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Text S1 DFT Calculation Method. 

The density functional theory (DFT) calculations were performed using the 

Vienna Ab initio Simulation Package (VASP) with plane wave basis sets and 

projector-augmented wave (PAW) pseudopotentials [1-3]. The generalized gradient 

approximation (GGA) of the Perdew–Burke–Ernzerhof functional (PBE) with 

Hubbard U corrections was used for all geometry optimizations and energy 

calculations [4, 5]. The planewave cut-off energy was set to 500 eV and U=1.6 eV [6]. 

For calculations of bulks, the (3 × 3 × 3) Monkhorst−Pack meshes were used for the 

k-point samplings [7]. To study the slab model, the thickness of the vacuum layer 

along the z-direction was set to 15 Å to ensure negligible interactions between the 

slab surfaces due to periodic boundary conditions. Calculation convergence thresholds 

for the electronic structure and forces were set to be 10−5 eV and 0.02 eV Å−1, 

respectively. The adsorption energy (Eads) of PMS molecules on facet-engineered α-

MnO2 was calculated as follows [8]: 

𝐸௔ௗ௦ = 𝐸௧௢௧௔௟ − 𝐸௕௔௦௜௖ − 𝐸௠௢௟௘௖௨௟௘      (1) 

where 𝐸௔ௗ௦  means the adsorption energy of PMS molecule, 𝐸௧௢௧௔௟  means the total 

energy of the surface with PMS, 𝐸௕௔௦௜௖ represent the total energy of the surface 

without PMS, and 𝐸௠௢௟௘௖௨௟௘ is the energy of PMS. 

  



3 

 

Text S2 Reagents used in the experiment. 

p-Chloroaniline (PCA, > 99.5%), 5,5-Dimethyl-1-pyrroline N-oxide (DMPO, 

97.0%), Potassium iodide (KI, > 99.0%), 4-Hydroxy-2,2,6,6-tetramethylpiperidine 

(TEMP, > 99.0%), tert-butanol (TBA, > 99.0%), furfuryl alcohol (FFA, > 98.0%), 

methanol (MeOH, HPLC), sodium thiosulfate pentahydrate (Na2S2O3•5H2O, > 

99.0%), sodium bicarbonate (NaHCO3, >99.0%), ethanol (EtOH), Rhodamine B (RhB, 

AR), ammonium oxalate monohydrate ((NH4)2C2O4•H2O, > 99.8%), ammonium 

sulfate ((NH4)2SO4, > 99.0%), manganese sulfate monohydrate (MnSO4•H2O, > 

99.0%), ammonium persulfate ((NH4)2S2O8, > 98.0%), humic acid (HA, ≥ 90.0%), 

phenol (> 99.0%), p-Benzoquinone (p-BQ, > 99.0%), 4-Mercaptobenzoic acid (> 

90.0%) were purchased from Shanghai Aladdin Chemistry Inc., China. Imidacloprid 

(IMI, AR) was purchased from Yuanye Biotechnology Company (Shanghai China). 

Sodium hydroxide (NaOH, ≥ 98%), sodium nitrate (NaNO3, > 99.0%), sodium 

perchlorate (NaClO4, > 99.0%) were purchased from Tianjin Kemiou Chemical 

Reagent Co., Ltd., China. Potassium permanganate (KMnO4, ≥ 99.5%), potassium 

nitrate (KNO3, > 99.0%), sulfuric acid (H2SO4, ≥ 98%) were purchased from 

Guangzhou chemical reagent factory. Tetracycline hydrochloride (TC, > 96.0%), 

potassium monopersulfate triple salt (PMS, > 42%), sodium sulfate anhydrous 

(Na2SO4, > 99.0%), sodium nitrite (NaNO2, > 99.0%) were purchased from Macklin 

Biochemical Technology Co., Ltd, China. Sodium chloride (NaCl, > 99.5%) was 

purchased from Tianjin Damao Chemical Reagent Factory, China. Deionized water 

was made by Milli-Q System and used for all experiments. 

  



4 

 

Text S3 Experimental sample preparation. 

TOC sample preparation. During the degradation experiment, 5 mL of the 

reaction filter liquor was taken at given time intervals and added to a 50 mL 

centrifuge tube containing 10 mL of NaNO2 (50 mM) for the TOC test. 

