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Abstract: Catalytic transfer hydrogenation reactions (CTHs) produce value-added chemicals in the
most economical, safe, green, and sustainable way. However, understanding the reaction mechanism
and developing stable, selective, and cheap catalysts has been a significant challenge. Herein, we
report on the hydrogenation of cinnamaldehyde utilizing glycerol as a hydrogen donor and metal-
oxides (SnO2, LaFeO3, and LaSnO3) as heterogeneous catalysts. The perovskite types were used
because they are easy to synthesize, the metal components are readily available, and they are good
alternatives to noble metals. The catalysts were synthesized through the nanocasting (hard-template)
method with SiO2 (KIT-6) as a template. The template was synthesized using the soft-template
(sol-gel) method resulting in a high surface area of 624 m2/g. Furthermore, catalytic evaluations gave
high cinnamaldehyde percentage conversions of up to 99%. Interestingly, these catalysts were also
found to catalyze the etherification of glycerol in one pot. Therefore, we propose competitive surface
catalytic reactions driven by the transition metal cations as the binding sites for the cinnamaldehyde
and the sacrificial glycerol.

Keywords: catalytic transfer hydrogenation; glycerol; etherification; perovskites

1. Introduction

Sustainability is vital in different reactions as this provides the means to meet human
needs using the efficiency of natural products for chemicals and services. Several reactions
are performed to increase sustainability, such as converting biomass to fuels using renew-
able chemicals [1–6]. The catalytic transfer hydrogenation reaction (CTH) also follows that
direction as it uses renewable hydrogen donors such as bioderived sacrificial alcohols [7].
Moreover, this is a green approach that reduces greenhouse emissions and the pollution of
the environment. The replacement of molecular H2 with biomass-derived hydrogen donors
also provides a safer alternative, as molecular hydrogen requires specialized handling and
transportation and is deemed to be unsafe [8–10]. Furthermore, the same phase of the
hydrogen donor and substrate increases the contact time, thus enhancing reaction efficiency
due to the transport phenomena [11].

Previous reactions have used biomass-derived hydrogen donors for CTHs.
Isopropanol and other monoprotic alcohols are the most used [12]. Among the mono-
protic donors, isopropanol is a better hydrogen donor than n-propanol, ethanol, and
methanol [10]. However, very few studies have been conducted using glycerol, a polypro-
tic sacrificial alcohol [11,13,14]. Using glycerol instead of monoprotic donors could be a
practical approach because it can also be used as a solvent.

On compounds that have more than one reduction site in CTHs, selectivity for the
desired product becomes a challenge. For example, in α,β-unsaturated combinations, two
sites can be hydrogenated. These are the alkene double bond and the terminal carbonyl of
the aldehyde moiety [15]. These two sites make it particularly challenging to synthesize
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catalysts that are selective to one desired product. Several catalysts have been synthe-
sized and used for this reaction, including nitrogen-doped, carbon-supported iron [10],
Pd-based catalysts [15], Ir/C catalysts [16], RANEY Ni [9], platinum oxide, platinum black
catalysts, and promoters [17]. In particular, the carbon-supported iron catalysts were stable
for the CTH of furfural-to-furfural alcohol with conversions greater than 90% under opti-
mum conditions. However, the presence of crystalline oxide materials together with pore
structure variation led to catalyst deactivation [10,18–20].

Several transition metal catalysts have been employed in CTH reactions and have
led to conversions of different substrates such as arenes, α,β-unsaturated compounds,
aldehydes, and ketones. Some transition metals have been used in bimetallic systems. In
the study conducted by Xiang et al., the complete conversion of styrene and nitrobenzene
using methanol as a hydrogen donor was achieved, with good conversions dependent on
the hydrogen donor water ratio [21]. However, relatively large amounts of catalysts were
required, therefore rendering the reaction expensive. This study, amongst others, motivates
the urge to develop cheap, nonprecious metal-based catalytic systems that utilize abundant
active metals [10].

