potential of the metal. In fact, metal redox potential is not the only factor affecting the
activation of PS and PMS. For example, the redox potential of Ce®* is higher than that of
Fe?*, but the activation effect is worse than that of Fe?* [56]. Therefore, the mechanism
and process of metals activating PMS or PS still need to be further studied, and low-cost,
efficient, and stable metal catalytic materials also need to be developed and applied.

n+
Fe3+, F62+’ Ag+’ M ‘
Co?*, Co*, Mn?*, =)
Cu?*, Cut, Ce*, e

I Fe?, Fe;0,, CuO, / g

| Cu,0, MFe,0,

I (M=Cu, Co, Zn, \

1 Mn), ZnO, ZrO,,

1 MnO,, CoxOy, E
: CeO,, etc.

I

)

+

=
=5
+
=

M(n+1)+

Figure 3. The mechanism diagram of PMS and PS activation by metal ions and metal oxides.

3.4. Non-Metallic Materials Activation

Recently, the most studied non-metallic catalytic materials are carbon-based materials,
which have been widely used as adsorbent or carrier materials due to their large specific
surface area, low cost, and large pore capacity. It was found that carbon-based materials
can also activate PMS and PS well, and electron conduction is the main mechanism. It was
found that carbon-based materials can also activate persulfate well, and electron conduction
is the main mechanism. For example, the sp? covalent carbon net structure of multiwalled
carbon nanotube forms a redox cycle with the oxygen-containing functional group at the
edge defect, which provides electrons to activate PS to generate SO4°~ radicals [57]. In
another form, electrons may be transferred from the carbon-based material of the aromatic
graphite structure to PMS or PS [58]. PS and PMS are activated to produce SO4°~ radicals
by receiving electrons, as shown in Equations (5) and (6). The structure and composi-
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tion of carbon-based materials affect the redox potential and further affect the electron
transfer reactions.

$,082” + e~ — SO4° + 50,2 (5)
HSO5 + e~ — SO,*~ + OH™ (6)

$,05%2~ + Hp,O — 280,%~ + HO, ™ + H* 7)
$,08%” + HOp ™ — 804%™ +504°~ + 0,°~ + HY (8)
8,052~ + PhO™ — SO4%~ + SO,4*~ + PhOpx ©9)

In addition, alkali, phenols, and quinones can also activate PS to generate SO4°~ radi-
cals, as shown in Equations (7)—(9), while they activate PMS to generate singlet oxygen [6].
In order to improve the activation efficiency, the catalyst will be added at the same time
with UV light, ultrasound and other energy input to promote the generation of free radicals.

Heterogeneous catalysis technology has the characteristics of high efficiency, low
energy consumption, continuous catalysis, catalyst recovery, and less secondary pollution,
which makes it become the mainstream research direction in many studies and shows
a better application prospect. PMS and PS heterogeneous activation relies only on cat-
alysts and oxidants, so the key lies in the development of low-cost, stable and efficient
heterogeneous catalysts. Current reports mainly focus on the synthesis of laboratory-scale
catalysts and the degradation of emerging pollutants. The pollutants treated are relatively
single, and there is a lack of data for actual wastewater treatment. In addition, the prepa-
ration of catalytic materials reported is relatively complex, which is still a long way from
large-scale production.

4. Singlet Oxygen-Based Advanced Oxidation

With the report of PMS and PS non-radical activation, people gradually have a strong
interest in the process of non-radical oxidation. Non-radical reactive species are generally
thought to be resistant to common free radical scavengers (e.g., methanol, ethanol, and tert-
butanol), selective to electron-rich organic compounds, and particularly sensitive to organic
substrates with mild redox potentials [8]. At present, non-radical oxidation processes
have been found in a variety of reaction systems, especially in PMS and PS activation.
However, the mechanism remains controversial. Based on current reports, carbon or metal
catalysts mainly realize non-radical activation of oxidants (PMS, PS, HyO,, or O3) through
three ways: electron transfer process, generation of activated complexes (or surface-bound
radicals) and singlet oxygen participating in pollutant degradation, respectively, as shown
in Figure 4. Among them, !0, shows significant advantages in the selective removal of
organic pollutants, which has become the focus of research.

