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Abstract: Increases in biodiesel prices remains a challenge, mainly due to the high cost of conven-
tional oil feedstocks used during biodiesel production and the challenges associated with using
homogeneous catalysts in the process. This study investigated the conversion of waste-derived black
soldier fly (BSF) maggot oil feedstock over hydroxy sodalite (HS) zeolite synthesized from waste coal
fly ash (CFA) in biodiesel production. The zeolite product prepared after fusion of CFA followed
by hydrothermal synthesis (F-HS) resulted in a highly crystalline, mesoporous F-HS zeolite with a
considerable surface area of 45 m?/g. The impact of post-synthesis modification of the parent HS
catalyst (F-HS) by ion exchange with an alkali source (KOH) on its performance in biodiesel produc-
tion was investigated. The parent F-HS zeolite catalyst resulted in a high biodiesel yield of 84.10%,
with a good quality of 65% fatty acid methyl ester (FAME) content and fuel characteristics compliant
with standard biodiesel specifications. After ion exchange, the modified HS zeolite catalyst (K/F-HS)
decreased in crystallinity, mesoporosity and total surface area. The K/F-HS catalyst resulted in
sub-standard biodiesel of 51.50% FAME content. Hence, contrary to various studies, the ion exchange
modified zeolite was unfavorable as a catalyst for biodiesel production. Interestingly, the F-HS zeolite
derived from waste CFA showed a favorable performance as a heterogeneous catalyst compared to
the conventional sodium hydroxide (NaOH) homogeneous catalyst. The zeolite catalyst resulted in
a more profitable process using BSF maggot oil and was economically comparable with NaOH for
every kilogram of biodiesel produced. Furthermore, this study showed the potential to address the
overall biodiesel production cost challenge via the development of waste-derived catalysts and BSF
maggot oil as low-cost feedstock alternatives.

Keywords: coal fly ash; zeolite; hydroxy sodalite; fusion-assisted hydrothermal; ion exchange
modification; catalyst; BSF oil; heterogeneous catalyst; sodium hydroxide; biodiesel

1. Introduction

Biodiesel is a promising alternative renewable energy source with potential to supple-
ment or substitute finite and highly polluting fossil fuels [1]. The utilization of biodiesel
demonstrates a greener and more sustainable form of energy [2,3]. Its cost remains a
major challenge vis-a-vis its counterpart, petroleum diesel [2]. Costs of oil feedstock, and
purification of biodiesel products derived from the conventional homogeneous catalyst,
are major contributors to the total production cost of biodiesel [3-5]. The drawbacks associ-
ated with conventional biodiesel production emphasize the need to explore a sustainable
approach for cost competitive biodiesel production. Waste-derived black soldier fly (BSF)
maggot oil has the potential to be transformed into biodiesel [6,7], and is employed as

Catalysts 2022, 12, 1652. https:/ /doi.org/10.3390/ catal12121652

https:/ /www.mdpi.com/journal/catalysts


https://doi.org/10.3390/catal12121652
https://doi.org/10.3390/catal12121652
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com
https://orcid.org/0000-0002-7198-7346
https://orcid.org/0000-0002-2049-1551
https://doi.org/10.3390/catal12121652
https://www.mdpi.com/journal/catalysts
https://www.mdpi.com/article/10.3390/catal12121652?type=check_update&version=2

Catalysts 2022, 12, 1652

20f16

feedstock in the current study. The maggot oil was derived from BSF insects that feed on
organic wastes [8,9]. Compared to other biodiesel waste oil feedstocks [2,3,10], the use of
the BSF oil comes with the advantage of being generated and possibly supplied at large
industrial scale-volume. BSF oil is generated as a by-product during the production of
protein meal from BSF, with a current output estimated at over 50 tonnes per annum in
South Africa [11,12].