Herein, the use of Sn and Fe-based perovskites (LaFeO3 and LaSnO3) as catalysts in
the catalytic transfer hydrogenation of cinnamaldehyde using glycerol as a hydrogen donor
is reported. Perovskites are thermally and hydrothermally stable integral mixed oxides that
do not easily leach out of the reaction like traditional catalysts for CTH reactions [11,22,23].
They have the formula ABO3 and can be used for various reactions and applications due to
their electrochemical properties and porosity [24]. They have also been utilized in different
applications such as fuel cells, the purification of automobile exhausts, the decomposition
of N2O, reactions involving water gas shifts, photocatalytic water splitting, and chemical
looping combustion reactions [25–30]. To the best of our knowledge, very few studies have
reported using perovskites in CTHs. In these few studies, perovskites have been used in
CTH reactions using isopropanol or methanol as a hydrogen donor, and not the abundant
glycerol [7,21,31]. A recent study has been published that explored the conversion of
furfural-to-furfural alcohol using carbon composites and perovskites. This provided an
alternative route to noble metal catalysts [11,32]. Scheme 1 shows possible cinnamaldehyde
hydrogenation pathways from cinnamaldehyde (1) to cinnamyl alcohol (2) [33,34], hydro-
cinnamaldehyde (3), [33,35] and the further hydrogenation of (1) and (2) to form phenyl
propanol (4) [36,37].

Studies have also been reported on tuning the acid-base properties of the catalysts
to affect the reaction’s progress. It has been proven that acidity affects selectivity in CTH
reactions, whereas basicity affects the percentage conversion of the catalysts [11]. The acid-
base properties of perovskites are easily tunable due to the possibility of metal substitution
on the B site of the ABO3 system. This tunability leads to catalysts, where fine-tuning of the
redox properties is possible and is earmarked as alternatives to the depletion of expensive
precious metals. Furthermore, cinnamaldehyde occurs naturally in cinnamon bark and can
be converted into numerous chemical products with many applications. This study aims to
hydrogenate cinnamaldehyde into cinnamyl alcohol using Sn and Fe-based perovskite as
heterogeneous catalysts.
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2. Results and Discussions
2.1. Catalyst’s Characterization

Figure 1 shows the p-XRD patterns that correspond to the SnO2 and perovskite ABO3
lattice structures. These results show the main phases of SnO2, LaFeO3, and LaSnO3, prov-
ing the successful synthesis of these materials. The LaFeO3 perovskite pattern corresponds
to the perovskite structure reported by Xiao et al., with the characteristic peak (CK) around
32.5◦ (2θ) [11]. Herein, the peak at 32.2◦ (2θ) corresponds to the (121) crystal face. In addi-
tion, none of the peaks observed were assignable to the individual La or iron oxide, which
signifies the existence of the solid material produced to be perovskite phases only [11]. For
the LaSnO3 perovskite, the characteristic peak (CK) appeared at 33◦ (2θ), which proved the
presence of the perovskite lattice. The perovskites had patterns that correspond to the per-
ovskite structure reported by Xiao et al. [11]. The peaks observed correspond to the Miller
indices shown in Figure 1 and are like those reported in previous studies [38–40]. Reference
cards with JCPD numbers 04-002-0289, 04-055-6880, and 01-088-0641 were obtained for
SnO2, LaSnO3, and LaFeO3, respectively from the High Score Plus software. Peaks around
25–27◦ (2θ) in the diffractograms indicate residual silica from the synthesis procedure.

The porous structures of the KIT-6 template and the catalysts were confirmed using the
N2 adsorption–desorption measurements, as illustrated in Figure 2. All catalysts showed
type IV isotherms with hysteresis loops, typical of mesoporous materials. The BET surface
areas, pore volumes, and pore diameters are summarised in Table 1. All materials had
a narrow pore size distribution showing the uniformity of the porous structure of these
materials. These pore sizes range from 4 to 13.1 nm, indicating the mesoporous range [15].
The KIT-6 was found to have a high surface area of 625 m2/g. This value is in the range
of other KIT-6 materials previously reported [41,42]. The perovskites also have large and
acceptable surface areas ranging from 135 to 687 m2/g, typical of nanocast materials.