4.1. Properties of Singlet Oxygen

10, is an excited molecular oxygen, which is the excited state of the ground state
oxygen (triplet oxygen molecule, 3Zg’). Originally, two electrons in two 2p7* orbitals
with two spins parallel to each other can occupy one 2p7* orbital with opposite spins,
or two 2pm* orbitals with opposite spins [59]. They’re labeled as O»('Ag) and O, (1Zg+).
Since O, (1Zg+) has a short lifetime (10712 s) and is easily converted to low-excited O,( Ag)
(1073-107° s), what is commonly called singlet oxygen is Oz(lAg) [60]. 'O, is a non-
radical substance with an energy of 94.2 kJ/mol, higher than the ground state oxygen
molecule (O;). As a mildly oxidizing species, the standard redox potential (Eg = 1.52 V)
of 10, was significantly lower than *OH and SO4*~ [59]. Due to the vacant orbitals,
10, can obtain electrons from other substances and is a kind of electrophilic reagent
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with mild reaction. Therefore, it can quickly oxidize organic pollutants with electron-rich
functional groups and is not easy to be inactivated by background components in water [61].
Due to unique properties, 1O, has been used for selective oxidation [62], degradation of
organic pollutants [10], inactivation of pathogenic bacteria [63], cancer treatment [64], etc.
10, could be detected by chemical probe tests, electron paramagnetic resonance (EPR)
spectroscopy and chemiluminescence detection. 'O, could rapidly react with sodium azide
(k=1 x 10° M~ 1s71) and furfuryl alcohol (k = 1.2 x 108 M~1s71), but it is insensitive
to alcohols (such as Et and TBA) [65]. Moreover, 1O, can be detected by using 2,2,6,6-
tetramethyl-4-piperidinol (TEMP) as a spin trapping agent in EPR with an intensive 1:1:1
signal [16]. In addition, solid-state near infrared spectroscopy and Fluorescence detection
are helpful technique for 10, detection [64,66].

2. Singlet oxygen

Organic 3. Surface activated species

pO“ utants

—_—

" Activated complex

Organic — or
pol\utants =€ =g =t surface-bound rsdical

Figure 4. Schematic diagram of organic pollutants degradation by non-radical AOPs (Oxidant can be
PMS, PS, H202 or 03)

