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Abstract: These days, many countries have a water shortage and have limited access to clean water.
To overcome this, a new treatment is emerging, namely, the photocatalytic processing of greywater.
Photocatalytic processes to remove the organic matter from different greywater sources are critically
reviewed. Their efficiency in degrading the organic matter in greywater is scrutinized along with fac-
tors that can affect the activity of photocatalysts. Modified TiO2, ZnO and TiO2 catalysts show great
potential in degrading organic materials that are present in greywater. There are several methods that
can be used to modify TiO2 by using sol-gel, microwave and ultrasonication. Overall, the photocat-
alytic approach alone is not efficient in mineralizing the organic compounds, but it works well when
the photocatalysis is combined with oxidants and Fe3+. However, factors such as pH, concentration
and catalyst-loading of organic compounds can significantly affect photocatalytic efficiency.

Keywords: photocatalyst; degradation; greywater; pollutants

1. Introduction

Water is becoming scarce in today’s world—over 2 billion people globally experience
water shortage (UN, 2018). The lack of water is due to the increased human population,
expanded industries, economic activities, long-term droughts in arid regions, and water
pollution [1]. Another statement from UNICEF and the World Health Organization (WHO)
reported that about 2.2 billion population globally are experiencing limited access to clean
and uncontaminated water supply. According to the UN, this causes nearly 1000 children
to die every day due to unclean and unsanitised water. In general, food supply, sustainable
development, human health, and ecosystems health are essentially dependent on water
availability at suitable quality [2]. Since people generally utilize water supply from surface
and groundwater, there is a water shortage in these two sources. Thus, an alternative way
is required to reduce surface and groundwater consumption. Several practical techniques
and technologies have been figured out to solve the water needs [3]. Reusing greywater is
an alternative option to optimize water efficiency because this resource is always available.
Hence, reusing greywater is a better choice for more sustainable water use [4]. Greywater
is defined as any form of domestic wastewater generated from hand basins, kitchen sinks,
laundry and baths except wastewater from toilets (toilets and urinals). Reusing greywater
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is an alternative way to replace surface and groundwater. Domestic water usage is com-
paratively high [4]. Other than that, the concentration of nutrients, pathogens, harmful
chemicals and organic load in greywater is lower than in municipal and industrial efflu-
ent [5]. Domestic wastewaters are segregated into two categories, namely, toilet wastewater
and greywater [6]. However, the discharged greywaters usually contain surfactants (an-
ionic, cationic and amphoteric), which originate from shampoos, soaps, detergents and
dyes that need to be treated [4]. Greywaters also contain salts, food particles, minerals,
dissolved organic matter, and personal care products [1]. However, the amount, quality
and content in greywater can be affected by different factors such as the country, social
and cultural behaviour, lifestyle, personal activities, age distribution, living conditions and
cleaning items used at home [6]. Therefore, prior to reuse, greywaters must be treated to
remove the harmful substances and pathogens to make them safe for human consumption.

The key issue in greywater treatment is to reduce degradable organic compounds [3].
A new sustainable treatment technology is required with low maintenance costs and high
treatment efficiency or robust technology to remove recalcitrant organic compounds from
greywater to eliminate the possible environmental and public health hazards. These objec-
tives come with innovative wastewater treatment technologies from advanced oxidation
process (AOPs) particularly through a photocatalytic process [3]. Photocatalytic treatment
is an evolving technology used to eliminate pollutants present in greywater. Many pho-
tocatalyst types are used for removing the contaminants. Recently, semiconductor-based
photocatalysts have gained attention [3]. TiO2 and ZnO semiconductor-based photocata-
lysts are widely applicable for the treatment. Photocatalysis activity occurs when a light
source interacts with the semiconductor surface. The irradiation of UV light on a semi-
conductor surface will produce highly reactive hydroxyl radicals. The hydroxyl radical
will react with the organic molecules to be degraded into water, mineral acids and carbon
dioxide [3]. Since the photocatalytic process is operated with the use of solar or UV light, it
reduces the electrical power usage and running cost and has fewer operating constraints [6].
This technology can be categorised as highly environmentally friendly and sustainable
treatment technology since it is a “zero” waste system [7].

In this study, different types of photocatalytic systems used for the mineralization of
organic compounds in greywater are reviewed along with their photocatalytic efficiency
in degrading organic materials. Various greywater sources are analyzed by looking into
the factors that affect the photocatalyst in degrading the organic compounds. The pho-
tocatalytic efficiency in degrading the organic compounds is related to the physical and
chemical parameters.