Catalysts 2022, 12, 241 4 of 16Catalysts 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. XRD patterns of LaFeO3, LaSnO3 (vertically translated by 5661.3 a.u.), and SnO2. 

The porous structures of the KIT-6 template and the catalysts were confirmed using 
the N2 adsorption–desorption measurements, as illustrated in Figure 2. All catalysts 
showed type IV isotherms with hysteresis loops, typical of mesoporous materials. The 
BET surface areas, pore volumes, and pore diameters are summarised in Table 1. All ma-
terials had a narrow pore size distribution showing the uniformity of the porous structure 
of these materials. These pore sizes range from 4 to 13.1 nm, indicating the mesoporous 
range [15]. The KIT-6 was found to have a high surface area of 625 m2/g. This value is in 
the range of other KIT-6 materials previously reported [41,42]. The perovskites also have 
large and acceptable surface areas ranging from 135 to 687 m2/g, typical of nanocast ma-
terials. 

 
Figure 2. Nitrogen sorption isotherms for the synthesized catalyst materials (a) and their corre-
sponding pore size distributions (b). The LaSnO3 isotherm was vertically translated by 214.7cm3/g 
and that for KIT-6 by −3.6 cm3/g. 

Figure 1. XRD patterns of LaFeO3, LaSnO3 (vertically translated by 5661.3 a.u.), and SnO2.

Catalysts 2022, 12, x FOR PEER REVIEW 4 of 17 
 

 

 
Figure 1. XRD patterns of LaFeO3, LaSnO3 (vertically translated by 5661.3 a.u.), and SnO2. 

The porous structures of the KIT-6 template and the catalysts were confirmed using 
the N2 adsorption–desorption measurements, as illustrated in Figure 2. All catalysts 
showed type IV isotherms with hysteresis loops, typical of mesoporous materials. The 
BET surface areas, pore volumes, and pore diameters are summarised in Table 1. All ma-
terials had a narrow pore size distribution showing the uniformity of the porous structure 
of these materials. These pore sizes range from 4 to 13.1 nm, indicating the mesoporous 
range [15]. The KIT-6 was found to have a high surface area of 625 m2/g. This value is in 
the range of other KIT-6 materials previously reported [41,42]. The perovskites also have 
large and acceptable surface areas ranging from 135 to 687 m2/g, typical of nanocast ma-
terials. 

 
Figure 2. Nitrogen sorption isotherms for the synthesized catalyst materials (a) and their corre-
sponding pore size distributions (b). The LaSnO3 isotherm was vertically translated by 214.7cm3/g 
and that for KIT-6 by −3.6 cm3/g. 

Figure 2. Nitrogen sorption isotherms for the synthesized catalyst materials (a) and their correspond-
ing pore size distributions (b). The LaSnO3 isotherm was vertically translated by 214.7cm3/g and
that for KIT-6 by −3.6 cm3/g.

Table 1. Summary of nitrogen sorption measurements of the synthesized catalysts and comparison
with the literature.

Entry Catalyst Surface Area
(m2/g)

Pore Volume
(cm3/g)

Pore Diameter
(nm) Reference

1 KIT-6 (SiO2) 625 0.67 4.3

This work
2 LaFeO3 135 0.37 11.0
3 LaSnO3 687 1.91 9.9
4 SnO2 32 0.11 13.1

5 KIT-6 (SiO2) 772 0.74 5.2 [15]
7 LaFeO3 92 0.33 7.7 [42]
8 SnO2 50 0.06 5.3 [43]
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Analysis with microscopes was utilized to further confirm that the synthesized
materials are porous. The TEM and SEM were used to evaluate the porous network
and morphology of the materials. The TEM results show that the catalysts have porous
channels that resemble the pores of the KIT-6 template, as shown in Figure 3a,b. The SnO2
appears as small particulates, as shown in Figure 3c. It is important to note that, unlike the
LaFeO3 and LaSnO3, which were prepared via the nanocasting method, SnO2 was prepared
using the sol-gel technique, hence the striking difference in structural properties.