Previous reports have indicated that 'O, can be produced by a photochemical process
that uses photosensitization to transfer light energy to molecular oxygen [67]. For example,
Dorota et al. successfully inactivated Escherichia coli and Aspergillus fumigatus using a
miniature photoreactor to produce 'O, [68]. In artificial or natural water, natural organic
matter is used as photosensitizer to generate 'O, through sunlight irradiation [69,70]. Other
studies have shown that 'O, can be generated by photoactivation of oxygen molecules in
the oxidation of semiconductor metals such as TiO; [71]. Studies on the generation of 10,
by non-photosensitive methods are also emerging. It has been reported that catalysts such
as BiAgxOy and Bi(V)-Bi(IIl) complex were used to release lattice oxygen to generate 'O,
which could remove pollutants such as Rhodamine B and Bisphenol A [72,73]. Similarly,
MgO with high-energy {111} crystal planes and «-Bi,O3 with oxygen vacancies can react
with Oy to produce 10, [74]. In addition, phosphite reaction with ozone [75], HyO; reaction
with NaClO [76], and the activation of periodate acid [77] can generate 10,. With the
development of PMS and PS activation studies, 'O, can also be generated by non-radical
activation of PMS or PS, which provides a new path for the selective removal of organic
pollutants. The relevant studies are summarized in Table 3.
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Table 3. The removal of pollutants via 10, oxidation generated by PMS and PS activation.
Reaction System Pollutant Conditions Reactivity Dominant ROS Ref.
2,4, ~ -
Chlorophenols/PMS 6-trichlorophenol 2, 4’;: ﬁc%j ]—_ZSS:I:%\/{”C[PMP? ]__90'325 95% with 60 min 10, [55]
(2, 4, 6-TCP) L= (pH=2
benzoquinone sulfamethoxazole [PMS] =044 mM,
_ _ _ o i : 1
(BO)/PMS (SM) [SMX] = 8 uM, [E%]S = éo uM, pH =10, T 86% with 3 min 0, [78]
[PMS] = 1 mM, [MB] = 0.03 mM,
PMS/base Methylene blue (MB) [NaOH] = 2 mM, without pH 100% with 120 min 10, [79]
adjustment
pyrophosphate . [AO7] =50 uM, [PA] =0.1 M, Nearly 100% with 10 1
(PA)/PMS Acid Orange 7 (A07) [PMS] = 2.5 mM, pH 9.5. min 0O; [80]
Phosphite . [AO7] =20 mg/L, [PMS] = 10.0 mM, o) i . 1
(HPO;2~)/PMS Acid Orange 7 (AO7) [HPOs2] = 25.0 mM, pH = 7.06. 82.1% within 60 min O, [81]
[AR1] =50 uM, [PMS] = 3 mM, [NaBO;]
NaBO,/PMS Acid Red 1 =7.5mM, initial pH = 7.0, 97.8% within 10 min 10, [82]
T=30°C.
carbonate . [AO7] = 0.05 mM, [CO32"] =5 mM, o s . _ 1
(COs2~)/PMS Acid Orange 7 (AQ7) [PMS] = 1 mM. 100% within 40 min O, and 'O, [83]
[B-MnO;] = 400 mg/L, [PS] = 4 mM, .
B3-MnO, /PS phenol [phenol] = 100 uM, pH buffered around Over 99n/;)i:lth 180 10, [65]
6.5.
Phenol = 100 ppm, CeVO, =1.0g/L, o . 1
CeVO,/PMS phenol PMS = 2.0 g/L. 100% with 80 min O, [84]
: . . [CIP] = 10 ppm, [catalyst] = 0.1 g/L, o s . 1
e-MnO, /PMS Ciprofloxacin (CIP) [PMS] = 1 mM, without pH adjustment. 84.3% with 120 min O, [85]
CuOMgO/Fe304/ 4-chlorophenol [4-CP] = 40 ppm, [PMS] =2 mM, o it . 1
PMPMS (4-CP) [catalyst] = 0.2 /L, T = 30 °C. 100% within 40 min 0O: [86]
g . [PMS] = 1.6 mM, [catalyst] =0.4 g/L, PR . 1
CuO-CeO, /PMS Rhodamine B (RhB) initial pH 7, [RhB] = 0.1 mM. 100% within 60 min O, [10]
[NaySO4] = 0.2 M, [PMS] = 2 mM,
CuO-Fe;04/PMS Acid Orange 7 (AO7) [catalyst] = 0.1 g/L, initial pH =7, 95.81% within 30 min 10, [87]
[AO7] = 0.2 mM.
Iron centers on PR
manganese oxides bisphenol A (BPA) [BPA[]O_ng 2]155 / OLé [stw?ly%ﬂ B ;)é’ g/L, Neaﬂyzéoii/; within 10, [88]
(FeMn-350)/PMS = FpR =7
copper substituted _ _
zinc ferrite Ciprofloxacin (CIP) [Z[CCFI%] B ? élrﬁ/]/“i[i\ésl Ijl 2_'571;1M’ 96.6% with 15 min 0, and 10, [89]
(ZCFO)/PMS =Ums pra=7..
s [2,4-DCP] = 0.031 mM, PS/2,4-DCP
carbon nanotubes 2 4-dichlorophenol - 1o 1 /1) [CNTS] =010 g/L,  95.9% within 30 min 10, [61]
(CNTs)/PS (2,4-DCP) pH = 6.50 + 0.05
Nanodiamonds 4-chlorophenol [4-CP] = 0.16 mM, [PMS] = 0.25 mM, o) s . 1
(AND/800)/PMS (4-CP) [AND/800] = 0.1 g/L, T =20 + 2 °C. 81% with 30 min 0; [90]
nitrogen-doped [BPA] = 0.1 mM, [NCN-900] =0.1 g/L,
carbon nanosheets Bisphenol A (BPA) [PMS] =2 mM, T = 30 °C, initial 100% within 2 min 10, [91]
(NCN-900)/PMS pH=67.
_ [BPA] = 0.1 mM, [(NCy] =0.2 g/L,
N-doped porous Bisphenol A (BPA) [PMS] = 2 mM, T =30 °C, initial 100% within 15 min 10, [92]
carbon (NCyq9)/PMS pH =67
nitrogen-doped [BPA] =25mg/L,
carbon nanotubes . [NCNTFs-800] = 0.05 g/L, o s . 1
frameworks Bisphenol A (BPA) [Oxone] = 0.40 g /L, 97.3% with 30 min O, [93]
(NCNTFs)/PMS temperature = 20 °C.
[NaySO4] = 200 mM, [PMS] = 2 mM,
CuO-Biochar/PMS Atrazine (ATZ)] [catalyst] =0.2 g/L, [ATZ] = 0.1 mM, 100% within 30 min 10, [94]
initial pH = 7.
N-doped [catalyst] = 100 mg/L, [PMS] = 3.25 mM, o) g . 1
graphene/PMS phenol fphenol] = 50 ppm, T = 25 °C. 100% within 30 min O, [95]