2. Characteristics and Compositions of Greywater

The greywater composition differs widely based on its sources, such as greywater from
baths, kitchen or laundry and by the local water quality. Figure 1 shows the characteristics
of different sources of greywater. Numerous pollutants are present in greywaters such as
acidic and alkaline substances, heavy metals, oil and grease, suspended dissolved solids,
fats and synthetic chemicals [8]. Greywaters are also sometimes classified according to high
pollutant loads (HGW) or low pollutant loads (LGW). The high pollutant loads category
comprises greywaters from kitchen and laundry because they are highly concentrated
compared to other greywater sources. In contrast, the low pollutant loads category includes
less contaminated greywaters. Still, some researchers consider kitchen greywater as LGW
due to highly degradable nutrients and organic matter [9].

2.1. Greywater Quality

Domestic water consumption differs between nations based on geographical location,
facilities and livelihoods. This causes greywater generation to be highly varied [10]. Table 1
shows the quantity of greywaters generated in several countries. The greywater volume
in-household varies every day with the highest amounts usually generated before or af-
ter regular working hours [9]. In the case of geographical location, greywater quantity
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will often differ seasonally. A high volume of bathroom greywater is generated during
hot seasons, while low greywater volume is generated during cold seasons [11]. Accord-
ing to the literature, the typical volume of greywater varies between 90 and 120 L/p/d
(litre/person/day) depending on living standards, lifestyles, customs and habits, popula-
tion structures (age, gender), water installations, and water abundance. On the other hand,
greywater volumes can be as low as 20–30 L/p/d in low-income countries with limited
water supplies [10].
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2.2. Standard of Greywater

Greywater is produced as result of the people’s lifestyles, products they use, and
installation’s design, so its generation and characteristics are highly variable [12]. Greywater
types differ based on where it originates, resulting in a wide range of scenarios and
treatment methods. Greywater from bathroom sinks, bathtubs, and showers is called “light
greywater,” while greywater from laundry facilities, dishwashers, and kitchen sinks is
called “black greywater,” and is more contaminated [13,14]. Tables 1 and 2 summarize
the generation in different countries and quality of different greywater based on literature
review [15].

Table 1. Greywater generation reported in different countries.

Location Generation Rate
(Litre/Person/Day) References

Asia 72–225 [10]
Malaysia 225 [16]

Africa and Middle East 14–161 [10,17,18]
Muscat, Oman 151 [19]

Tucson Arizona, USA 123 [20]
Australia 113 [10]

Switzerland 110 [10]
Vietnam 80–110 [21]

Israel 98 [22]
Nepal 72 [23]

Stockholm 65 [24]
Jordan 50 [25]
Mali 30 [26]

Gauteng, South Africa 20 [27]
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Table 2. Physicochemical properties of greywater.

Parameters Kitchen Bathroom Laundry Light Greywater D
Ark Greywater

Temperature 24.4–30.9 ◦C 25.8–29.0 ◦C 22.4–35.0 ◦C 13.4–29.0 ◦C 22.4–35.0 ◦C
pH 5.9–7.4 6.4–8.1 7.1–10 4.90–8.53 5.00–10.33

Total Suspended Solids (mg/L) 134–1300 7–505 68–465 7–793 11–4564
Chemical Oxygen Demand (mg/L) 26–2050 100–633 231–2950 23–1489 58–8071
Biological Oxygen Demand (mg/L) 536–1460 50–300 48–472 20–673 44–3330

Total Nitrogen (mg/L) 11.4–74 3.6–19.4 1.1–40.3 1.3–148.0 0.5–65.0
Total Phosphorus (mg/L) 2.9–>74 0.11–>48.8 ND–>171 0.1–60.0 0.2–187.0

Turbidity (NTU) 210–357 19–375 34–510 13–375 34–510

Although greywater quality varies, an analysis of greywater components by different
groups shows that kitchen, and laundry greywater contains more organics, and physical
pollutants than bathroom and mixed greywater. In terms of the chemical oxygen demand
(COD): biological oxygen demand over 5 days (BOD5) ratios, all types of greywaters
are usually biodegradable [15]. When compared to the recommended COD:N:P ratio of
100:20:1 for sewage discharge, bathroom grey water is nitrogen and phosphorus deficient
because to the absence of urine and faces [28]. The laundry greywater and mixed greywater
are both nitrogen deficient, just like the bathroom greywater. As some detergents are
free from phosphorus, concentrations of phosphorus remain low in water arising from
the laundry. A kitchen greywater usually contains organic matter, suspended solids,
turbidity, and nitrogen. The kitchen greywater, unlike other greywaters, does not lack in
nitrogen or phosphorus, and has a COD:N:P ratio that is close to the ratio suggested by
Metcalf & Eddy [28]. The wastewater released from kitchens is sometimes excluded from
other streams by some authors.