The SEM analysis revealed that perovskites have spherical shapes more dominantly
than SnO2, which has various shapes. It was also observed that the materials had pores
on their surfaces which further confirmed their porous nature. These results are clearly
shown in Figure 3d–f. The EDS results, shown in Figure 3j–l, complement the p-XRD
results, as La, Fe, Sn, and O cations were the only atoms that formed the catalysts. These
were also in line with the SEM elemental mapping results shown in Figure 3g–i. Both the
XRD and EDS showed the existence of silica. This minute amount of silica derives from
the template used in nanocasting. The Cl comes from the stannous chloride precursor. It
was also noted that there were Na elements picked up on the perovskite catalysts from
elemental mapping. These Na elements are attributed to the sodium hydroxide that was
used to wash the template. The amount of these ions is insignificant and does not alter the
catalytic activities of the catalysts.

All the as-synthesized perovskites showed relatively good thermal stability. These
materials were thermally stable, showing no fragmentation patterns below 500 ◦C. The
significant loss of weight is the loss of strongly adsorbed water molecules from 100 ◦C.
In the perovskite samples, the degradation at 500 ◦C is attributed to the removal of the
residual hydroxyl group from the decomposition of citric acid (C6H8O7). In contrast, the
destruction of the SnO2 material is seen as early as 400 ◦C (see Figure 4a).

On the other hand, the chemical properties of the catalysts were compared to the
activity and selectivity trends in the acid-base properties of the catalyst. The distribution
of basic sites appears similar for all the catalysts (Figure 4b and Figure S2 in ESI). All the
catalysts show relatively small amounts of weak basic sites. At the same time, they also
possess a considerable amount of strong basic sites shown by the desorption of carbon
dioxide at lower and higher temperatures, respectively. The basicity of the catalysts is
tabulated in Table 2.

Table 2. A catalyst comparison study of the prepared perovskites with previously reported catalysts.

Entry Catalyst Reaction
Time (h)

Basicity
(a.u)

Temperature
◦C % Conv. (a) HCAL %

Selec. (b) Reference

1 LaFeO3 6 0.369 180 99.0 82.1
This
work

2 LaSnO3 6 0.636 180 99.3 4.9
3 SnO2 6 0.324 180 98.7 22.1

4 LaFeO3 3 - 80 21.8 100 [15]

5 Ru0.05Sn0.25
Ti0.7O2/Ti - - 30 86.2 19.3 [44]

(a) Conversion =
moles of cinnamaldehyde consumed
moles of cinnamldehyde in the feed × 100, (b) Selectivity =

moles of hydrocinnamaldehyde produced
total number of moles of products × 100. Mole

Ratio of cinnamaldehyde: glycerol = 1:10 with glycerol volume kept constant, and in excess, catalyst amount = 0.05,
HCAL is hydro-cinnamaldehyde.
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2.2. Catalytic Performance
2.2.1. Reaction Optimization

Increasing the catalyst surface area in the reactor proved that the reaction is a surface
reaction. The substrate conversion increased with increasing surface area. The rapid
increase in conversion at lower catalyst loading indicates a surface reaction governed by
the active catalyst sites. This region of increasing conversions with an increase in surface
area is termed the kinetic zone. In contrast, the leveling-off in conversion at high catalyst
loading is pronounced and can be attributed to severe mass-transport limitation. Figure 5a
shows different reaction zones as a function of catalyst loading.

Once the correct amount of the catalyst needed to avoid the possibility of performing
the reaction in mass-transport limited conditions is determined, other reaction parameters
can be optimized. In the ratio of substrate to sacrificial alcohol, the glycerol did not
impact the percentage conversion of the substrate (see Figure 6a). Following this, in the
time and temperature variations, an initial increase in conversions was observed up to
120 ◦C. Beyond this point, there was no significant change observed in the conversions,
as illustrated in Figure 6b. The increase in temperature increased the kinetic energy for
the reaction to occur and influenced the substrate adsorption and product desorption,
respectively. Similarly, a gradual increase in conversions was observed up to 3 h with
leveling-off thereafter (see Figure 5b). A maximum temperature of 120 ◦C and a reaction
time of 3 h were found to be the optimum conditions.