4.2. Homogeneous Activation

In recent years, it has been reported that 'O, is produced by activated PMS via non-
radical pathway leading to organic pollutants degradation. It has been found that ketones,
phenols, quinones, and other hydrocarbons can activate PMS to produce 'O,. Zhou et al.
reported that benzoquinone can activate PMS to produce 'O, through a non-free radical
pathway, and found that the removal rate of sulfamethoxazole gradually increased with
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the increase in solution pH from 7 to 10 [83]. As early as 1974, it was reported that ketones
can activate PMS and that the decomposition rate of PMS is proportional to the amount
of low concentration ketones [96]. Later, Lange and Brauer detected 10, at 1270 nm using
infrared phosphorescence measurement technology, confirming the formation of 'O, in
the ketone-catalyzed PMS process [97]. Since phenolic compounds are easily oxidized
to quinone as by-products, phenols can also activate PMS. Zhou et al. found that PMS
was activated by phenol to generate 'O, at pH 8.5 and 10, and phenol was oxidized to
benzoquinone to further promote the activation reaction [55]. However, under acidic
conditions, the dissociation of phenol is poor and it is difficult to form intramolecular
complex with ionized PMS, resulting in difficult activation reaction

In fact, alkali has been used as a typical PS activator in site restoration, while it
activates PMS to produce 'O, [79]. PMS can spontaneously decompose to produce 'O,
under alkaline conditions, and the reaction rate constant is about 0.2 M~!s~! [78]. Moreover,
polyphosphate [80], phosphite (HPO327) [81], BO, ™ [82], and CO52~ [83] have also been
found to activate PMS to produce !0, to degrade organic pollutants. All of the above
are homogeneous reactions, activators are added into solution continuously to ensure
continuity of the reaction, which is prone to high costs and secondary pollution. Therefore,
heterogeneous activation reaction will be a good solution.

