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Abstract: DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase
(ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the
A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction
potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a
mechanism for the methylation reaction involving two–electron reduction and protonation on the
proximal nickel atom of the reduced A-cluster is proposed.
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1. Introduction

Acetyl-CoA synthase (ACS) is a bacterial enzyme [1–22] which synthetizes acetyl-
CoA (acetyl coenzyme A) from CO and the methyl group. CO is formed from the CO2
reduction reaction catalyzed by the carbon monoxide dehydrogenase (CODH) enzyme,
and the methyl group is derived from the corrinoid iron-sulfur protein (CoFeSP). CoFeSP
[23–29] belongs to the group of methyltransferase enzymes [29,30] in which the methylating
agent is methylcobalamin. Methylcobalamin in CoFeSP is in the configuration in which the
dimethylbenzimidazole ligand trans to the methyl group is dissociated [28,31] (Figure S1).
The ACS catalyzed reaction can be described by the equation:

CH3 −Co(III)FeSP + CO + CoASH→ CH3CO-SCoA + Co(I)FeSP + H+. (1)

The ACS active center is an iron–nickel complex called the A–cluster with the formula
Fe4S4NipNid presented in Figure 1. The iron–sulfur cubane (Fe4S4) is connected through a
cysteine sulfur with the proximal nickel ion (Nip), which in turn is linked by two cysteine
sulfur atoms to the distal nickel atom (Nid).

Figure 1. The A–cluster.

The ACS enzyme has been extensively studied using experimental [12,32–46] and
theoretical [47–55] methods. Different oxidation states are postulated for Nip from Ni(0) to
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Ni(III) while the distal nickel is always in Ni(II) oxidation state. The catalytic reaction of
acetyl group formation from CO and methyl occurs on the Nip site, it is followed by the
reaction with CoA and acetyl–CoA generation.

Several forms of the A–cluster relevant to the catalytic reaction were characterized
structurally or spectroscopically [8,36,37,46,56–65]. They can be described by the oxidation
state, electronic configuration, spin, and ligands attached to Nip, as shown in Table 1.

Table 1. Forms of the A–cluster.

Name Electronic Configuration Spin State Description References

Aox [Fe4S4]2+Ni2+p Ni2+d S = 0 resting state, oxidized form [44]
stable at potential >−0.5 V

Ared1 [Fe4S4]2+Ni1+p Ni2+d S = 1/2 one–electron reduced [43]
Ared2 [Fe4S4]2+Ni0pNi2+ (a)

d
S = 0 two–electron reduced, [66]

postulated as catalytic intermediate
Ared2–CH3 [Fe4S4]2+Ni2+p (CH3)Ni2+d S=0 methylated form [44]
Ared1–CO [Fe4S4]2+Ni1+p (CO)Ni2+d S = 1/2 one–electron reduced,

carbonylated form called NiFeC [32,37,44,67–71]
Aox–OH− [Fe4S4]2+Ni2+p (OH)Ni2+d S = 0 [56]
Ared1–H2O [Fe4S4]1+Ni2+p (H2O)Ni2+d S = 1/2 [56]

(a) Ared2 has a configuration [Fe4S4]1+Ni1+p Ni2+d [48–50,55,65], where the cubane and Nip are antiferromagnetically
coupled with spins on the cubane and Nip of opposite signs.

In the methylation step, the methyl group is transferred as the CH+
3 cation from

methylcobalamin CH3Co(III)balamin to the A–cluster and the Co(I)balamin is formed.
Since in the resting state, the A–cluster is in an oxidized state, Aox, therefore two electrons
are needed to form the Nip–methyl (or acetyl) bond. Two mechanisms are proposed for the
catalytic reaction of the ACS enzyme, which differ in the one– or two–electron reduction
of the A–cluster and the order of methylation and carbonylation. They are depicted in
Figure 2. In the paramagnetic mechanism, [67,72–74] the A–cluster is reduced by one
electron; next, the CO molecule is attached to Nip forming the NiFeC specie. This is
followed by methyl transfer from CH3Co(III)FeSP to Nip(I). As a result, Nip–acetyl and
Co(I)FeSP are formed. After methylation, the second reduction step takes place. The
order of methylation and carbonylation in the paramagnetic mechanism is random [73].
The intermediate (one electron reduced), product with Nip(III)–CH3 or Nip(III)CO(CH3)
(depending on the methylation order) is pertinent to the paramagnetic mechanism. The
second electron is added in the later stage of the reaction.