The formation of multiple products during the catalytic transfer hydrogenation of
cinnamaldehyde is an issue that has been persistent for some time. With cinnamaldehyde,
the formation of cinnamyl alcohol is favored because the α position is more thermodynami-
cally favored [15]. Our perovskite catalytic systems favored hydrogenation at the alpha
position and the beta site to form cinnamyl alcohol and hydro-cinnamaldehyde. Although
all the catalysts showed good catalytic activity of up to 99% conversions, the selectivity was
not maximum. A notable distinction in selectivity trends is the high selectivity towards
hydro-cinnamaldehyde by the Fe-containing perovskite.

In comparison, the Sn-containing catalysts favor the formation of cinnamyl alcohol.
This trend can be attributed to the basicity and acidity of the catalysts. The more ba-
sic catalyst would result in high conversions due to the acceptance of protons from the
hydrogen donor to its surface. However, the acidity would increase the selectivity of
hydro-cinnamaldehyde because there is higher stabilization of the carbonyl compound. In
addition, there seems to be a gradual increase in selectivity towards hydro-cinnamaldehyde
with time up to 3 h. Thus, the optimal reaction time of 3 h corresponds to the highest
selectivity towards hydro-cinnamaldehyde alcohol. Table 2 shows the catalytic activity of
the synthesized materials and selectivity trends.
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2.2.2. Recyclability Tests

To ensure the sustainability, environmental safety, and cost-efficiency of the catalysts, it is
vital to recover them after numerous catalytic cycles. The catalysts showed good conversions
up to five catalytic cycles, as shown in Figure 7d,e. There were no significant changes in the
morphology of the materials, as shown in Figure 7a–c. Furthermore, there was no major
loss of catalyst mass, with the maximum loss being 15%, as shown in Table S1. The lowest
conversion obtained was 79%. Since there were no major changes in the starting material’s
percentage conversion, the catalyst integrities are validated as the reaction conditions do
not readily deactivate them. This integrity is evidenced by the insignificant change in the
normalized mass conversion shown in Figure 7e.
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2.3. Proposed Reaction Mechanism

The efficiency of the catalyst has been reported to be dependent on the basicity of the
catalyst. However, both La and Fe oxides were previously active in CTH reactions, with
low selectivity due to their alterable oxidation states (Fe3+/Fe4+) and weak acidity. Better
conversions are expected when using perovskites such as LaFeO3 due to the synergy of La
and Fe cations. On the other hand, secondary alcohols have been proven to release more
hydrogens than primary alcohols [45]. The secondary alcohol moiety of glycerol is believed
to be the position from which hydrogen is abstracted first, leading to a ketone moiety on
the central carbon (Scheme 2).
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Furthermore, the availability of enough active sites on the perovskite surface enables
the adsorption of glycerol molecules on adjacent sites, triggering an etherification of the
two adjacent adsorbed glycerol molecules. It is important to note that the formation of such
molecules has been encountered in heterogeneous catalysis. The dimerization reaction
usually occurs in the presence of acid/base catalysts in solvent-free conditions [46,47]. The
diglycerol molecules can be formed either in cyclic, linear, or branched form depending
on the catalyst type, temperature, and reaction time [48]. The demand for the linear
diglycerol formed in this work has increased by more than 50% from 2012 to 2022 [47].
The formation of two products in one pot renders the La- and Sn- perovskites versatile
catalysts. Scheme 2 shows the conversion of glycerol after the hydrogenation reaction is
complete. Schemes 3 and 4 illustrate the products of catalytic transfer hydrogenation and
the proposed mechanisms for the formation of the products.
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The mechanism proposes that the hydroxyl group of the glycerol adsorbs to the
cationic centers of the perovskite, either the La3+ or the Fe3+/4+. At that time, the hydrogen
atom of the hydroxyl group interacts with the adjacent oxygen anions on the perovskite’s
lattice structure (Schemes 3 and 4). The mode of adsorption of the cinnamaldehyde
molecule on the substrates determines the product distribution. Since both were formed,
we propose the adsorption of cinnamaldehyde to be a dual-mode where it adsorbs via both
the carbonyl (Scheme 4) and alkene moieties (Scheme 3). The mechanism was adopted
from a study conducted by Ping et al. with the variation in the etherification of glycerol and
the incorporation of the use of vacant sites from the catalysts [11]. The sacrificial alcohol
also adsorbs on the surface, and once it is near another absorbed glycerol molecule, the
etherification reaction occurs, Scheme 4b. From Scheme 3a, the formation of cinnamyl
alcohol is depicted. It is important to note that the same principle applies for hydro-
cinnamaldehyde with the double bond attacked instead of the carbonyl compound (see
Scheme 4a). A control reaction was run to determine the formation of the diglycerol
from two glycerol molecules. It was determined that the dimerization of glycerol to
form diglycerol through etherification was significantly low, with 22.8% conversion and a
selectivity of 1.2% towards diglycerol and 98.8% towards dihydroxyacetone. Hence, we
propose that most of the diglyceride was formed using the mechanism in Scheme 3b instead
of Scheme 4b.
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The GC-MS confirmed the formation of the products and bi-products, as shown in
Figure S1 in ESI. As per the GC-MS library, the hydro-cinnamaldehyde, cinnamyl-alcohol,
and diglycerol were matched by 77%, 79%, and 78% respectively. The diglycerol mass
spectra displayed fragmentation patterns with losses of CH3CO and C4H9O3 equivalent
to 43 and 105 amu. Hydro-cinnamaldehyde had peak fragmentations of 91, 105, and
78 amu with losses of 43 amu (CH2CHO), the highest. Cinnamyl alcohol had losses of
42 amu corresponding to C2H2O the highest. The products were further confirmed by
proton 1H-NMR spectra (Figure S3 in ESI) for the reactions represented in Table 2. The
characteristic peaks for the substrate and products are cinnamaldehyde (C7; 7.6 ppm),
cinnamyl alcohol (C9; 4.4 ppm), and hydro-cinnamaldehyde (C7 and C8; 2.8 and 2.9 ppm).

