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Abstract: Using safe and environmentally benign materials is considered one of the green chem-
istry approaches to avoid waste production. This research reported the biogenic synthesis of CuO
nanoplates using Saussurea costus root extract assisted by a microwave sample preparation system.
The phytochemical contents in the Saussurea costus root aqueous extract work as the reducing and cap-
ping agents for the nanoparticles. The biosynthesized CuO nanoplates were analyzed using UV–Vis
spectroscopy, FT-IR, XRD, HR-TEM, DLS, FESEM, and EDS techniques. According to the HR-TEM
and FE-SEM results, the CuO nanoparticles exhibited a plate-like shape with a mean size of 29 nm.
Furthermore, the XRD results showed a typical agreement with the pattern of the monoclinic phase
of copper oxide. The catalytic efficiency of the CuO nanoplates in the reduction of 4-nitrophenol
to 4-aminophenol using NaBH4 was examined in terms of environmental catalytic activity. The
reaction time took less than 10 min. Thus, CuO nanoplates synthesized via Saussurea costus root
aqueous extract show high catalytic-activity potential for the environmental catalytic application of
the removal of nitro pollutants.

Keywords: Cu nanoplates; microwave system; biogenic synthesis; Saussurea costus; catalytic activity

1. Introduction

Nitrophenols are considered important intermediate compounds for numerous phar-
maceuticals, petrochemicals, pesticides, insecticides, preservatives, dyes, and leather indus-
tries [1]. However, the derivatives of nitro compounds such as 4-nitrophenol (4-NP) have
been considered dangerous pollutants and their degradation to nondangerous products is
difficult since they have high stability and low solubility in water. Therefore, it is necessary
to find alternative methods for removing these pollutants before they can be released into
the environment, and working on developing materials with high ability in 4-NP reduction
is highly required [2]. There is a need to find effective and eco-friendly metal nanocatalysts
for the environmental dropping of these organic contaminants [3–5]. At the nanoscale,
CuO exhibits a unique structure and properties among mono-metal oxide. Furthermore, it
can be used potentially in gas sensors, catalytically in dye removal, in the formulation of
pesticides, and as antibacterial agents in the inhabitation of pathogenic bacteria [6–8]. There
are numerous approaches for the preparation of nanomaterials with size control, different
morphology, and a highly crystalline nature; the literature has reported various physical
and chemical methods that have been used for the synthesis of nanomaterials including
electrochemical synthesis [9], the sol–gel method [10], and sonochemical synthesis [11].
Nevertheless, many of these synthetic strategies involve the use of hazardous chemicals
and harsh reaction conditions which may lead to environmental concerns. Thus, it is
important to find alternative green processes for metal nanoparticle synthesis through
plant extracts [12,13], bacteria [14,15], and fungi [16]. Among these, plant extracts may
offer a better alternative over microorganisms for metal nanoparticle synthesis since they
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have a low cost, are abundantly available, can be handled safely, and their phytochemical
content works both as a reducing and capping agent [17]. Additionally, the high cost of
preparation of cell culture will be reduced. The assistance of microwave energy for the
biogenic synthesis of metal nanoparticles by plant extracts is considered a viable and new
route for the facile biogenic synthesis of metal nanoparticles. It shows many advantages
such as fast reaction time, low energy consumption, and high yield [18]. The microwave
digestion system is uniform as a heat medium of reaction so it provides good conditions
for homogeneous nucleation and growth of metal nanoparticles. Siby Joseph et al. used
microwave radiation for the synthesis of Ag and Au nanoparticles via aserverlanata leaf
extract [18]. Theophil Anand and co-workers prepared copper oxide nanoparticles using a
microwave-assisted method with Moringa oleifera leaf extract [19]. Mamatha Susan et al.
reported the formation of hexagonal gold nanoparticles using Myristica fragrans extract
assisted by microwave irradiation [20].

Saussurea costus belongs to the family Asteraceae which includes near to 1000 gen-
erations that are distributed widely in different regions in the world [21]. Nevertheless,
different species are grown in India (Pandey et al., 2007), Pakistan, and the Himalayas [22].
Saussurea costus is also well-known in Arab countries and has been used in Islamic medicine.
It is known as “Al-Kost Al-Hindi”. Saussurea costus is an effective medicinal plant used in
folk medicine for the treatment of different diseases, e.g., asthma, inflammatory diseases,
fever, microbial infections, and stomach problems [23]. There are many bioactive phytocon-
stituents in the Saussurea costus root extract such as polyphenols, sesquiterpene lactones,
alkaloids, triterpenes, lignans, and tannins as the main bioactive constituents [24]. These ac-
tive constituents in Saussurea costus root are reported to exhibit efficient anti-inflammatory,
anticancer, antioxidative, antiulcer, and hypoglycemic activity properties. Saussurea costus
plant extract is used for the synthesis of the oxides of the silver [25], magnesium [22],
selenium [23], and zinc [26], but there is no literature available on the synthesis of CuO
nanoparticles. In light of the above, with consideration of the importance of the chemical
and biological constituents of Saussurea costus root extract, herein, we report the biogenic
synthesis of CuO nanoparticles assisted by a microwave sample preparation system using
Saussurea costus root extract as a new and fast technique for metal nanoparticle synthesis,
and its environmental catalytic activity in the reduction of P-nitrophenol was examined.