If the greywater is to be treated biologically, however, it is recommended to collect
a small quantity of kitchen greywater along with other streams to achieve an optimal
COD:N:P ratio as most biodegradable organics and nitrogen particulates come from grey-
water released from kitchen-sinks and dishwashers. The microorganism contamination of
bathroom and laundry greywater is lower than that of other greywater streams, according
to the analysis of greywater characteristics by the different categories. Kitchen greywater is
more likely to be contaminated by thermally tolerant coliforms than the other greywater
streams, presumably due to the presence of easily biodegradable organic substances in
large amount. As highlighted by Metcalf and Eddy and Knerr et al., the ratio of C:N:P of
mixed greywater is balanced [28,29].

As highlighted by Jefferson et al. [30], a lack of macronutrients and trace nutrients in
greywater can limit the biological processes’ treatment efficiency. It has been found that
the COD: BOD5 ratio in greywater was around 0.50, indicating good biological treatment
potential [29,31]. They also claimed that the growth of microorganisms was unaffected
by nutrient concentrations. Greywater contained high levels of S, Ca, K, and Al, and
trace nutrient concentrations were close to reported requirements as suggested by other
researchers [32,33]. The absence of kitchen greywater was clearly the cause of the trace
nutrient deficiency as reported by Jafferson et al. [30].

2.3. Greywater Compositions

The water source’s quality and household activities significantly influence greywater
composition. The cleaning items used in the household and the usage amount affect the
number of pollutants substantially. The greywater is a mix of food particles, soaps, oil,
fat, textile fibres, and trace amounts of other chemicals. Other than that, there are also
large quantities of detergents in greywater [10]. However, greywater is usually composed
of biodegradable organics. The quality of greywater can be determined according to its
physical properties and chemical properties by measuring their parameters [9]. Table 3
shows that the greywater properties vary according to the country.
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Table 3. Range/average of physical and chemical parameters of domestic greywater in several countries.

Parameters

Country

Australia
[34] Canada [35] Egypt

[36] France [37] Germany
[38] India [38,39] Israel [38] Jordan [38] Malaysia [40] Palestine

[41]
Sweden

[38] UK [42] USA [38] Yemen [38]

Total Suspended Solids
(mg/L) 74 - 70–202 23–80 - 53.80–788.00 30–298 23–845 19–175 304–4952 - 37–153 17 511

BOD5 (mg/L) 104 - 220–375 85–155 59 17.10–290.00 74–890 36–1240 1.1–309 407–512 425 8.7–155 86 518
COD (mg/L) - 278–435 301–557 176–323 109 43.90–733.00 840–1340 58–2263 16–1103 863–1240 890 33–587 - 2000

pH - 6.7–7.6 6.05–7.96 6.46–7.48 7.6 5.90–8.34 6.3–8.2 6.4–9 6.5–7.2 5.8–8.26 7.8 6.6–7.8 6.4 6
Total Phosporus (mg/L) 3 0.24–1.02 8.4–12.1 - 1.6 0.01–3.84 1.9–48 0.69–51.58 4.5 5.8–15.16 4.2 0.4–0.9 4 -
Total Nitrogen (mg/L) 5.3 - - - 15.2 17.00–28.82 10–34.3 6.44–61 - 111–322 75 4.6–10.4 13.5 -

Total Coliforms
(MPN/100 mL) - - - 1.7 × 108–1.4 × 109 - - - 250–1.0 × 107 - - - 1.8 × 103–2.2 × 107 - -

Faecal Coliforms
(MPN/100 mL) - 4.7 × 104– 8.3 × 105 - 4.0 × 103–5.7 × 106 1.4 × 105 5.0 × 101–1.2 × 102 3.5 × 104–4.0 × 106 1.3 × 101–3.0 × 105 0–1.9 × 106 - 1.7 × 105 1.0 × 101–2.2 × 105 - 1.9 × 107

E. coli (MPN/100 mL) - - - - - - 5.0 × 104 2.0 × 105 0–6.7 × 103 - - 1.0 × 101–3.9 × 105 5.4 × 102 -



Catalysts 2022, 12, 557 6 of 22

2.3.1. Physical Parameters

The greywater quality can be determined through its physical properties by measuring
the physical parameters that comprise of temperature, turbidity and suspended solids
(SS) [43].