In the diamagnetic mechanism, [66,75–78] the two–electron reduction of the A–cluster
with Nip(0) formation is postulated. In the next step, the methyl group is transferred from
CH3Co(III)FeSP to Nip. This results in the formation of Nip(II)CH3 and Co(1)FeSP. After
that, the addition of CO and formation of the acetyl derivative Ni(II)p–acetyl takes place.
In studies of the ACS enzyme, the dependence of reductive methylation on pH was found,
implying protonation of the A–cluster in the reaction course [79].

In this work, we present theoretical calculations of geometrical and electronic struc-
ture, acid dissociation constants pKa, reduction potentials, and pH–dependent reduction
potentials for different forms of the A–cluster. On this basis, the ACS enzyme methylation
mechanism is proposed. In previous work [49], we proposed the radical mechanism of
the methyl transfer reaction with the reduction of the base–off methylcobalamin by the
A–cluster in two–electron reduced state, based mainly on a small model and the unligated
A–cluster. The calculations with a large model and with ligands present at Nip show that
the reduction of methylcobalamin is unlikely and the mechanism which involves first
protonation of the proximal nickel and then methylation with concomitant deprotonation
by an external base is suggested. The methyl group is transferred as a cation and the cobalt
in methylcobalamin is in Co(III) state. We also show that an important role is played by an
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arginine residue which is close to the A–cluster in the reaction site. As a small model is
used to determine some quantities, its properties are also presented in the calculations for
comparison and validation.

Figure 2. Proposed mechanisms of action of the ACS enzyme: (a) paramagnetic, (b) diamagnetic.
The antiferromagnetic coupling in the two–electron reduced A–cluster is shown, and the one electron–
reduced carbonyl–methyl derivative has Ni2+ configuration.

2. Computational Details
2.1. Methods of Computation

Calculations were carried out with the use of Gaussian16 program [80]. The broken
symmetry DFT (BS–DFT) method [81,82] was employed with the BP86 functional [83,84]
along with the TZVP basis set [85]. The BP86 functional was chosen because it allows
obtaining a good description of the cobalt–methyl bond in alkylcobalamins, while the
hybrid functionals significantly underestimate the energy of this bond [86,87]. This is
especially important in catalytic mechanisms of the ACS enzyme, where metal–methyl
bonds are formed. Calculations for transition metal complexes also show that the BP86
functional gives a good estimation of redox potential [88,89].

The PCM solvent model [90] was applied with the dielectric constant equal to 20
and 80. The dielectric constant ε = 4 is often used for modeling the protein environment;
however, it has been shown that higher ε values are necessary for calculation of pKa and
reduction potentials in protein [91–94].
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Two models of the active center of the ACS enzyme were used. The models were
constructed on the basis of the crystal structure PDB ID: 1RU3 [95]. They are shown in
Figure 3. In the M1 model, cysteine residues around the cubane were modeled by SCH2CH3
thiolate groups. In the M2 model additional amino acid residues were added around the
A–cluster including Arg 619. During optimization, some atoms were frozen to keep the
position of the A–cluster similar to the protein. The frozen atoms are marked by asterisks.

Figure 3. M1 and M2 models of the A–cluster. The aminoacid residues from PDB:1RU3 crystal
structure are shown. The atoms frozen in the optimization are marked with asterisks.

The CH3Co(III)cobalamin and Co(I)cobalamin from CoSFeP protein are modeled in
the calculations by simplified forms denoted CH3Co(III)Corrin+ and Co(I)Corrin (Figure 4).

The M1 and M2 models were also used in the calculations for the A–cluster with the
catalytically relevant ligands. They are presented in Figure 5.
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Figure 4. Models of base–off cobalamins. The side chains of the corrin ring are replaced by hydro-
gen atoms.

Figure 5. M1 and M2 models of the A–cluster with catalytically relevant liganads.
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2.2. Redox Potential

The reduction potentials were calculated with Equation [96,97]:

E0 =
(E(M+)sol − E(M)sol)

n
− ∆SHE, (2)

∆SHE = 4.28 V, (3)

where the standard hydrogen electrode potential (∆SHE) of 4.28 V is used and n is the
number of electrons (1 or 2). In Equation (3) E(M+)sol and E(M)sol stand for the energy of
a ionized and neutral molecules in the solution, respectively.

2.3. pKa Calculation

pKa values and pH–dependent redox potentials were calculated with the method-
ology used for metalloenzymes [98–100]. The pKa values were calculated according to
the formula:

pKa =
(E(M)sol − E(MH+)sol + ∆Gsol(H+, 1 atm)− T∆Sgas(H+) + 5

2 RT + ∆ZPE)
1.364

, (4)

where

∆Gsol(H+, 1 atm) = −263.98 kcal/mol. (5)

E(M)sol and E(MH+)sol are the energies of the protonated and unprotonated molecules
in solution, respectively. ∆Gsol(H+,1 atm) is the solvation free energy of a proton at
1 atm of gas hydrogen pressure, for which the experimental value of −263.98 kcal/mol
is used [101,102]. The translational entropy contribution to the gas–phase free energy of
a proton is taken as −T∆Ggas(H+) = −7.76 kcal/mol at 298 K and 1 atm of pressure.
(5/2)RT includes the proton translational energy (3/2)RT and PV = RT. ∆ZPE values for the
protonated species were calculated for small model complexes [49]. The reason for that is
the fact that for models used in this work, the optimization was performed with geometry
constraints.