3. Experimental
3.1. Utilized Reagents

Most reagents used for this study were purchased from Sigma Aldrich (Johannesburg,
South Africa). These are Pluronic, P-123 (Poly (ethylene glycol)-block-poly (propylene
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glycol)-block- poly (ethylene glycol), citric acid (HOC(COOH)(CH2COOH)2) (99.5%), lan-
thanum(III) nitrate hexahydrate (La(NO3)3·6H2O) (99.99%), tetraethyl orthosilicate (TEOS)
(≥99.0%), nitric acid (HNO3) (70%), iron(III) nitrate nonahydrate (Fe(NO3)3·9H2O) (98%),
internal standard (n-decane), cyclohexane, and standards such as hydro-cinnamaldehyde,
cinnamyl alcohol (COL), cinnamaldehyde (CAL) and hydro-cinnamaldehyde, and cin-
namyl alcohol (HCAL). Hydrochloric acid (HCl) (32%) and ethanol (99.8%) were purchased
from Associated Chemical Enterprise (ACE), (Johannesburg, South Africa). Butanol and
sodium hydroxide pellets (NaOH) were purchased from Rochelle Chemicals, (Johannes-
burg, South Africa) Milli-Q (18 MΩ·cm) water was utilized in all experiments. All chemicals
were of analytical grade and used as received.

3.2. Catalyst Preparation
3.2.1. Synthesis of the Hard-Template and Perovskites (LaSnO3 and LaFeO3)

This synthesis was performed in two steps, the synthesis of KIT-6 and then the synthe-
sis of the perovskites. The sol-gel method was used to synthesize the mesoporous silica
(KIT-6), which was later used as a template to synthesize the perovskites via nanocast-
ing, known as the hard-template method [15]. For the synthesis of the template, exactly
9.00 g of the surfactant (P-123) was dissolved in 330 mL of water and 17.5 mL of HCl under
vigorous stirring. After that, 9 mL of the co-surfactant (butanol) was added to the mixture
and stirred for an hour at 35 ◦C. Thereafter, 19.4 mL of the silicon precursor (tetraethyl
ortho-silicate; TEOS) was added into the reaction mixture in a volume ratio of 2.16:1 to the
butanol. Subsequently, the mixture was left to stir at 35 ◦C before being aged at 80 ◦C for
48 h. The resulting white powder was then filtered and dispensed in a mixture of ethanol
and HCl in a 50:30 (v/v) ratio and was calcined at 550 ◦C to remove the surfactants.