Temperature

The temperature of greywater usually varies between 18 and 30 ◦C, according to
Oteng-Peprah et.al. [43]. The utilization of warm water in household activities such as
cooking activities causes greywater temperature to be high. The high temperature can
lead to microbial growth and deposition of carbonates such as CaCO3 and other mineral
compounds [43].

Suspended Solids

In [43], studies show that greywater contains suspended solids with a concentration in
a range of 190–537 mg/L but which can also reach high as 1500 mg/L. The source for the
highest concentration of suspended solids is from kitchen and laundry greywaters. Hair,
fibre from clothes, food particles, oil and soil from the washing of vegetables and fruits
contribute to the high content of solids in greywater [10].

Turbidity

Greywater usually has a turbidity level between 19 and 444 NTU, according to Oteng-
Peprah et al. [43]. The household activities are the primary influence causing the water to
be turbid. Greywater from the laundry and kitchen is more likely to be turbid due to the
presence of more suspended particles in those greywaters. [43].

2.3.2. Chemical Parameters

The greywater quality can be determined through its chemical properties by measuring
the chemical parameters such as electrical conductivity, pH, COD and BOD [9].

pH

The greywater can be identified by measuring the pH, whether acidic or alkaline. Ac-
cording to [43], greywater generally has pH from 5 to 9. Chemicals such as bleaching agent,
disinfectants, and fabric softeners will increase greywater’s pH value due to the presence
of alkalinity. Greywater from laundry will mostly contribute to a high pH value [43].

Ionic Conductivity

The ionic conductivity in greywater is identified in the range of 14 and 3000 µS/cm [43].
The phosphates, sodium, and potassium from the detergents simultaneously increase
dissolved solids and increase ionic conductivity [8]. Areas with a shortage of water and
groundwater sources may have water with high ionic conductivity because of the dissolved
materials [9].

Biological Oxygen Demand (BOD)

BOD is used to determine the amount of dissolved oxygen in greywater required by
microorganisms to breakdown the organic matter. The BOD5/COD ratios are used to assess
the degradability of greywater. The bacteria present in greywater are defined through
the rate of the decomposition of organic matter. The typical greywater BOD5/COD ratios
range from 0.31 to 0.71 [43].

Chemical Oxygen Demand (COD)

The COD values of greywaters usually range from 38 to 5000 mg L−1, depending on
the country. The majority of the COD values are affected by the sources that originate from
laundry activities [10].
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3. Classification of Advanced Oxidation Processes (AOPs)

Figure 2 depicts various types of AOPs [44]. AOP also can be generally classified
into two categories, namely, homogeneous and heterogeneous processes [45]. However,
photocatalysis varies from other AOPs because it uses reusable catalysts with low energy
UV-A light and does not require any strong oxidants.
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3.1. Homogeneous AOP

Homogeneous processes make use of light as a source of energy. UV rays, sonolysis
(ultrasonic), electrical energy, and microwave irradiation are some of the most common
methods for pollutant degradation. Among all the AOPs, the homogenous ones are the
majority. Homogeneous AOPs involve the widely known (photo)Fenton (considered
as (photo)catalysis due to the Fe+3/Fe+2 cycle), use of H2O2/UV, O3/UV, electrochem-
ical oxidation, photolysis, etc. Another reported homogeneous AOP is homogeneous
photocatalysis when using organic molecules acting as photocatalyst (also described as
photosensitizers). The main advantage of these substances remains in their ability to absorb
UV-visible light, taking advantage of solar light. These substances may be naturally in
the greywater and may promote the degradation of the organic matter. Some examples of
homogeneous photocatalysts/photosensitizers are humic/fulvic acids [46,47] or organic
dyes [48] such as riboflavin [49], rose Bengal [50,51] or triphenilpyrilium salts [52,53]. These
compounds may generate reactive oxygen species (such as singlet oxygen) but also can
promote a photo-induced electron transfer, removing an electron from the contaminants
and thus, generating oxidized radicals derived from the contaminants (photoredox process).
Subsequently, these radicals may continue decomposing to reach mineralization.