2.4. pH Dependent Redox Potentials

The reduction potentials coupled to protonation are calculated according to the for-
mula [98–100]:

E′0 = E0 +
1.37 m
23.06 n

(pKa − pH), (6)

where n is the number of electrons (1 or 2) and m is the number of protons (1 in this work).
In Equation (6) E′0 and E0 denote pH–dependent and pH–independent reduction potentials,
whereas pKa value is for the reduced specie.

3. Results
3.1. Structural Properties

The selected experimental bond distances in the different forms of the A–cluster are
gathered in Table 2. In the crystal structure of the A–cluster, copper, zinc and nickel can
be found in the proximal position [8,61,103–105]. It was shown that only the enzyme with
nickel in this site is catalytically active [105]. In Table 3, the calculated structural parameters
are given for the M1 and M2 models with and without catalytically important ligands
(Figure 5). Among the ligands, there is the formate ion as suggested by the data in crystal
structure [34]. The calculated geometry parameters for M1 and M2 differ at most by a few
hundredths of Å; however this does not apply to the structure with CO ligand where the
differences are substantial, especially for the Nip–Fe1 distance.
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Table 2. Experimental structural data for the A–cluster with different ligands.

X–ray
PDB ID:

1RU3 [95]
PDB ID:

1OAO [8]
PDB ID:

6YTT [46]
PDB ID:

6X5K [36]

Nip–Nid 2.980 3.041 2.882 2.744
Nip–Fe1 2.680 2.662 2.243 3.879
Nip–H2O 2.7
Nip–CO 1.630
CO–Nip–S1 123.9
CO–Nip–S5 124.3
CO–Nip–S6 105.3

EXAFS [95]

Nip–Nid 2.89 2.97/2.96
Nip–Fe1 2.71 2.80
Nip–H2O 2.32

EXAFS [56]
Niox–OH−− NiredH2O NiredCO NiredCH3

Nip–Nid 2.9 2.9 2.97/2.96
Nip–Fe1 2.7 2.7 2.80
Nip–L 2.0 2.1 1.7 1.95

The data in Table 2 shows that the experimental Nip–Nid distances are approximately
in the ∼2.9–3.0 Å range, the same can be found in the calculated values in Table 3. In
turn, the Nip–Fe1 distances are in the range ∼2.6–2.8 Å. Similar values can be seen in
the calculations (Table 3) although these distances are slightly longer for the formate and
hydroxyl ligands. At the same time, it can be found that the Nip–Fe1 distance is very small
(2.243 Å) in the PDB ID: 6YTT crystal structure [46] where there is no ligand on Nip and in
turn very long in the crystal structure PDB ID: 6X5K [36] with the carbonyl ligand. This is
not the case in the EXAFS results for the CO ligand, where this distance is equal to 2.80 Å [56]
(Table 2). If we look at the Nip–Fe1 distances obtained from the calculations, it can be seen
that the M1 model with CO gives values similar to the crystal structure and the M2 model
to EXAFS [56]; however, both calculated values are longer than in the experimental case.
The carbonyl bound Ni(I) ion has a tetrahedral coordination sphere which can be seen from
the valence angles around Nip (Table 2). Calculated valence angles in the coordination
sphere of the carbonylated A–cluster also indicate the tetrahedral structure. Tetraahedral
coordination of Nip in NiFeC models was also obtained in other theoretical studies [48,51].
The remaining ligated A–cluster forms reveal a planar or distorted planar Nip coordination,
as it can be inferred from the valence angles presented in Table 3.

Table 3. Selected geometry parameters in optimized geometries of different forms of the A–cluster.
Bond distances in Å, angles in degrees.