Coal fly ash (CFA) is a low cost and abundant solid waste generated as a by-product
from coal combustion [13,14]. CFA has been used as a feedstock for the production of
zeolites [15-17]. In South Africa alone, it is estimated that over 35 Mt of coal fly ash is
generated annually, of which only one-tenth is recycled for use [18,19]. This waste can
be utilized to synthesize zeolites, benefitting the environment and the economy. Using
CFA as a low-cost feedstock source for catalyst development could also aid in minimizing
the production cost of biodiesel. The application of zeolites in biodiesel production has
gained attention [20-22], such that these catalysts are “probably the most investigated
inorganic solid acid catalysts for the production of biodiesel by transesterification” [23].
The commonly reported zeolites used as catalysts in biodiesel production include MFI,
BEA, ZRP and FAU type zeolite [21,24,25]. These zeolites typically have 10-membered or
12 membered pore openings defining their micropore sizes that are generally accessible to
smaller organic molecules, whereas HS has a four-membered ring pore opening, making
its very small micro pore structure relatively inaccessible to organic molecules [26,27].
Due to the ability to control the acidic characteristics of zeolites, several studies have
been conducted to enhance their activity in biodiesel production [23,28]. The main route to
control their acid sites involves the exchange of the cations contained in their aluminosilicate
cages with either a proton or an alkali metal source [20,23]. For example, Xie, et al. [29],
Babajide, et al. [30] and Volli and Purkait [25] ion-exchanged Na-X zeolite with K* using
potassium hydroxide (KOH) and potassium acetate (CH3COOK) as an alkali metal source,
respectively, to enhance the basic strength (basicity) of the catalysts to favour the biodiesel
transesterification reaction and improve biodiesel yield. In a study by Sivasamy et al. [23]
and by Sun et al. [21], various Na-zeolites (MOR, MFI, FAU, and BEA) were ion exchanged
by protonation with H* (i.e., converted to H-type) using ammonium chloride (NH4Cl)
as a proton source. Both resulted in a higher biodiesel yield that solely depended on
the obtained increased acid strength of the catalyst. However, the exclusion of the ion
exchange modification step in the case of HS zeolite is being investigated for the first time
in this study.

The textural properties of zeolites are characteristics that promote their use in catalytic
applications [23,31]. Many studies have proven that conditions applied during zeolite
synthesis influence the resultant characteristics [31-34]. Bukhari, Behin, Kazemian and
Rohani [32] and Mezni et al. [35], in separate studies, synthesised zeolites via fusion
followed by hydrothermal conditions (a fusion-assisted hydrothermal method). The zeolites
were associated with higher BET surface area, higher cation exchange capacity (CEC), and
higher mesoporosity compared to zeolite obtained via the direct method. These findings
have motivated the use of the fusion-assisted hydrothermal method for the synthesis of
HS zeolite to be used as a catalyst in biodiesel production in this study. To our knowledge,
no published study examines the fusion-assisted hydrothermal process followed by post-
synthesis ion-exchange modification of HS made from CFA for biodiesel production.

Hydroxy sodalite (HS) is a zeolite form with strong basic sites [26,31], with only two
attempts reported for its use as a catalyst in biodiesel production [36,37]. In the study by
Makgaba and Daramola [36], the HS zeolite was hydrothermally synthesized from pure
chemical reagents using the conventional direct hydrothermal method; the study showed
only preliminary results and catalytic potential of the zeolite in biodiesel production. HS
zeolite consists of 3-cages (sodalite cages) that enclose four-ring apertures, and the material
possesses a small number of framework units (based on Si/Al ratio) [26,27]. HS zeolite
thus has a small pore size (2.8 A), resulting in a more condensed structure compared to its
counterpart zeolites (MFI ZMS-5, 32 A; FAU Na-X, 7.3 A) [26,38] commonly explored in
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biodiesel production. Based on the above, the material is assumed to have a sufficient exter-
nal surface area with available catalytic sites suitable for biodiesel conversion [39]. It could
also be cheaper (with reference to material requirements) and easier to synthesize (with
reference to its framework and non-requirement of structure directing agents) compared
to counterpart medium and large pore zeolites [24]. Thus, in this study the HS material is
investigated for its potential to counteract high biodiesel production costs caused by use of
conventional zeolites or homogenous catalysts.

2. Results and Discussion

HS was synthesized from CFA via a fusion-assisted hydrothermal method, followed
by post-modification by ion exchange of the obtained product, as described in Section 3.2.
The details of the experimental procedure are given in Sections 3.2.1 and 3.2.2 respectively.
This section presents and discusses the XRD, SEM-EDS, FI-IR and textural characterization
of the synthesized products.

2.1. XRD Analysis

Figure 1 presents the XRD patterns of CFA, the hydrothermal fusion assisted-derived
zeolite (F-HS), and the modified ion-exchanged product (K/F-HS)
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Figure 1. XRD patterns of CFA, F-HS and K/F-HS (*—hydroxy sodalite, x—zeolite X, A—zeolite A,
M—mullite, Q—quartz, Mag—magnetite).