2. Results
2.1. Characterization

The initial formation of copper oxide nanoparticles was visually detected through the
changing in color and rapidly confirmed using UV-Vis spectroscopy as shown in Figure 1.
When the Saussurea costus root extract was added to the solution of copper chloride, an
immediate change in color was observed in a short period from a blue color to dark
brown, demonstrating CuO nanoparticle formation. The UV-Vis spectrum of copper oxide
nanoparticles shows a typical absorption peak at 286 nm [27].

The FT-IR spectra of the CuO nanoplate records were carried out in the range of
400–4000 cm−1. The FTIR spectrum of Saussurea costus root extract in Figure 2a shows a
broad peak at 3155–3406 cm−1 which may correspond to aromatic and aliphatic OH groups
present in the alkaloid in the plant extract [27,28]. The peak at 2936 cm−1 represents the
strong stretching vibrations of C-H of amines. The sharp peak at around 1586–1669 cm−1

is assigned to the existence of carbonyl groups or bending of the aromatic. The band
at 1004–1036 cm−1 corresponds to the stretching of C-O. The FTIR spectrum of the CuO
nanoplates in Figure 2b shows the repeating of all function groups of Saussurea costus root
extract and also the presence of a sharp peak between 400 and 600 cm−1 assigned to the
stretching frequency of metal–oxygen binding [29–33].
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Figure 1. UV-Vis Spectrum of CuO nanoplates.
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Figure 2. FTIR spectrum of (a) Saussurea costus root extract and (b) CuO nanoplates.

XRD analysis was conducted to attain information about the crystalline nature of
the CuO nanoplates. The X-ray diffraction spectrum of the synthesized CuO is shown in
Figure 3. It shows characteristic diffraction peaks at 2θ of 32.52, 35.44, 38.68, 48.76, 53.56,
58.18, 61.48, 66.12, 67.84, 72.02, and 74.96, which were assigned to (110), (11-1), (111), (20-2),
(202), (113), (022), (220), (31-2), and (004) planes, respectively. These values matched with
(JCPDS card no. 96-901-5925) of the CuO monoclinic phase [34].
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Figure 3. XRD pattern of bio-synthesized CuO nanoplates.

The surface morphology of the synthesized sample was investigated using scanning
electron microscopy. Figure 4a,b show the scanning electron microscopy (FESEM) images
of the biogenic CuO nanoplates prepared using Saussurea costus root extract assisted by
the microwave at different magnifications. We found that the CuO sample had a plate-
like structure and was uniform and well-defined. Aklilu Guale Bekru et al. reported
the formation of a copper oxide nanocluster by Cordia africana Lam extract [35,36]. M.
cochinchinensis and Abutilon indicum leaf extracts were used for the synthesis of spherical
CuO nanoparticles [37,38]. In these studies, it was noticed that the different plant extract
led to the formation of different geometry in the CuO nanoparticles. Figure 4c reveals the
(EDS) characterization of the CuO. The graph confirmed the presence of only Cu and O
elements. So, the active components of the Saussurea costus extract were involved in the
formation of CuO nanoplates and no presence of any other peak confirms the high purity
of the synthesized sample [19].

The high-resolution transition electron microscopy (HRTEM) images in Figure 5a show
a well-dispersed and highly collected form of plate morphology for the synthesized CuO.
The size of the synthesized sample ranged from 20 to 60 nm with a mean size of 29 nm
(ImageJ software was used to measure the particle size; Figure 5b. The SAED images of the
CuO nanoplates show the reflected concentric rings Figure 5c which prove the formation
of crystalline materials. Dynamic light scattering (DLS) characterization was carried out
to find the metal size and surface surrounding the nanoparticles. Figure 5d shows the
biogenically synthesized copper oxide nanoparticles’ average particle size distribution was
400 nm. It shows that the addition of Saussurea costus root extract plays a significant role in
the agglomeration reduction and also controls the growth during the microwave process.
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Figure 5. (a) HRTEM images of Cu nanoplates at different magnifications, (b) particle size distribution
calculated from TEM, (c) SEAD pattern of nanoparticles, and (d) DLS particle size distribution.