3.2. Heterogeneous AOP

Heterogeneous semiconductor-mediated photocatalytic processes are capable of ef-
fectively degrading a variety of toxic contaminants into biodegradable substances, which
are later converted to CO2 and H2O [54]. The word ‘heterogeneous’ corresponds to a
dual-phase system, in which the catalyst is in the solid phase and the contaminants are
in the liquid phase. Two or more phases, as well as a light source (UV/solar radiation)
and a catalyst, are used in the heterogeneous process. Semiconductors such as TiO2, ZnO,
and zinc sulphide (ZnS) are used as catalysts in the heterogeneous process. The charge
carriers (electrons and holes) are produced in the process that initiates the redox reactions
that cause contaminants to degrade on the catalyst surface [55,56].

Although numerous technologies, ozonation [57] and photo-Fenton [58] for instance,
are used as advanced oxidation treatment processes for water ablution, most of these



Catalysts 2022, 12, 557 8 of 22

processes are expensive, time-consuming, inadequate, and involving significant inputs of
energy [59]. Among these technologies, heterogeneous photocatalysis, on the other hand,
is seen as a promising, effective, environmentally acceptable, and cost-efficient technique to
address the challenges associated with the removal of dangerous chemicals present in the
environment [60,61]. To enhance the breakdown of sustained contaminants, photocatalytic
methods were created on the basis of the formation of redox species. The adsorption of in-
cident photons by a photocatalyst, and generation of electrons and holes in the conduction
and valence band, is the basis of the photocatalytic reaction process (Figure 3). It is hypoth-
esized that when TiO2 NPs were exposed to UV irradiation, more electrons were energized
from the valence band (VB) to the conduction band (CB), resulting in the formation of more
positively charged holes (by h+) on the surface. The electrons move to the conduction band
(CB), and leave vacancies in the valence band, thereby producing excitons e− and h+ pairs
as presented in Equation (1). The activated electrons are picked up by the surface-adsorbed
oxygen molecules, producing super-oxide anions O2

•− (Equation (5)). At the same time,
the produced holes oxidise H2O and OH molecules present on the photocatalyst’s surface,
forming hydroxyl-radicals (OH•) (Equations (5) and (6)). OH•radicals are exceptional oxi-
dising agents with very high standard potentials (Eo (OH•/H2O) = 2.80 V/SHE), capable
of oxidising any organic contaminants. If a photocatalytic process is allowed to happen
for a long time, the final products will be water, carbon dioxide, and simple mineral acids
[(Equation (1)). Equation (9) depicts the overall photocatalytic reactivity towards organic
pollutants [62,63].

Catalyst + irradiation→ h+
VB + e−CB (1)

TiO2 + hν(UV) → TiO∗2 + h+ + e− (2)

TiO2
(
h+)+ H2O → TiO2 + h+ + OH• (3)

TiO2
(
e−

)
+ O2 → TiO2 + O−•2 (4)

O2 + e− → O•−2 (5)

H2O + h+ → OH• (6)

OH− + h+ → H+ + OH− (7)

R−H + OH• → RCOO• → CO + H2O + Organic− ions (8)

Organic pollutants semiconductor + hv−−−−−−−−−−−→ intermediate(s)→ CO2 + H2O (9)
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4. Heterogeneous Photocatalyst

Photocatalytic research is primarily concerned with the advancement of solar energy
utilization. Solar batteries [64,65], solar heat [66], and photocatalysis [67] are three different
ways to use solar energy technology. The primary technique among them is the conversion
of solar-energy to chemical-energy. The near-ultraviolet (UV) region of the sun spectrum
(wavelength less than 400 nm) is used to photo-excite a semiconducting catalyst in exposure
to water and oxygen in the heterogeneous solar photocatalytic process. Many semiconduc-
tor catalysts can absorb light at wavelengths greater than 400 nm (Fe2O3, CdS, etc.) [68,69].
The synthesis in order to initiate a chemical reaction of chemical energy is referred to as
this conversion. A photocatalyst is a catalyst that accelerates the solar photo-reaction.
The following conditions must be met to become a photocatalyst: (i) They can participate
directly into reaction, via charge/energy transfer, etc., and can be recovered back after the
catalytic cycle; and (ii) other mechanism routes from existing photo-reactions and a faster
reaction-rate are required [67]. Photodegradation is a relatively new and reliable method
for degrading organic pollutants in greywater [70–73]. It is categorized under the advanced
oxidation process (AOP) since it can tackle an issue such as removing the pollutants from
polluted water like waste and greywater. There are several AOPs such as photocatalytic,
Fenton-like processes, ozonation, etc. [74].