4.3. Heterogeneous Activation

Metal oxides and complexes can also activate PMS and PS in a non-radical way.
Bu et al. found that oxygen vacancy on bismuth bromide (BiOBr) could activate PS to pro-
duce 'O, as the main active species to degrade Bisphenol A under alkaline conditions [98].
The sillenite BiysFeO4p was synthesized by hydrothermal method and used to activate PMS
to degrade levofloxacin [99]. The results showed that 10, was the main ROS. Yang et al.
synthesized Fe’-montmorillonite composite material (Fe-Mt-C-H,) to activate PMS for the
degradation of Bisphenol A [100]. It could remove 99.3% of Bisphenol A (25 mg/L) at pH
3 with 0.4 g/L Fe-Mt-C-H; and 1 mM PMS. The mineralization rate was 70.6%, and the
degradation of pollutants was dominated by 'O, and superoxide radical (O,*~). Liu et al.
used Co304-SnO; /rice straw biochar (0.1 g/L) to activate PMS (1 mmol/L) to degrade
sulfamoxole (50 mg/L), which was degraded 98% in 5 min by 10, [101]. CoOOH [102]
and y-MnOOH [103] were also used to activate PMS to degrade 2,4-dichlorophenol, which
proved that 'O, had a good removal effect on it. Li et al. used CuO-based modified
materials to activate PMS to treat high-salt organic wastewater, and confirmed that the
non-radical oxidation process led by 'O, has a good removal effect on heterocyclic organic
pollutants in a complex background [10,87,94]. Although the catalysis of PS or PMS by
various metal oxides and their complexes has been studied endlessly, the environmental
risks caused by metal ion leaching still exist in metal catalysts, and the separation and reuse
of catalysts also face challenges.

A variety of carbon materials, including carbon nanotubes (CNTs), graphene ox-
ide (GO), reduced graphene oxide (rGO), carbon spheres, nano-diamond and biochar,
have been demonstrated to activate persulfate through a 'O,-dominated non-radical path-
way [104]. Cheng et al. used CNTs and PS combined system to efficiently generate 'O,
under no irradiation, which could selectively oxidize 2,4-dichlorophenol in water under
neutral conditions [61]. CNTs not only act as electronic bridges between PS and organic
pollutants, but also play an important role in the presence of various oxygen-containing
functional groups (such as -COOH, C=0, and -OH) on the surface of CNTs, because they
directly affect the zeta potential of CNTs, which is conducive to the absorption of PS, and
promote the non-radical oxidation process of target pollutants [105]. GO and its reduced
derivatives rGO show great potential in hydrophilic adsorption of organic matter and
PMS/PS catalysis due to various structural defects, vacancies and oxygen-containing func-
tional groups. Density Functional theory (DFT) calculations show that the vacancy and
defect edges of rGO elongate the O-O bond of PMS, enhance adsorption and direct electron
transfer, and promote the final rupture of the O-O bond, leading to non-radical oxida-
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tion [106]. The increased degree of carbonyl and graphitization results in more vacancies
and defects, thus improving the catalytic performance of GO and rGO [107]. N-doping
is also an effective strategy. N-doped carbon is expected to have more lattice defects to
regulate the electronic structure, such as sp? hybrid carbon skeleton [108]. Doping nitrogen
into the carbon matrix not only facilitates the adsorption of PMS, increases the surface
alkalinity, but also facilitates the transfer of electrons to the negatively charged PMS, thus
improving the catalytic activity. Biomass type and pyrolysis temperature are important
factors affecting the structure and catalytic activity of biochar. Similarly, more oxygen
vacancies, defects and oxygen-containing functional groups are still important factors in
achieving 'O, production from non-radical activated PMS and PS [109]. Carbon materials
can not only achieve catalytic function, but also have the ability to adsorb pollutants, so it
has great application potential. However, carbon materials have a variety of structural and
surface characteristics, and the identification of their internal active sites is still difficult
and controversial.

The studies on the degradation of organic pollutants by 'O, have been reported, but
there are still many problems to be solved, such as the preparation of high efficiency and
stable catalysts, optimization of catalyst scale production process, clarifying the activation
mechanism from different catalysts, explaining the interaction processes of 'O, with organic
pollutants, and effect of coexisting substances in wastewater on organic degradation process.
In particular, few studies have been reported on the removal of organic pollutants in high-
salt wastewater. The removal effect of organic pollutants in high-salt system, degradation
kinetics, degradation intermediates and toxicity, the influence of inorganic salts type
and concentration on the degradation process, and catalytic reaction mechanism remain
to be solved.