2.2. Mechanism of CuO Nanoplate Synthesis

Plant extracts have a variety of phytochemical constituents; some of these constituents
are responsible for nanoparticle synthesis. Important function groups have been reported as
the main functional groups responsible for the reduction and stabilization of nanoparticles
and these functional groups are existing in plant metabolites, such as flavonoids, alkaloids,
carbohydrates, polyphenols, and proteins [35]. The CuO nanoplate synthesis mechanism
can be summarized as: The polyphenols present in Saussurea costus bind with Cu2+ ions
and form metal complexes, reducing it into Cu. In the second step, when the mixture is
transferred to the microwave sample preparation system, it undergoes direct decomposition
to form CuO through the heating process; then, the formed CuO seed particles undergo
aggregation, followed by further growth of nucleation. A graphical representation of the
mechanism of CuO nanoplate synthesis is presented in Figure 6. Buazar et al. and Zahrah
Alhalili suggested similar mechanisms for nanoparticle formation [39,40].
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2.3. Catalytic Reaction

The performance of CuO nanoplate samples, prepared using Saussurea costus root
extract assisted by a microwave sample preparation system, as a catalyst in 4-NP reduction
in the presence of NaBH4 was investigated. Figure 7a demonstrates that the 4-nitrophenol
was reduced into 4-aminophenol. UV-Vis spectroscopy was used to monitor the reduction
process. The 4-NP displayed a peak at around 318 nm in the absence of NaBH4. However,
after the addition of NaBH4, a change in the 4-NP solution was noticed—to the darker
yellow of the p-nitrophenolate ion—which was shown by a sharp absorption peak around
402 nm. After the addition of the CuO nanoplate catalyst, a gradual decrease in the peak
at 402 nm was observed while another peak appeared at 300 nm, representative of the
p-nitrophenolate ion conversion into p-aminophenol, as shown in Figure 7b. The complete
conversion of 4-nitrophenol into 4-aminophenol was measured in the presence of the CuO
catalyst based on the disappearance of the peak at around 402 nm [33,34]. The time for the
whole conversion of 4-nitrophenol into aminophenol in the presence of the CuO catalyst
was 10 min.
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Figure 7. (a) Absorption spectra of 4-NP before and after the addition of aqueous NaBH4 solution,
(b) reduction of 4-NP with NaBH4 in the presence of a CuO nanoplate catalyst.
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Table 1 shows a comparison of the catalytic performance of the present nanocatalyst
with previously reported CuO-based nanocatalysts, prepared via different methods, in
4-NP reduction. The results indicated that the CuO NPs synthesized using Saussurea
costus root extract assisted by the microwave sample preparation system exhibited a faster
reduction time than that reported for a Cu nanocluster, CuO nanoleaves, CuO@C, and
spherical CuO nanoparticles [31,34,39–41].

Table 1. Comparison of the catalytic activity of CuO NPs with the previously reported CuO-based
catalysts for the reduction of 4-NP.

Catalyst Preparation Method Time
(min) Reference

CuO nanocluster Microwave-assisted leaf extract and
coprecipitation method 12 [31]

CuO nanoleaves NaOH using the microwave-heating method 15 [39]
CuO@C Solvothermal method 18 [40]

Spherical CuO
nanoparticles Coprecipitation 11 [41]

Spherical CuO
nanoparticles Hydrothermal + leaf extract 14 [27]

Cu nanoplates Microwave + leaf extract 10 Current
work

The reusability tests for the CuO nanoplate catalyst were carried out through its
repeated use (three times) in the 4-NP reduction. The percent reduction values for the
reaction were calculated using Equation (1) below:

Reduction % =
C0 − C

C0
=

A0 − A
A0

(1)

and data were plotted as shown in Figure 8.
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Figure 8. Efficiency of CuO nanoplate’s multiple usage in 4-NP reduction.

2.4. Mechanism of the Reduction of 4-NP

The mechanism of the reduction of 4-NP using CuO nanoplates includes electron
transfer from the NaBH4 as a donor to the nanoplate catalyst’s surface [20]. Due to the
presence of the phytochemical components surrounding the nanosurface, all the reactant
becomes much closer by means of electrostatic forces and enables electron relay to the
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acceptor 4-nitrophenolate ions. Next, by gaining electrons, nitrophenolate ions are reduced
as shown in Figure 7b.

3. Experimental Section
3.1. Materials

Copper chloride hexahydrate (CuCl2·6H2O) was bought from Sigma-Aldrich (St.
Louis, MO, USA). All chemicals used in this work were of analytical grade. All solutions
were prepared with deionized water.