EPR sample preparation. For the radicals capture test, 0.5 mL of 2 mol/L DMPO 

was added to 9.5 mL of the reaction mixture, and samples were taken for EPR 

analysis after 3 min. For the singlet oxygen capture test, 0.5 mL of 200 mmol/L 

TEMP was added to 9.5 mL of the reaction mixture, and samples were taken for EPR 

analysis after 3 min. 

Cyclic voltammetry (CV) curves. 10 mg of catalyst was mixed with 1 mL of 

ethanol, then 0.5 mL of Nafion solution was added. To completely disperse the 

catalyst into liquid, the mixture was sonicated for 15 min. Then, 5 μL of the mixed 

solution was dropped on the surface of the polished glassy carbon electrode and 

allowed to dry naturally. Silver/silver chloride electrode (Ag/AgCl) and Pt wire 

electrode were used as reference electrode and counter electrode, respectively. CV 

curves were measured at the potential from 0.0 - 1.5 V (vs. Ag/AgCl) with a scanning 

rate of 50 mV/s with 100 mmol/L Na2SO4 as supporting electrolyte. 

Sulfhydryl modification steps. 25 mg of catalyst was dispersed in 100 mL of 10 

mmol/L 4-Mercaptobenzoic acid under magnetic stirring for 24 h [9]. FTIR spectra 

were used to verify whether the modification was successful. 
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Table. S1. Properties of the three MnO2 catalysts 

Sample SBET/(m2/g) 
Total pore 

volume/(cm3/g) 
Average pore 
diameter/(nm) 

100-MnO2 67.8 0.56 32.8 

110-MnO2 104.9 0.69 26.3 

310-MnO2 116.0 0.53 18.2 

 

Table. S2. Chemical and surface compositions of facet engineered MnO2 before and 

after the reaction 

samples 
Mn2+ 

(%) 
Mn3+ 
(%) 

Mn4+ 
(%) 

Olatt 
(%) 

Oads 
(%) 

Mn2++Mn3+/Mn4+ Oads/Olatt AOSa 

100-MnO2 7.05 36.57 56.38 65.19 34.81 0.77 0.53 3.53 

110-MnO2 7.43 37.95 54.62 70.20 29.80 0.83 0.42 3.55 

310-MnO2 6.55 37.66 55.79 69.19 30.81 0.79 0.45 3.55 

310-MnO2 
(After reaction) 

7.68 35.03 57.29 68.67 31.33 0.75 0.46 3.57 

aThe average oxidation state (AOS) of Mn was calculated by the equation AOS=8.956-1.126ΔE (ΔE is 

the binding energy difference of Mn 3s) [10]. 

 

Table. S3. Analytical details for organic compounds by HPLC

Organics Mobile phase 
(A/B) 

Ratio of A/B 
(v/v) 

Detective wavelength 
(nm) 

Flow rate 
(mL/min) 

PCA methanol/H2O 70/30 254 0.7 

phenol methanol/H2O 70/30 270 0.8 

IMI acetonitrile/H2O 70/30 270 0.7 
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Fig. S1 The N2 adsorption/desorption isotherms of the three MnO2 catalysts. 

 

 

Fig. S2 EDS-mapping images of (a) 100-MnO2, (b) 110-MnO2, and (c) 310-MnO2. 

 

 

Fig. S3 (a) Effect of MnO2 dosage in 310-MnO2/PMS system and (b) correlation of the rate 

constants to the MnO2 dosage, reaction conditions: [PCA]0 = 1.0 mmol/L, [PMS]0 = 1.5 mmol/L, 

[MnO2]0 = 0.03-0.3 g/L, without pH adjustment. 
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Fig. S4 The zeta potential curves of the 310-MnO2, test conditions: [MnO2]0 = 0.1 g/L. 

 

Fig. S5 (a) ATR-FTIR spectra demonstrating the PMS complexation on the catalyst surface, 

reaction conditions: [PMS]0 = 60 mmol/L, [MnO2]0 = 4 g/L, without pH adjustment; (b) ATR-

FTIR spectra of 310-MnO2 solid before and after modifying with -SH group. 

 

Fig. S6 TOC removal of PCA degradation with 310-MnO2/PMS system, reaction conditions: 

[PCA]0 = 1.0 mM, [PMS]0 = 1.5 mM, [MnO2]0 = 0.1 g/L, without pH adjustment. 
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Fig. S7 Mass spectra and proposed structure of possible intermediate products. 
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