Model M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

Distance (Å) Nip–Nid Nip–Fe1 Nip–L L–Nip–S1 L–Nip–S5 L–Nip–S6

Aox 2.964 2.937 2.833 2.880 – –
Ared1 3.121 3.091 2.600 2.583 – –
Ared2 3.132 3.129 2.490 2.510 – –
Aox–OH 2.938 2.907 2.900 2.892 1.876 1.882 92.1 169.9 82.7
Aox–HCOO 2.957 2.917 2.987 2.941 1.949 1.941 90.6 170.2 85.2
Ared1–H2O 2.959 2.788 2.209
Ared1–CO 2.592 2.700 4.097 3.382 1.766 1.763 108.8 134.7 98.8
Ared1–CH3 2.890 2.992 2.739 2.738 1.976 1.981 89.3 165.4 85.2
Ared2–CH3 3.019 2.970 2.813 2.758 1.971 1.971 89.9 166.4 85.6
Ared2–H 2.951 2.680 1.470 85.2 166.7 82.9
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3.2. Electronic Structure

In Table 4, the spin densities on Nip, Nid and cubane for the A-cluster with different
ligands are gathered. In the one–electron reduced A–cluster, there is a significant spin
density on the NiP ion which confirms that the unpaired electron is placed on this ion. This
is true for the A-cluster without ligands as well as with CO and H2O ligands. These findings
conform with other calculations and experimental data [37,48,51,106]. The situation is
different for the methyl ligand where there is a relatively low spin density on Nip (slightly
higher for the M2 model), while the high spin density is on the iron–sulfur cubane. The
calculations show that in this case the cubane is oxidized and not the proximal nickel atom,
i.e., the Fe4S3+

4 Ni2+CH3 configuration instead of the Fe4S2+
4 Ni3+CH3 one is found.

The two–electron reduced, methylated form, Ared2–CH3, has a Nip(II) cation oxidation
state, since the two electrons are present on the Nip–CH3 bonding orbital. This is due to
the fact that the methyl group is transferred in the cationic form, CH+

3 . The two–electron
reduced A-cluster, Ared2, has spin densities of opposite sign both on Nip and on the cubane
which means that two electrons are antiferromagnetically coupled. Such antiferromegnetic
coupling was confirmed by Mössbauer spectroscopy and was found in many calculational
studies [48–50,55,65]. The spin density on the Nid atom is close to zero except for Aox
without ligand and Ared1–CO where some spin density is shifted from Nip.

Table 4. Spin densities on the iron–sulfur cubane and Nip atom in different forms of the A–cluster.

Spin Density

Nip Fe4S4 Nid

M1 M2 M1 M2 M1 M2

Aox −0.103 0.124 −0.140 0.002 0.090 −0.111
Ared1 0.591 −0.574 −0.040 0.002 0.062 0.054
Ared2 −0.578 −0.421 0.680 0.435 −0.004 −0.002
Aox–OH −0.132 −0.138 0.004 −0.002 −0.005 0.000
Aox–HCOO −0.121 0.109 −0.020 −0.002 −0.006 0.005
Ared1–H2O 0.575 0.030 0.081
Ared1–CO 0.535 0.478 0.066 0.104 0.237 0.126
Ared1–CH3 0.063 −0.159 0.450 0.830 0.059 −0.013
Ared2–CH3 −0.158 −0.178 0.011 0.063 −0.006 −0.009

In Figure 6, the frontier molecular orbitals of Ared2 and Ared1–CH3 are depicted. The
MOs form shows that they are similar for both models. The main difference is the reverse
order of HOMOα and HOMO–1α in Ared1–CH3; however this is not relevant considering
the small energy difference between these orbitals of only about 0.1 eV.

3.3. Energetics of Methylation and Carbonylation Reaction

In Table 5, the energies for methylation and carbonylation reaction of one and two-
electron reduced A-clusters are gathered for the M1 model. The reaction energy is calcu-
lated as:

∆E = E(Products)− E(Reagents) (7)

The upper part of Table 5 presents the reaction energies pertinent to the paramagnetic
mechanism involving one-electron reduced A-cluster.

Inspection of Table 5 reveals that in the paramagnetic mechanism, methylation is
weakly exoenergetic or weakly endoenergetic depending on the dielectric constant and
whether it occurs first or after the carbonylation step. Moreover, for ε = 80 the methylation
product is able to oxidize Co(I)corrin. The carbonylation step is highly exothermic in both
cases. The possible oxidation of base-off cobalamin would be disadvantageous, since it
is associated with the deactivation of the cobalamin enzyme, because in the next step it
undergoes remethylation by tetrahydrofolate in the reduced form [25,30,107]. In the lower
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part of Table 5, the calculated energies for the mechanism involving the two-electron re-
duced A-cluster are gathered. In this case, methylation is exothermic and the carbonylation
energy is similar to the paramgnetic mechanism.

Figure 6. Frontier molecular orbitals of Ared1–CH3 and Ared2 for the M1 and M2 models. The
lowest occupied molecular orbitals of Ared1–CH3 are localized mainly on Nid and cubane, confirming
Fe4S3+

4 Ni2+p electronic structure. In Ared2 the antiferromagnetic coupling can be seen, where HOMOα

is localized on Nip and HOMOβ on the cubane.