The XRD results in Figure 1 show that CFA, the feedstock material obtained from South
Africa, exhibited a crystalline phase of quartz (Q) and mullite (M) in major proportion.
Upon fusion-assisted hydrothermal conversion of the CFA, the XRD pattern of the obtained
product F-HS exhibited the peaks of a corresponding HS zeolite phase in accordance with
the standard simulated pattern of sodalite [40]. However, other mineral phases such as
zeolite X and quartz were detected in F-HS samples as minor phase impurities, showing
that the CFA feedstock had been almost fully converted to zeolite mineral phases during the
fusion-assisted hydrothermal steps. By ion exchange modification of the sample with K*
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(K/F-HS), as described in Section 3.2.2, it was observed that the intensity of all the standard
and major HS zeolite peaks at 20 = 14.14°, 24.64, 35.1 and 43.36° drastically decreased.
The decrease in HS crystallinity could have been due to framework instability associated
with the removal of charge-balancing Na™* cations, as well as due to the reflux conditions
prescribed for ion exchange or thermal post-synthesis calcination applied, which may have
been too vigorous for HS zeolite [41]. This may have also resulted in an ineffective exchange
of K* ion as a charge balancing cation during the exchange process [17,41].

2.2. Crystal Morphology

The morphology of the produced F-HS sample shows a hexagonal-cubic crystal habit
(Figure 2a). After the sample was ion-exchanged, its crystal morphology altered to a
more agglomerated structure with tiny crystals (Figure 2b). Intercrystalline voids between
crystals was observed, which slightly narrowed after the modification process (K/F-HS).
This could be due to the high temperature calcination after ion exchange during the
modification process (Figure S1 from Supplementary Materials), as well as an indication of
K* ion deposits (Table 1) in the form of salts covering the surfaces of the catalyst [20,30].
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Figure 2. SEM image of (a) Fusion-assisted HS zeolite (F-HS), (b) Ion exchange-modified zeolite
(K/F-HS).
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Table 1. Elemental composition showing the effect of ion exchange-modification on produced
fusion-assisted hydrothermal HS zeolite.

Element (Atomic, w/w%)

Sample
o Al Si Na Mg K Ca Ti Fe P Total  Si/Al  Na/Al
CFA 6515 1123  14.86 - 1.54 0.23 4.32 0.30 1.13 1.25 100.0 1.32 -
F-HS 65.35 12.42 14.65 11.55 0.39 - 1.18 0.29 0.57 - 100.0 1.18 0.93
K/F-HS  59.75 10.1 13.67 8.17 0.8 3.77 1.97 0.44 1.13 - 100.0 1.35 0.81

2.3. Elemental Composition

Table 1 presents the elemental composition of the samples as analysed by SEM-EDS. A
significant proportion of Si (14.86%), Al (13.67%) and charge balancing Na* ions (11.55%)
were detected in the framework of the parent HS zeolite (F-HS). The sample demonstrated
a Si/ Al framework ratio of 1.18 and a Na/Al ratio of 0.93. Upon ion exchange, it was
observed that the percentage concentration of 5i, Al and Na was reduced, with a significant
increase in K* ion by 3.77% w/w. Na content declined from 11.55 (F-HS) to 8.17% (K/F-
HS) w/w after the ion exchange modification process. This might suggest the partial
exchange of Na* with K* ions due to the applied ion exchange procedure and possible
enhanced catalyst basic strength [42]. Furthermore, the decrease in the proportion of major
elements (Si, Al, Na) resulted in the decreased Si/Al and Na/ Al ratio in the modified
sample (K/F-HS). This is supported by the reduction in phase crystallinity and identity as
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observed in Figure 1 [41,43]. The Si/ Al ratio of a typical HS zeolite structure ranges between
0.84-1 [26,44] (Table S2); which is explained better by F-HS (Si/ Al = 1.18) compared to K/F-
HS (Si/ Al = 1.35). The reduced Na/ Al ratio observed in sample K/F-HS after ion-exchange
modification is evidently due to the introduction of K ions as charge balancing cations in
the framework structure [3,28,45].

2.4. Fourier-Transform Infrared

The FT-IR spectra in Figure 3 depicts the structural configuration of a fusion-assisted
and ion-exchanged HS zeolite sample. From the view of the spectra, it is observed that
the structural configuration describing the HS zeolite phase remained intact after mod-
ification by ion-exchange. However, the broad asymmetric stretching band of T-O-T
(T = Si, Al) observed between 900-1330 cm ™! (+975 cm 1) in F-HS significantly narrowed,
and the intensity of the two sodium carbonate (CO3) impurity-associated bands between
1410-1480 cm ™!, decreased in K/F-HS. The water adsorbed band observed in the spectra
of F-HS at 1650 cm ™! disappeared in K/F-HS. The narrowing of asymmetric bands may
correspond to decreased crystallinity observed after the ion exchange [46]. The decrease of
the carbonate bands shows the removal of impurities, whereas the disappearance of water
adsorption bands suggests the partial removal of water from the HS zeolite structure due
to the high-temperature calcination steps after the ion-exchange process (Figure S1).
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Figure 3. The FT-IR spectra illustrating the effect of ion exchange post-modification on indirect fusion
HS zeolite.