The silicon-based soft-template was then used to synthesize the lanthanum-based
perovskites using citric acid as an anchor of the two cations, A and B, of the perovskite
ABO3 structure [15]. Initially, the citric acid solution was prepared by dissolving 2.60 g of
the citric acid into 40 mL of ethanol. The addition of both the La and metal salts (iron(III)
nitrate nonahydrate and stannous chloride) was performed for this solution. In a separate
beaker, 4.00 g of the KIT-6 template was dispersed in 40 mL deionized water into which the
citric acid–metal salts solution was added. The mixture was stirred overnight before the
removal of the solvent and dried at 80 ◦C for 24 h. Thereafter, the product was subjected
to heating cycles, calcined first at 500 ◦C for 4 h and 700 ◦C for 6 h to form the template
containing the perovskites. The template was removed with 2 M hot NaOH. The product
was washed with ethanol and water three times and dried overnight at 80 ◦C.

3.2.2. Synthesis of SnO2

The synthesis of the SnO2 was ensured by following the procedure stated in previous
studies [38]. Similar to the synthesis of KIT-6, the appropriate masses and volumes of the
surfactant P-123 (20.00 g), co-surfactant (butanol 120 mL), and 40.00 g of SnCl2 were mixed
at room temperature until everything dissolved. Thereafter, 13.56 mL of 70% HNO3 was
added dropwise to the mixture with continuous stirring over 3 h. Afterward, the gel-like
material was placed in an oven to remove the solvent at 120 ◦C. The resulting solid was
subjected to washing cycles with ethanol before heating cycles at 150 ◦C for 12 h and 350 ◦C
for 6 h, cooling in-between, and removing all the nitrate ions and the surfactants.

3.3. Catalyst Characterization

The surface and porosity analysis of the as-synthesized catalysts was done by the
Brunauer–Emmett–Teller (BET) method using a Micromeritics ASAP 2460 setup (Micromet-
rics, Norcross, GA, USA). The determination of the surface area of the catalysts with the
aid of the multiple points measured during the analysis was achieved. The analysis was
conducted at −196 ◦C. Both the N2 adsorption and desorption isotherms were obtained.
Before analysis, the samples were degassed under a vacuum for 12 h at 90 ◦C to remove all
adsorbed species.
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To study the morphology of the catalysts, the samples were dispersed in methanol
and sonicated for 25 min. Thereafter, the samples were dispersed onto carbon-coated
copper grids in preparation for analysis with transmission electron microscopy (TEM).
The Joel-Jem 2100F microscope (Jeol, Tokyo, Japan) equipped with a field emission gun
operating at 200 kV was used.

Prior to p-XRD analysis, the samples were pulverized into fine powder for a more
effective analysis. The diffraction patterns were measured on a Philips X’ Pert Pro p-XRD
instrument from (PANalytical, Almelo, EA, Netherlands) using scan speeds of 10◦/min,
and the data captured was 0.02◦ resolved. The samples were analyzed using a Cu K α1
radiation source with a wavelength of 1.54 nm. The operating conditions were a voltage and
current of 40 kV using 40 mA, respectively. The low angle measurements were conducted
between 0.5 and 10◦, while the wide-angle was at 10–90◦ (2θ). Furthermore, the High Score
Performance (HSP) software (Ver 4.9, Malvern PANalalytical, WO, UK, 2020) was used to
obtain crystallographic information.

A Tescan Vega 3LMH scanning electron microscope (SEM) (Tescan, Kohoutovice, Brno,
Czech Republic) was used for further morphological studies after coating the samples
using a carbon-coated sputter. The EssenceTM computer software (Tescan, Kohoutovice,
Brno, Czech Republic) was used for further analysis using a magnification of 20–200 nm.
The EDS was also used for the elemental mapping of the catalysts using an Oxford detector,
and the obtained results were then compared with those from p-XRD.