Spin densities in Table 4 show that one electron reduced form with methyl and acetyl
ligands does not have the electronic structure Fe4S2+

4 Ni3+p but Fe4S3+
4 Ni2+p , hence the elec-

tron is transferred from the cubane to Nip as a result of an intramolecular redox reaction. The
species with configurations Fe4S3+

4 Ni2+p CH3(CO) and Fe4S2+
4 Ni2+p CH3(CO) (reaction No. 3

and 8) are five-coordinate intermediate products which in the next step undergo izomeriza-
tion to the acetyl derivative of the one or two-electron reduced A-cluster (Figure S2).

The paramagnetic and diamagnetic mechanisms both involve unstable species,
Fe4S2+

4 Ni+p (Ared1) and Fe4S+4 Ni+p (Ared2), respectively. The former one is a radical and the
latter one has a very low reduction potential as will be shown later, and would be difficult
to obtain. It also would be prone to oxidation and would be unstable in biological environ-
ment. Ared1 was observed experimentally, it can be formed as the product of Fe4S2+

4 Ni+p CO
photolysis and it binds back CO very quickly [36]. The direct presence of Fe4S+4 Ni+p in the
catalytic reaction has not been proven.
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Table 5. Methylation and carbonylation reaction energy for the case of a one- and two–electron
reduced A–cluster (in kcal/mol). The data for the M1 model.

No. Reagents Products ∆E(kcal)
ε = 80 ε = 20

One-elctron reduced

1 Fe4S2+
4 Ni+p CO Fe4S2+

4 Ni+p CO −24.0 −30.9
2 Fe4S2+

4 Ni+p CH3CoCorrin+ Fe4S3+
4 Ni2+p CH3 CoCorrin0 1.1 −1.7

2a Fe4S2+
4 Ni2+p CH3 CoCorrin+ 1.5 −1.4

3 Fe4S2+
4 Ni+p CO CH3CoCorrin+ Fe4S3+

4 Ni2+p CH3(CO) (a) CoCorrin0 8.5 11.5
3a Fe4S2+

4 Ni2+p CH3(CO) CoCorrin+ 5.4 12.1
4 Fe4S3+

4 Ni2+p CH3 CO Fe4S3+
4 Ni2+p CH3(CO) −17.5 −17.7

5 Fe4S3+
4 Ni2+p CH3(CO) Fe4S2+

4 Ni2+p acetyl −10.2 −13.4
6 Fe4S2+

4 Ni2+p acetyl CoCorrin0 Fe4S3+
4 Ni2+p acetyl CoCorrin+ −3.1 −7.4

Two-electron reduced

7 Fe4S+4 Ni+p CH3CoCorrin+ Fe4S2+
4 Ni2+p CH3 CoCorrin0 −12.0 −15.9

8 Fe4S2+
4 Ni2+p CH3 CO Fe4S2+

4 Ni2+p CH3CO −18.4 −17.4
9 Fe4S2+

4 Ni2+p CH3(CO) Fe4S2+
4 Ni2+p acetyl −9.7 −20.4

(a) Five-coordinate complex with CH3 and CO bound to Nip (Figure S2).

Gencic and Grahame [79,108] proposed a mechanism with participation of the proto-
nated two-electron reduced A-cluster. Based on the dependence of the reduction potentials
on pH, they concluded that the mechanism includes two one-electron reduction steps
coupled to protonation. On the basis of the same experimental data Bramlett et al. [44]
suggested one step two-electron reduction mechanism.

In the following section, using as a basis the calculated reduction potentials and pKa
of different forms of the A-cluster, we justify that the two-electron reduction coupled to
protonation is a probable mechanism of the ACS enzyme action. The formation of a stable
nickel protonated, doubly reduced A-cluster, followed by its methylation, is a mechanism
that avoids the problems of the diamagnetic and paramagnetic mechanisms.

3.4. pKa

We calculated pKa values for different forms of the A-cluster according to Equation (5).
At first, the M1 model was used and different protonation sites were considered and namely
Nip, S1, S4, and S2. The calculated values are shown in Table S1. The largest pKa values are
found for Nip atom in the two-electron reduced A-cluster. Taking this into account, later in
the calculations for the large model, M2, pKa values were calculated only for the protonation
on Nip. pKa values were calculated for various forms and models of the A-cluster, without
ligands and with ligands such as formate and hydroxyl anions. These ligands were present
or suggested in the structures of the resting form of the A-cluster [34,95].