2.5. Textural Properties

The textual properties of F-HS and that of the ion exchanged sample, K/F-HS, are
presented in Table 2. The results show 42.2 m?/g mesoporous area with a total surface area
of 45 m?/g (F-HS). The F-HS sample also revealed an average mesopore diameter between
12.99-15.31 nm, highlighting the mesoporous pore size distribution [47]. It may be noted
in Table 2 that the total surface area of the synthesised F-HS is higher compared to HS
obtained from both pure chemicals and CFA via the direct method synthesis method, as
reported by Golbad et al. [44], Shipari Lapari et al. [31] and Shabani [48]. With modification
by ion exchange (K/F-HS), there was a decrease in the total surface area (25.8 m?/g),
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mesoporous area (25.0 m?/g), as well as average pore diameter range (9.5-12.20 nm). These
could be attributed to surface coverage and pore blockages due to the ion exchange deposit
of K* ions [25,30], owing to the larger atomic radii of K* ions compared to Na* ions in
the parent F-HS [49]. The high temperature calcination and the apparently high reflux
conditions prescribed for ion exchange [25,50] over HS using a KOH alkali source in this
work (Section 3.2.2), might also justify the above results. The evidence of decreased surface
area and pore volumes due to the coverage of K* ions and the above-mentioned conditions
also can indicate poor exchange between the Na™ ions initially present in the parent F-HS
structure and K ions in the modification process. The lower resultant mesoporous area
in K/F-HS suggests pore blockage and a decrease in mesoporous characteristics after
ion exchange.

Table 2. Textual properties of parent and ion exchange-modified HS.

Surface Area (m?/g)

Synthesis Method Sample Source Reference
Total @ Meso. ®  Micro. ®

Fusion F-HS CFA 45 42.2 2.7 This study
Direct HS CFA 13.2 12.6 0.6 Shabani [48]

Conv?ntlonal HS PuFe 43.6 - 9.6 Golbad, Khoshnoud and Abu-Zahra [44]
direct chemicals

Conventional HS Pure 11 - - Shirani Lapari, Ramli and Triwahyono [31]
direct chemicals part, 4

Ion exchange K/E-HS 25.8 25 0.8 This study

(@ Obtained by BET equation/method at p/pg = 0.99. ®) Measured by t-plot which defines pores in the sample of
2-50 nm (mesopore) and <2 nm (micro) in width [47].

Pore Distribution and Isotherm Curves of Produced Catalysts

The pore size distribution curve (Figure 4) reveals that the parent F-HS zeolite con-
tained mesopores of 4 nm average diameter. The modified sample, K/F-HS, shows more
intense and broader peaks, with pore sizes distributed around 3-5 nm (Figure 4). The modi-
fied sample further shows a broader pore size distribution between 15 and 30 nm (~24 nm),
which could imply larger mesopores with lower external surface area associated with more
diffusive characteristics (less diffusion constraints) compared to the parent zeolite [33,51].

Furthermore, the N, adsorption isotherm curves of the samples are presented in
Figure 5. Both samples show a typical isotherm representing a characteristic type III of
Langmuir adsorption as classified by IUPAC [52]. The isotherm curves of the two samples
commonly show a micropore filling in the region p/p° below 0.4, with a small adsorption
type Hj hysteresis loop in the range of p/p® > 0.45. It is suggested by Sotomayor et al. [47]
and Thommes et al. [52] that this loop indicates mesoporosity that enhanced capillary
condensation of the adsorbed nitrogen, and the loop is associated with a shallow micro-
pore area. The narrower hysteresis shown by the modified sample (K/F-HS), signifies
lower mesoporosity than the parent zeolite (F-HS), which was affirmed by the BET results
in Table 2.