The stability of the catalyst was determined by thermogravimetric analysis (TGA).
This test was performed using a TA SDT Q600 thermal analyser (TA Instruments, New
Castle, DE, USA). The temperature ranged from 25 ◦C to 1000 ◦C with a heating rate of
10 ◦C/min. The analysis was performed in air.

The reducibility of the catalyst was determined using hydrogen temperature-programmed
reduction (H2-TPR) on a Micro metrics AutochemII chemisorption analyser (Micrometrics,
Norcross, GA, USA). The temperature was ramped from 25 ◦C to 900 ◦C at a heating rate of
10 ◦C/min to record the reduction profiles. The reduction was ensured using a 10:90 ratio
of hydrogen and argon. The same instrument was used for the temperature-programmed
desorption studies using a mixture of ammonia and helium with a ratio of 10:90 and a carbon
dioxide to helium mixture of the same ratio under the same conditions as analysis gases.

3.4. Catalytic Studies

All catalytic evaluations were performed on a parallel reaction carousel station
equipped with temperature and stirring speed controllers. Into the carousel tubes equipped
with magnetic stirrer bars, the required volumes of glycerol, cinnamaldehyde, internal
standard (decane), and 0.075 g of the catalysts were added. Various reaction conditions
for catalytic investigations such as temperature, catalyst amount, and the ratio of glyc-
erol to cinnamaldehyde were set accordingly. Temperature conditions were varied from
80 to 200 ◦C. The catalyst amounts were varied from 45 to 95 mg. In addition, the ratio
of glycerol to cinnamaldehyde was varied. After completing the reaction, the contents
were analyzed using a Shimadzu GC-FID 2010 (Shimadzu, Johannesburg, South Africa)
equipped with Restek Rtx-5 capillary column (30 m length and 0.25 µm diameter) and a
flame ionization detector.

3.5. Recyclability Tests

To evaluate the reusability and integrity of the catalyst, recyclability tests were run
using reaction conditions of approximately eighty percent conversion. This test was
performed for all the catalysts to evaluate which was the most stable and recovered catalyst.
After each run, the reaction mixture was washed with ethanol and centrifuged at 3000 rpm
for 15 min prior to drying under a vacuum at 80 ◦C.
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4. Conclusions

Perovskites were successfully employed in the catalytic transfer hydrogenation of
cinnamaldehyde to produce hydro-cinnamaldehyde and diglycerol in the same pot. The
basicity of the catalysts and the surface area was found to impact the hydrogenation of the
substrates. Interestingly, the selectivity for hydro-cinnamaldehyde was more than cinnamyl
alcohol over the less basic catalyst because of the preferred binding of the carbonyl group
compared to the alkene group onto the vacant site. The hydrogen donor was in excess as
compared to cinnamaldehyde to drive the reaction forward. The dimerization of glycerol
to form diglycerol was attributed more to the reaction of dihydroxyacetone with another
glycerol molecule than from two glycerol molecules. The catalysts were stable under the
reducing conditions for up to five cycles without significant changes in their structure
under these reducing conditions. Overall, LaFeO3 was the best catalyst for the conver-
sion of cinnamaldehyde to hydro cinnamaldehyde, whereas LaSnO3 was optimum for
cinnamaldehyde to cinnamyl alcohol. We recommend optimizing the perovskite catalyst’s
A and B site cations for better selectivities and higher conversions of cinnamaldehyde.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12020241/s1, Figure S1. Mass spectrum of the major products
during the cinnamaldehyde catalytic transfer hydrogenation reaction, that is, cinnamyl alcohol,
cinnamaldehyde, and diglycerol, respectively. Figure S2. Carbon dioxide-temperature-programmed
reduction profiles for (a) LaFeO3, (b) LaSnO3, and (c) SnO2 at various temperature ramping. Figure
S3: A stack of 1H-NMR from a product mixture of CAL, COL, and HCAL. Table S1. Mass loss and
selectivity variations during different reaction cycles for perovskite and SnO2 (Recyclability results).
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