Water molecules which are present in the crystal structure or near the enzyme surface
can influence properties such as pKa and redox potentials. To take this into account, we
also performed calculations for the M2 model with one and four water molecules. M2
models with four water molecules are shown in Figures 7 and 8. It can be noticed that
water molecules gather around the Arg619 residue. This is caused by the positive charge of
arginine which is protonated due to its high pKa (13.8) [109].
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Figure 7. M2 model with formate ligand and four water molecules used in calculations pKa: (a) oxi-
dized A-cluster with formate ligand, (b) two-electron reduced A-cluster with protonated Nip and
formate anion near arginine residue.

Figure 8. M2 model with the hydroxyl ligand and four water molecules used in calculations of pKa:
(a) oxidized A-cluster with the hydroxyl anion at Nip, (b) one-electron reduced A-cluster protonated
at hydroxyl with H2O formation, (c) the two-electron reduced A-cluster protonated at Nip and OH−

near the arginine residue.

The calculated pKa values for the A-cluster are collected in Table 6. The pKa values
were determined for dielectric constants equal to 20 and 80. Several possibilities for the
protonation were considered, i.e., the A-cluster protonation without and with ligands
such as formate, water and hydroxyl anion, as well as the protonation of the oxidized,
one and two–electron reduced forms. Based on the data collected in Table S2, it can be
concluded that the large model, M2, gives values several units lower than the model model.
Furthermore, an increase in the dielectric constant leads to a decrease in the pKa value.
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The calculated pKa values for one-electron reduced form, Ared1, are very small and even
negative for the M2 model, which indicates that the unligated one-electron reduced form is
not protonated in the neutral pH. The protonation on Nip in Ared1 with ligands HCOO−

and H2O is also associated with small pKa. This shows that the one-electron reduced form
is not protonated in the neutral pH. On the other hand the two-electron reduced form A
red2 has large pKa values, especially for the ligated forms. This is clearly visible for the
models with water molecules, where the ligands OH− and HCOO− are stabilized after the
protonation by interaction with an arginine residue (Figures 7 and 8).

In Figure 7a, the oxidized form of the A-cluster with the formate ion attached to Nip
and four water molecules is depicted. Figure 7b shows two-electron reduced, protonated
A-clusters. The formate ion is shifted toward the arginine and water molecules. Figure 8a
presents the oxidized A-cluster complexed with the hydroxyl anion. In Figure 8b, the
one-electron reduced A-cluster complexed with a water molecule is presented. In this
case, protonation takes place on the hydroxyl anion producing a water molecule. Figure 8c
depicts the two–electron reduced, protonated A-cluster. The protonation occurs on the Nip
ion and the hydroxyl ion is near arginine, bound to its hydrogen atoms by hydrogen bonds.

The data in Table 6 for protonation on the hydroxyl ligand in Aox and Ared1 shows that
pKa values are relatively low for the oxidized form and high for one-electron reduced form.
This is in accordance with the experimental findings that the oxidized form has a hydroxyl
ligand and one-electron reduced a water one [56]. The pKa values for Ared2 with ligands
are quite large and significantly lower for the dielectric constant 80. The determined pKa
values point to the high proton affinity of the two-electron reduced A-cluster.

Table 6. Calculated pKa values for the M2 model with the dielectric constants equal to 20 and 80.

ε 20 80

Ared1 −1.2 −2.6
Ared2 15.6 12.6

M2–L (a)

Ared1–HCOO(H2O) 11.5 7.3
Ared1–HCOO(4H2O) 6.1 3.0

Ared1–H2O(4H2O) 0.6 2.2
Ared2–HCOO 18.8 11.9

Ared2–HCOO(H2O) 33.6 26.2
Ared2–HCOO(4H2O) 29.0 23.3

Ared2–OH(4H2O) 32.6 25.5
Ared2–H2O(4H2O) 16.0 16.8

M2–OH/M2–H2O (b)

Aox–OH 9.1 7.2
Aox–OH(4H2O) 8.9 7.1

Ared1–OH(4H2O) 17.5 14.0
(a) Protonation on Nip. (b) Protonation on hydroxyl ligand.

3.5. Reduction Potentials

In Table 7, the calculated redox potentials for reduction of Aox and Ared1 forms are
presented. As stated previously, two values of the dielectric constant were taken into
account, i.e., 20 and 80. The data in Table 7 show that the addition of water molecules
increases the Aox/Ared1 potential and lowers Ared1/Ared2. The unligated Aox has a reduction
potential higher than−0.5 V; this potential becomes lower after adding formate or hydroxyl
ligand. This means that the ligand on the Nip atom prevents the reduction of the A-cluster
in the resting state of the enzyme. However, the reduction potential for the oxidized form
with water ligand is quite high which confirms that in this case a hydroxyl anion formate
should occur in the enzyme. The reduction potential Ared1/Ared2 is very low for the A-
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cluster with and without ligands, which implies that two-electron reduced form is unstable
in the biological environment and that there is no reductant strong enough to obtain it.