2.6. Biodiesel Production over CFA-Synthesised and Modified HS Zeolite

The obtained fusion F-HS zeolite and ion-exchanged zeolite (K/F-HS) was used for
transesterifying waste-derived BSF maggot oil. Figure 6 shows a high biodiesel yield of
84.10% with a considerable FAME content of 64.50% over the synthesised F-HS catalyst.
With a small micropore size (2.8 A) (Table S1), HS micropores are too constrained to allow
the diffusion of biodiesel into micropores, thus the non-microporous surface area (meso-
pores and macropores) in the nanometre size were readily accessible and allowed the rapid
conversion of maggot oil to biodiesel (Table 2). Using ion exchange modified K/F-HS
resulted in a biodiesel yield of 83.70% and a considerably decreased FAME content of
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51.50%. The slight decline in the yield obtained using the modified K/F-HS sample could
be due to decreased total surface area (Table 2). This could be explained by lower reactant
(oil-methanol) surface interaction in the process [3,20]. The decrease in FAME content using
K/F-HS could also be attributed to possible poor diffusive characteristics offered by the
modified sample due to smaller average pore size (Table S2) and pore blockages, as well as
possible decreased acidity of the sample [28,53]. Thus, there is a high possibility that the
reaction has occurred only on the external mesopore surface area (non-micropore areas)
of the K/F-HS, compared to the extent of reaction that occurred over the parent F-HS zeo-
lite [25,36,54]. The FAME content suggests good quality biodiesel obtained over the catalyst
F-HS [55], compared to the quality of biodiesel obtained using K/F-HS. Nevertheless, both
biodiesel samples obtained over the catalysts (Table 3) resulted in fuel quality properties
that comply with the ASTMD6751 and EN14214 standard specifications [56]. It should
also be noted that the fusion-assisted synthesis method for HS zeolite was associated with
better catalytic performance on the basis of textural properties (Table 2) [51]. The method
also on this basis, resulted in better yield and quality biodiesel compared to the direct
hydrothermal method synthesis of the catalyst [48].
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Figure 4. Pore size distribution of fusion-assisted hydrothermal F-HS and ion exchange-modified
K/F-HS zeolite.

Table 3. Properties of biodiesel derived from maggot oil using the fusion-synthesised and ion
exchange modified HS zeolite catalyst.

Biodiesel Properties Catalyst B-Standard @
F-HS K/F-HS ENS ®/ASTM ©

Acid value (mg KOH/g) 0.53 0.74 0.5/0.8 Max
Saponification value (mg KOH/g) 147.87 145.43 -
Ester content () (% m/m) 64.95 51.5 96.5
Iodine value (g of I/100 g) 65.01 61.4 /120-130
Density at 40 °C (g/mL) 0.877 0.893 0.86-0.90
Kinematics viscosity at 40 °C (mm?/s) 5.16 4.68 3.5-5.0/1.9-6.0
Refractive index 1.4455 1.4435 /1.479
Cetane number 36.63 36.66 51/47

@ Biodiesel Standard Specifications; ® ENS14214 (European) and ) ASTMD6751 (American); (D Obtained from
GC characterisation of biodiesel samples, also referred to as FAME content.
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Figure 5. N, adsorption-desorption isotherms of fusion hydrothermal F-HS zeolite and ion exchange-

modified K/F-HS zeolite.
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Figure 6. Yield and FAME content of biodiesel derived over fusion hydrothermal and ion-exchanged
HS zeolite (FAME content equivalent to ester content).

Table 4 reports on the performance of F-HS zeolite and ion-exchanged K/F-HS zeolite
compared to the performance of the counterpart zeolites reported in the literature for
biodiesel production. The results herein reveal that both the parent F-HS and ion exchange
K/F-HS resulted in better biodiesel yield performance than all zeolites reported in the
literature [25,30]. In addition to biodiesel yield, these results are novel due to the properties
of biodiesel obtained in each case, which attest to the outstanding performance of the HS
zeolite catalyst in biodiesel production.
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Table 4. The performance of fly ash-derived and ion exchange-modified HS zeolite in biodiesel

production compare to the literature’s counterpart HS zeolite catalysts.

Zeolite Catalyst

Biodiesel

Biodiesel H Ion Exchange
ydrothermal . Reference
Feedstock Type (Source) Synthesis Post-Synthesis  y;014 (%) Properties
Method
ZSM-5 . X Fawaz, Salam, S.
Weo (* pure chem. reagents) Direct /NHLCD i i Rigolet and Daou [24]
Oleic acid ZSM-5, ZRP-5, Beta } X . } Sun, Lu, Ma, Han, Fu
(* pure chem. reagents) /NH:CD and Ding [21]
Mustard oil Na-X (CFA) Fusion \/(CHSXCOOK) 4513;?7{) ) Volli and Purkait [25]
. . X 56 - Babajide, Musyoka,
Sunflower oil Na-X (CFA) Fusion /(CH:COOK) 83.52 } Petrik and Ameer [30]
HS . Makgaba and
Weo (* pure chem. reagents) Direct X ) ) Daramola [36]
* BSF oil HS (CFA) Fusion \/(KXOH) Sg:;g y\\; This study

* Pure chem. reagents: pure chemical reagents, commercially supplied. x unmodified zeolite; ,/Hs COOK) or KOH,

ion exchange-modified using either CH3COOK (potassium acetate) or KOH (hydroxide). (-) not conducted/
reported; v/+/ Biodiesel analysis (properties) conducted /reported. * BSF oil: waste-derived maggot oil feedstock
from black solider fly (BSF).