5. Conclusions and Prospect

In this paper, the related research on SO4*~-based and 'O,-based AOPs has been
reviewed, and the production methods and mechanism of SO4*~ and 10, are analyzed.
Compared with the advanced oxidation process dominated by *OH, the SO4°~-based AOPs
have a series of advantages such as long half-life of SO4°~, wide range of pH application
and strong oxidation capacity, which have a greater advantage in the removal of refractory
pollutants. The non-radical oxidation process based on 'O, has certain resistance to a
variety of inorganic ions, halogens and background organic matter, strong selectivity and
moderate redox potential, which can be used for the pre-oxidation treatment of highly
dangerous industrial wastewater, pharmaceutical and pesticide wastewater. The SO4*~-
based and '0,-based AOPs have their own characteristics, which have good application
prospects in the field of water purification and the removal of refractory organic pollutants
from complex matrix. According to the existing research reports, SO4*~-based and 'O,-
based AOPs still have some limitations.

(1) Most existing research has focused on treating single-component pollutants in
the laboratory. However, actual wastewater is complex and variable. Although many
research studies have been very successful on a laboratory scale, many problems need
to be solved before large-scale practical applications. Especially, it should pay attention
to addressing amplification issues such as design challenges, low energy requirements,
and complex water quality changes. The next step is to study multi-component organic
wastewater in real environment, and systematically study the reaction mechanisms by
combining various characterization techniques and theoretical calculations, so as to further
promote the popularization and application of this technology.

(2) There are still controversial including the mechanisms of PMS and PS activated
by various catalysts. For example, the biochar-based materials will generate a variety of
morphological structures and surface functional groups due to different raw materials and
preparation methods. Therefore, the mechanisms of activating PMS and PS will be different.
It is necessary to systematically study the relationship between material configuration and
the efficiency of SO4*~ and 'O, production. In addition, the catalysts should be prepared
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from materials that are easily available and cheap, and the preparation process should be
simple, energy saving, and easy to large-scale production.

(3) There are some unavoidable drawbacks for a single activation method. For example,
thermal activation will lead to higher energy consumption, alkaline activation will affect
the pH value of the system, electrochemical activation will produce more anode slime,
carbon-based catalyst activation will make it difficult to regenerate, homogeneous transition
metal activation will produce metal ions and sludge, resulting in secondary pollution, etc.
The next step is to overcome the shortcomings of each activation method and maximize the
development of multiple combined activation methods.

(4) Considering that 'O, has strong anti-interference ability to inorganic salts and
natural organics, while SO4°*~ and *OH have strong oxidation ability, the reaction system
can be designed according to the treated objects to achieve phased and multi-channel
activation of PS and PMS. It is expected to achieve higher oxidation efficiency by selectively
regulating the production of strong oxidizing radicals (SO4°*~ and *OH) and non-radical
(10y) according to water quality and pollutant types and concentration levels, which will
provide ideas for the practical application of this technology.

(5) In addition to the removal of refractory pollutants, 10, as a non-radical ROS can
be used to inactivate pathogenic microorganisms and remove antibiotic resistance genes
in natural water and drinking water. Obviously, there are few studies and reports on this
aspect. Although SO,4°~ has strong oxidation ability, it costs a lot to treat high-concentration
organic wastewater. Hence, it is necessary to combine SO,°*~-based AOPs with traditional
biological and physicochemical treatment to achieve the lowest operating cost. It is urgent
to carry out research works in this field.

(6) The effectiveness of AOPs depends to a large extent on the generation rate of ROS
and the contact with pollutant molecules. It should be paid to the reduction in oxidant
dosage and the efficient recycling of catalysts. There are significantly fewer studies based
on PS activation than on PMS activation, and new technologies for PS activation are still
limited. In fact, commercial PS is much cheaper than PMS, and PS activation produces
fewer SO42~ ions than PMS activation because PMS only makes up a third of Oxone.
Therefore, more attention should be paid to the activation research of PS, especially the
research and development of related catalysts and activation methods is very important for
the future commercial application.
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