The reduction potential for Ared1-CH3/Ared2-CH3 is also shown in Table 7 and it
amounts to −0.071 V. With such a high potential, Ared1-CH3 would undergo fast reduction
hence it hardly could be formed as an intermediate in the enzymatic reaction.

Table 7. Calculated redox potentials vs. SHE for the M2 model of the A-cluster (in V).

ε 20 80 20 80

E0 (Aox/Ared1) (Ared1/Ared2)
−0.324 −0.232 −1.052 −0.849

L=HCOO−

M2–L −1.065 −0.839 −1.384 −1.045
M2–L(H2O) −0.960 −0.755 −1.479 −1.152
M2–L(4H2O) −0.894 −0.701 −1.532 −1.231

L=OH−

M2–L(4H2O) −1.104 −0.892 −1.669 −1.351

L=H2O
M2–L(4H2O) −0.591 −0.482 −1.279 a(−0.879 b) −1.060 a(−0.766 b)

L=CH3
M2–CH3 −0.071

a Ared2-H2O product. b Ared2H-OH product.

3.6. pH-Dependent Reduction Potentials

It was found experimentally that the methylation reaction is pH-dependent. Therefore,
the protonation of the A-cluster was suggested and the pH-dependent reduction potentials
were determined [79,108]. We calculated the pH-dependent redox potentials, and they are
gathered in Table 8 together with the experimental values. The two-electron reduction
process was considered leading to Nip protonation (Equation (6)). After reduction and
protonation, the ligand present at Nip is dissociated and in the case of the M2 model, moves
toward arginine and water molecules forming hydrogen bonds. One-electron reduction
is considered for protonation on the hydroxyl ligand. This is because the pKa values
for the one-electron reduced A-cluster in the case of protonation on Nip is very small
(Tables 6 and S2).

There is a good agreement of the calculated values with the experimental ones for the
M2 model with four water molecules both for formate and hydroxyl ligand and ε = 80, the
difference is of 0.05–0.1 V. There is also a good agreement for one-electron reduction and
protonation on the hydroxyl leading to water molecule. It is interesting that the differences
in the values of the protonation-coupled reduction potentials are relatively small for ε = 20
and 80, around 0.05–0.08 V. However, the agreement for ε = 80 is better, confirming the
need for calculating pKa and reduction potentials with large dielectric constant values. The
differences in pKa (Table 6) and reduction potentials (Table 7) for dielectric constants 20
and 80 are significant, on the other hand the pH-dependent reduction potentials are close,
which is the effect of error compensation for these two values.
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Table 8. pH–dependent reduction potentials for the A-cluster with and without ligands (in Volts).
The same pH values were used as in the experimental data [79].

ε 20 80

E′0 (Aox–L/Ared2–NiH–L) Expt.
[79,108] [44]

M2-HCOO
pH = 6.5 −0.861 −0.782 −0.463 −0.479
pH = 7.2 −0.881 −0.803 −0.490 −0.495
pH = 7.9 −0.902 −0.824 −0.547 −0.524

M2-HCOO(H2O)
pH = 6.5 −0.418 −0.371
pH = 7.2 −0.439 −0.392
pH = 7.9 −0.460 −0.413

M2-HCOO(4H2O)
pH = 6.5 −0.547 −0.469
pH = 7.2 −0.568 −0.490
pH = 7.9 −0.588 −0.510

M2-OH(4H2O)
pH = 6.5 −0.615 −0.560
pH = 7.2 −0.637 −0.580
pH = 7.9 −0.657 −0.601

AoxOH/Ared1H2O (a)

pH = 6.5 −0.445
pH = 7.2 −0.490
pH = 7.9 −0.531

(a) M2 model.

4. Discussion

The energetics of the two-electron reducted A-cluster in the mechanistic steps of
catalytical reaction is more favorable than the one-electron reducted one (Section 3.2). The
problem in the former case is the very low reduction potential of the two-electron reduced
A-cluster (Table 7), which makes it unstable in the biological environment. The A-cluster in
the resting state is present in the oxidized form with the proximal nickel in Ni(II) oxidation
state. Methyl group is transferred in the cationic form, hence additional electrons are
needed to form Nip-CH3 bond. The methylation reaction needs reductive activation and
on the other hand it is pH-dependent, which implies protonation [79,108].