2.7. Techno-Economic and Environmental Impact of Hydroxyl Sodalite (F-HS) as a Heterogeneous
Catalyst Compared to a Conventional Homogenous Catalyst in Biodiesel Production

Further evaluation of the performance of HS zeolite as a heterogeneous catalyst in
biodiesel production was conducted on the basis of economic and environmental impact,
vis-a-vis the conventional homogenous catalyst, sodium hydroxide, in the transesterifi-
cation of BSF oil (Table 5 and Table S4). Introducing HS zeolite (F-HS) as heterogeneous
catalyst as substitute for the conventional NaOH catalyst resulted in a decrease in cost and
mass input of feedstock oil by 17% of the cost of feedstock required using NaOH conven-
tional catalyst) per kg of biodiesel produced (Table S4). This is mostly due to the higher
biodiesel yield obtained using the F-HS zeolite (84.10%) compared to the homogeneous
NaOH catalyst at fixed conditions using the same feedstock oil. Furthermore, the hetero-
geneous catalyst F-HS, in terms of catalyst cost, was about four times more costly than
the conventional NaOH homogeneous catalyst per kg of biodiesel produced in each case
(i.e., $1.39 vs. $0.36/kg biodiesel) at fixed conditions (Table S4). This might imply that the
use of HS zeolite was less profitable (cost-benefit) in terms of catalyst cost compared to the
cost of the NaOH catalyst. However, it should be noted that the HS heterogeneous catalyst
was recoverable and has the possibility of being reused for several biodiesel production
cycles, unlike NaOH, which gets spent by excess washing after use [5]. Thus, this might
compensate for the cost of HS in terms of catalyst cost in biodiesel production.

The environmental benefits of employing an HS zeolite heterogeneous catalyst (F-HS)
as opposed to an NaOH conventional homogeneous catalyst highlights that HS zeolite
obtainable from waste coal fly ash minimizes pollution in serving as a disposal management
strategy of the solid waste from coal power stations (Table 5). The use of heterogeneous
HS is also associated with less wastewater generation (Table 54) as opposed to the alkali
wastewater disposed of during the washing of biodiesel produced in the presence of the
homogeneous NaOH. The cost of the effluent treatment was estimated to be lower than
that discharged from the NaOH-catalysed biodiesel production process.
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Table 5. Economic and environmental benefit/impact of HS heterogeneous catalyst compared to

NaOH homogeneous-transesterification in biodiesel production.

* -
Transceasl::gfsiceiion Techno-Economic Impact Enviromental Impact Reference

Disposal of excess

High production cost associated wastewater generation from Mansi 1

NaOH with BD water washing and BD purification and possible ~ ® harl;sm. o ab. [531 d
homogeneous- Puriﬁcation steps; and pOssible pollution: 20% excess * SO a kaI}I’ Ba e an

treatment of excess effluent wastewater compared to yekola [6]
HS-heterogeneous catalyst
(Table S4)

Reduced BD production cost for Environmental benefit ielke-Olivi d

catalyst derived from waste and (pollution minimization) * ZielkeOlivieran

low-cost coal fly ash material associated with appropriate Vermeulen [19]

(waste beneficiation) disposal of CFA (as *  Boycheva, etal. [58]

HS-catalysed zeolite feedstock)

Reduced cost and volume of This work

feedstock oil per kg of BD ) Okechukwu, Joseph,

F;OSUC;C;: ~17% cost reduction Nonso and Kenechi [5]

able 54

Reduced cost (based on volume)

of process water requirement for Reduce(:l wastewater

BD purification: ~20% cost gener.atlon (Yolume) and

reduction/kg of BD (Figure S3) associated disposal .

Reduced cost (based on volume) 1mp'11'cat1.ons from BDO e  This work

of possible effluent (wastewater) purification step: 19.8%

treatment from BD purification: reduced wastewater

~19.8% cost reduction/kg of BD volume/kg BD (Table 54)

(Table S4)

High yield biodiesel product This work

compared to NaOH . Shabani, Babajide and

homogenous in previous work: Oyekola [6]

84.10% versus 69.93%

Was recovered in this work; Minimises disposal i Thi? work

has high possibility of reuse pd ) o  Faria etal [59];

and regeneration requrement and impact e  Saifuddin, et al. [60];

e Leung, etal. [61]

BD: biodiesel. * BSF oil was used as fixed feedstock for comparison of cases between the two catalysts.