3.2. Saussurea costus Root Extraction

Saussurea costus roots were obtained from the local market in Hofuf, Saudi Arabia. The
roots were washed three times using tap and distilled water, then dried at room temperature
and ground to a fine powder. For extract preparation, 10 g of Saussurea costus root was
added to 100 mL distilled water and boiled for 15 min. The extract was left to settle down
at room temperature and filtered with Whatman No. 1 filter paper.

3.3. Biogenic Synthesis

A solution of copper (II) chloride hexahydrate (CuCl2·6H2O 5 mM) was prepared
using deionized water in a 100 mL volumetric flask. For the biogenic synthesis of CuO
nanoparticles, 20 mL of Saussurea costus root extract was added to the copper (II) chloride
solution and it was vigorously stirred at 1000 rpm for 1 h at room temperature [40].

3.4. Microwave-Assisted Sample Preparation

A microwave sample preparation system was used to assist the biogenic synthesis
of CuO nanoparticles. The prepared mixture was placed in the microwave vessels at a
temperature of 110 ◦C and a pressure of 50 atm, and held for 10 min; then, it was cooled to
room temperature. The obtained colloidal CuO nanoparticles were subjected to sonication
for an hour in 100 mL distilled water. After that, the sample was left to settle down and the
supernatant was disposed of. The sonication and settling down processes were repeated
three times with water and one time with ethanol. The sonication was executed by using a
Power sonic 405 ultrasonic bath to cleanse the samples [28]. The synthesized sample was
oven-dried at 80 ◦C for 2 h. Scheme 1 shows the synthetic stages of the CuO nanoplates.
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3.5. CuO Nanoplate Characterization

To verify the formation of CuO nanoplates, the UV-Vis spectrum was measured in the
absorption wavelength ranging from 200 to 800 nm using a (UV 2450, Shimadzu, Kanagawa,
Japan) spectrophotometer. FT-IR measurements for all samples were performed using an FT-
IR spectrophotometer, model number (360) from Cary, South San Francisco, United States
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of America. Field emission–scanning electron microscopy (FE-SEM) of the samples was
conducted with a scanning electron microscope model (FEI, QUANTA FEG, 250) fitted with
a high-angle, angular dark-field detector and an X-ray energy-dispersive spectroscopy sys-
tem (EDS) was used to detect the morphology and purity of the particles. High-resolution
transmission electron microscopy (HRTEM) images were collected using a model (JEOL
JEM-2100, Tokyo, Japan). Samples were prepared through dispersion in ethanol and soni-
cation for 30 min. On the carbon-coated copper grid (400 mesh), one drop of the sample
suspension was placed and then dried at room temperature. The XRD analysis were
performed on a DX-1000 X-ray diffractometer equipped with graphite-monochromatized
Cu K α1 radiation (λ = 1.54056 Å) (DX-1000, Dandong Fangyuan Instrument Co. Ltd.,
Dandong City, Liaoning Province, China) to identify the crystalline phases. The nanoplates
were prepared using the PerkinElmer microwave sample preparation system equipped
with 16 low-volume perfluoroalkoxy (PFA)-lined vessels with safety rupture members
(maximum operating pressure of 1380 KPa).

3.6. Catalytic Activity

The catalytic activity of the biogenically synthesized CuO nanoplates was examined
by the reduction of p-nitrophenol in the presence of NaBH4. The catalytic reduction was
carried out as follows:

1. Mixing of 2.5 mL 4-NP (1 × 10−3 M) with a 0.5 mL NaBH4 solution (1 × 10−3 M).
2. Additionally, a 0.5 mL solution of CuO nanoplates catalyst (400 ppm) was added

to the prepared mixture in a quartz cell. The progress of the reaction was observed
spectrophotometrically by following the absorbance decrease at λmax of 400 nm [29,30].
The reusability of the catalyst was examined three times.

4. Conclusions

Copper oxide (CuO) nanoplates were successfully synthesized using Saussurea costus
root extract assisted by microwave preparation sample system instruments as a new, green,
eco-friendly, facile, and fast process for nanoparticle synthesis. The biogenically prepared
CuO nanoplates had a monoclinic phase. Additionally, the EDS results confirmed that the
synthesized material was composed of Cu and O elements. The average crystallite size of
the nanoparticles was in the range of 10–60 nm. They showed high catalytic efficiency in
the reduction of 4-NP with excellent reusability. The CuO nanoplates, synthesized using
Saussurea costus root extract assisted by a microwave sample preparation system, displayed
high capacity as a possible material for the reducing of other nitroamines and pollutant
dyes in the environment.
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