On the basis of the calculated pKa, reduction potentials and pH-dependent reduction
potentials, the reduction of the A-cluster coupled with proton transfer can be proposed.
Several possible pathways of this process can be considered:

AoxOH H+

−−−−−→
pKa = 7.1

AoxH2O e−−−−−−→
−0.482 V

Ared1H2O e−−−−−−→
−0.766 V

Ared2H−OH (8)

AoxOH H+ ,e−−−−−−−−−−−→
−0.490 V, pH= 7.2

Ared1H2O e−−−−−−→
−0.766 V

Ared2H−OH (9)

AoxOH H+ ,2e−−−−−−−−−−−→
−0.580 V, pH= 7.2

Ared2H−OH (10)

Equation (8) shows a three step reaction, first protonation of the resting state AoxOH
on the hydroxyl ligand with pKa 7.1 (Table 6), then reduction at potential−0.482 V (Table 7)
and finally reduction to Ared2H-OH system, with the proton on Nip and OH− near arginine,
at potential −0.766 V (Table 7). Equation (9) puts the first two steps together in proton
coupled electron transfer with −0.490 V at pH = 7.2 (Table 8) and again this is followed by
reduction leading to Ared2H-OH. The third possibility is two-electron reduction coupled
with proton transfer at pH = 7.2 and potential −0.580 V with the same product formation.
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The first two mechanisms in Equations (8) and (9) can be eliminated because of a low
potential needed in the reduction of Ared1H2O (−0.766 V) which is below biologically
available reduction potentials.

The most probable reaction is the one in Equation (10) involving two-electron reduction
of the A-cluster coupled with protonation. The calculated reduction potential is lower
than −0.5 eV, but it is underestimated in calculation compared to the experimental one
(−0.490 V). In [79,108], two one-electron steps are proposed and on the other hand one two-
electron step is suggested in [44]. Our calculations point to the two-electron mechanism,
due to the low reduction potential of the second reduction step (Equations (8) and (9)).

Figure 9 shows the proposed mechanism of action of the ACS enzyme. According to
this mechanism, before the methylation the A-cluster undergoes the two-electron reduction
with concomitant proton addition to Nip. In the methylation step by methylcobalamin from
CoFeSP, the proton is removed by the outer base. We suggest that the role of the base may
be played by a tyrosine ion present in the vicinity of the A-cluster. The tyrosine residue is
close to the A-cluster in the crystal structure PDB ID: 6YTT [46], shown in Figure 10b. In
the next stage, the carbonylation of the methyl derivative takes place.

Figure 9. Proposed mechanism of the ACS enzyme catalytic mechansim.

Figure 10. (a) Arginine residue Arg 619 located near the A-cluster in the crystal structure (PDB ID:
1RU3, [95]), (b) Tyrosine residue TYR 387 located near the A-cluster in ACS crystal structure (PDB ID:
6YTT, [46]).
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The important role is played by the arginine molecule close to the A-cluster which
attracts negative ions such as OH− and HCOO− facilitating protonation of Nip. The
arginine residue from PDB: 1RU3 [95] is shown in Figure 10a. Its action is equivalent to
lowering the local pH.

Ragsdale [74] invoked the Electrochemical—Chemical Coupling (EC) mechanism for
substrate binding in enzymes. When a chemical reaction occurs with the reduced form of
the redox couple the apparent midpoint potential is shifted to a more positive value. This
explains why the Aox, which is difficult to reduce in the resting state, undergoes reduction
in the presence of CO forming Ared1–CO. The EC mechanism can also be applied to the
case of Nip protonation in the A-cluster, presented in this work. As it results from the
calculations (Table 8), protonation shifts the reduction potential of the A-cluster toward
more positive values, which enables the two-electron reduction leading to Ared2–H.

5. Conclusions

• Unligated or water ligated oxidized A-clusters have high reduction potential; the
HCOO− or OH− ligands lower the reduction potential making Aox less susceptible
for reduction.

• Protonation takes place at Nip.
• Protonation stabilizes the two-electron reduced A-cluster.
• The pH-dependent reduction potential for the large model with water molecules

agrees with the experimental ones.
• We propose a mechanism in which two-electron reduction of Aox–L is coupled to Nip

protonation and ligand loss. During methylation reaction Nip is deprotonated by an
external base. In the last step, CO binds to the methylated A-cluster and the acetyl
group is formed. The role of the external base can be played by a tyrosine residue.

• The arginine residue present in the vicinity of the A-cluster acts as negative ion sink,
which facilitates protonation of the A-cluster.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/catal12020195/s1, Figure S1: (a) Base-on methylcobalamin, (b) Base-off methylcobalamin,
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A-cluster, Fe4S4Nip(CH3)(CO) (b) Acetyl derivative of the A-cluster, Fe4S4Nip-acetyl, Table S1: pKa
values calculated for different protonation sites in one and two-electron reduced A-cluster (M1 model,
dielectric constant ε = 20). Atom numbering from Figure 3, Table S2: pKa values calculated for the
M1 and M2 models, Table S3. Reduction potential of the M1 M2 models vers and versus NHE (in V).
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