3. Materials and Methods

3.1. Materials

Coal fly ash, the starting material for zeolite synthesis, was obtained in the Mpumalanga
province of South Africa. The following reagents were used as purchased: sodium hydrox-
ide (NaOH) pellets (98% grade—Kimix Chemical, Cape Town, South Africa), potassium hy-
droxide (KOH) pellets (85% grade—Sigma Aldrich, Johannesburg, South Africa), methanol
(99.50% grade—Sigma Aldrich) and sodium sulphate (Na;SO4) dehydrant (Sigma Aldrich).
The BSF maggot oil feedstock for biodiesel transesterification tests was obtained from
Inseco (AgriProtein) Ltd. (Cape Town, South Africa).

3.2. Catalyst Preparation and Ion Exchange Modification

Figure 7 illustrates the process flow of the fusion-assisted hydrothermal synthesis, the
post-modification of the catalyst, the characterization and the application of the catalysts in
transesterification reaction for biodiesel (BD) production from BSF oil.
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Figure 7. Schematic diagram illustrating the experimental processes (detailed process for IE in
Figure S1, for BD in Figure S2).

3.2.1. Fusion-Assisted Hydrothermal Synthesis

The mass-mass ratio of 1:1.2 coal fly ash-NaOH mixture was crushed and then fused
in a furnace at a temperature of 550 °C for 1.5 h. Thereafter, 50 mL of deionized water was
added to the fused sample in a 100 mL Teflon-lined autoclave for hydrothermal reaction at
100 °C for 144 h. The obtained solid product from the reaction was filtered, washed, and
dried overnight. The final product (with code name F-HS) was characterized using XRD,
EDS, SEM, FT-IR and BET-BJH.

3.2.2. Post-Synthesis Ion-Exchange Modification

The modification of the obtained F-HS catalyst by ion-exchange using KOH as an alkali
source was conducted according to the procedure previously described [25,50] (Figure S1).
1 g of the prepared catalyst (F-HS) was mixed with 1 M KOH solution in a mass ratio of
1:10 (Figure S1 and Figure 7). The slurry mixture was ion-exchanged by reflux at 60 °C for
24 h using a stirring speed of 800 rpm. The modified product was filtered, washed, and
dried overnight at 120 °C. This was followed by calcination of the dried solid product in a
muffle furnace at 550 °C for 1.5 h. The final modified solid product was assigned the code
name K/F-HS.

3.2.3. Activity Tests of Synthesized Catalysts in Biodiesel Production from BSF Oil

The procedure for transesterification of waste-derived BSF oil for biodiesel produc-
tion using the synthesized catalysts is schematically presented in Figure 7. The detailed
procedure is presented in Figure S2 (Supplementary Materials).

The batch transesterification reaction was achieved in a round-bottom flask over a
hotplate heating source whilst stirring at 800 rpm at a temperature of 60 °C for 1.5 h. A fixed
catalyst weight of 1.5% to the weight of the oil was used, as was a methanol (MeOH) amount
equivalent to MeOH-to-oil molar ratio of 15:1. The obtained product mixture containing
biodiesel was centrifuged for phase and catalyst separation. The biodiesel containing-phase
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was washed thoroughly with deionized water, dried by heating and addition of anhydrous
sodium sulphate, cooled, weighed, and stored prior to characterization.
The yield of biodiesel obtained, in the case of each catalyst used, was determined
using Equation (1).
mass of biodiesel obtained

Yield of biodiesel, (%) = mass of oil feedstock x 100 1)

3.3. Catalyst and Biodiesel Sample Characterisation

A sample characterization was conducted on both catalysts produced and derived-
biodiesel samples. The catalysts were characterized using X-ray diffraction (XRD), energy-
dispersive X-ray spectroscopy (EDS), Fourier-transform infrared (FI-IR) and Brunauer—
Emmett-Teller (BET) coupled with the Barret-Joyner-Halenda (BJH) analysis, with detailed
description in Table 6. The XRD patterns of the obtained products were assigned according
to the standard diffraction pattern of the sodalite zeolite structure obtained from the
International Zeolite Association’s (IZA) database [40].

Table 6. Characterization of catalyst and biodiesel samples (instruments, operating conditions).

Characterisation Instrument Model Detector Operating Conditions
Catalyst
XRD Bruker AXS (Bruker, Billerica, MA, USA) LynxEye detector Clu;fooé IESIZ(?EI\;,(Z(,)KrSX_
EDS-SEM ZeiSS Gemini Auriga (high mag, Carl CDU-lad detector 25kV
Zeiss AG, Jena, Germany)
FTIR Perkin Elmer 100 FT-IR (Perkin Elmer, . Sample configuration data
Waltham, MA, USA set-range (450-2000 cm™ 1)
BET-BJH 3Flex version 5.00, serial # 990 ) Adsorption-desorption
(Micromeritics, Norcross, GA, USA) isotherms (77.6 K, 5 h)
** Biodiesel Instrument/analytical method - Reference
Density Density meter (DMA, Anton Paar) - Anastopoulos, et al. [62]
Viscosity at 40 °C Rheometer (* DHR) (ISO 3104) - AMSEC [63]
Acid value Titrimetric methods (ISO 1242) - Lucas [64]
Saponification Titrimetric method (AOCS CD3) - Babajide [65]
Iodine value Wij’s method (EN 14111) - Japir, et al. [66]
FAME/ ester * GC-FID (HP88GC) (EN 14103) Polar capillary column ¢ gﬁjﬁ;‘;‘;ﬁq‘g(ﬁaﬁ;‘r‘i"[&]
Refractive index, n Refractometer (#PA203 Misco) - -
Cetane value, @i Empirical correlation - Ramirez-Verduzco, et al. [67]

* DHR—Discovery HR-1 hybrid. * GC-FID machine was pre-calibrated for FAME analysis. ** BSF oil (commercially
known as maggot oil) was characterised similarly as the biodiesel samples, with results reported and referenced
from our previous study [6,68].

The biodiesel samples obtained (Figure S2) were characterized in accordance with the
American Society for Testing and Materials (ASTMD6751) and the European normaliza-
tion (EN14214) standards. The characterization techniques, used instruments (analytical
methods) and operating conditions are presented in Table 5.

4. Conclusions

Hydroxy sodalite zeolite synthesised using coal fly ash waste-feedstock was success-
fully obtained via fusion-assisted hydrothermal synthesis. The zeolite possessed high
crystalline characteristics, high mesoporous characteristics (average pore diameter range
12.99-15.31 nm) and a considerable total surface area of 45 m?/g. With a small micropore
size (2.8 A), HS micropores are too constrained to allow the diffusion of biodiesel into
micropores; thus the high mesopore external surface area allowed for the rapid conversion
of BSF maggot oil to biodiesel. The post-synthesis modification by ion exchange of the
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catalyst with KOH adversely affected the crystallinity and textural properties of the zeolite
due to poor K* exchange. The F-HS zeolite sample proved to be highly active in biodiesel
production from waste BSF maggot oil, leading to a high biodiesel yield of 84.10% and
considerable quality with 64.95% FAME content. The modified sample (K/F-HS) presented
reasonable activity for biodiesel production, with substandard 51.50% FAME content as
compared to the parent F-HS zeolite. Thus, it was not necessary or favourable to conduct
the post-modification of HS zeolite by ion exchange for biodiesel production using a KOH
alkali source at high reflux conditions (temperature, agitation rate) nor to utilize a calcina-
tion step inclusive thereafter, as applied in this work. The synthesised F-HS also produced
better biodiesel yield, at a lower cost of feedstock oil (~20% reduced cost per kg of biodiesel
produced), and had better environmental implications of its use compared to the use of the
NaOH homogenous catalyst for biodiesel production. On the basis of textural properties
associated with better catalytic performance, the fusion-assisted hydrothermal synthesis of
HS zeolite is deemed worthwhile for better yield and quality biodiesel in comparison to the
catalyst obtained via the direct method synthesis. Thus, it is recommended to investigate
whether high yield or quality in both zeolite and biodiesel products is offset by the greater
energy requirement of the fusion-assisted protocol. This study has shown the valorization
of waste-coal fly ash and waste-derived BSF oil feedstock into mesoporous HS zeolite
catalyst and biodiesel, respectively, revealing the potential of the low-cost feedstocks to
minimize biodiesel production costs and ensure sustainable production.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal12121652/s1, Figure S1: Schematic flow diagram of Ion
exchange post-synthesis modification of HS zeolite; Figure S2: Process flow illustration of biodiesel
production from waste-derived BSF oil using synthesized catalysts; Table S1: Motive catalytic
application of hydroxy sodalite over common biodiesel zeolites catalysts; Table S2: Textural properties
of F-HS, post-synthesis ion exchange-modified F-HS and of direct method-derived HS; Table S3:
Estimated unit cost of raw material and biodiesel products; Table S4: Mass balance and material
cost comparison between biodiesel production using NaOH conventional homogenous catalyst
and HS novel heterogeneous catalyst. References [4,6,10,21,26,34,43,47,48,66-71], are cited in the
Supplementary Materials.
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