Photocatalysis has the ability to degrade deadly organic chemicals in wastewater to
innocuous and safe components like carbon dioxide and water [75]. Sunlight can power
the photocatalytic process, which works under mild settings. As a result, the amount of
electricity used and consequently the operational expenses are greatly reduced [6]. Because
solar light comprises around 5% UV and 42% visible light, which is abundant and free [76],
photocatalytic degradation using sunlight will be cost-effective. When a semiconductor,
such as ZnO, is exposed to light energy, it absorbs photons with a wavelength greater than
its band gap, resulting in the formation of an electron (e−)–hole (h+) pair. The electron
functions as a reducing agent while the produced h+ acts as an oxidizing agent [77].

Under visible light irradiation, the mechanism of heterogeneously accelerated degra-
dation of pollutants by semi-conductor materials occurs with and without PDS. A semi-
conductor stimulated by visible light creates electrons and holes, which can combine with
O2 and H2O to produce oxidative free radicals (O2• and •OH) [78]. The pollutants that
are targeted by O2•/•OH degrade into low-toxic products. Nonetheless, the high rate of
photogenerated carrier recombination reduces the pollutants’ degrading efficiency.

5. TiO2 and ZnO Photocatalyst
5.1. TiO2 Catalyst

Photocatalysts that are non-toxic, inert, photostable, photoactive, and affordable are
required. It also should not endanger people or the environment. Finally, the photocatalyst
must be excited when exposed to visible and near-ultraviolet light [76,77]. As a result of
the rapid growth of nanotechnology, several photosensitive nano semiconductor metal
oxides have been developed for use as photocatalysts, including Bismuth (III) oxide (Bi2O3),
titanium-dioxide (TiO2), iron (III) oxide (Fe2O3), and zinc-oxide (ZnO). TiO2 is a highly
effective photocatalyst for removing organic pollutants present in aqueous as well air
environments. Because the use of the TiO2 for large scale industrial scale water and
wastewater treatment is excessively expensive, efforts are being made to develop viable
alternatives [79]. TiO2 is a moderate oxidant-catalyst, which is usually considered as a
limitation. However, when the concentration and quantity of pollutants rise, the process
becomes more complex, requiring solutions to difficulties such slow kinetics, catalyst
deactivation, low photo efficiencies, and unpredictable processes [68].

TiO2 has been utilized as a photocatalyst for the treatment of greywater originated
from different resources. Findings of some studies related to the treatment of greywater
with TiO2 are presented in Table 4. Jin and colleagues conducted a study to identify
the optimum photocatalytic conditions for the removal of RB5 dye from greywater. The
optimum condition of photocatalytic degradation was used in laundry wastewater to
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determine efficiency removal of the RB5 dye [1]. Tsoumachidou et al. [6] prepared synthetic
greywater to be used in the study that resembles the combination of a washing machine,
shower and hand basin water. The study was conducted by applying artificial and solar
light in mineralization of the synthetic greywater. Sanchez et al. [4] carried out research on
photocatalytic oxidation of greywater from two sources, using titanium dioxide particles.
The study was conducted in greywater from two different hotels and a household source,
specifically including the first rinse of laundry water and the last rinse of laundry water.
They used different catalyst concentrations to remove dissolved organic carbon (DOC)
in both hotel and laundry greywater. Birben et al. and Boyjoo et al. [80,81] conducted
photocatalytic degradation in synthetically-prepared greywater samples with different
composition to identify photocatalytic efficiency and for shower water under artificial light;
the TOC concentration was examined along with the time to reduce the TOC concentration
for each. The synthetic greywater was prepared with seven different compositions that
contained low organic matter (OM) and low anion-content (L1), low organic matter with
high anionic species (L2), low organic matter with low anionic species and bacteria (L3),
high organic matter with low anionic species (H1), high organic matter with high anionic
species (H2) and high organic matter load greywater with low anionic species and bacteria
(H3) [80].

5.2. Modification of TiO2 Catalyst

TiO2 can only absorb light in the UVA and UVB regions, meaning that just a small por-
tion of the solar spectrum is utilized. Modifying the structure and composition of catalysts,
adequate electron acceptors are required to avoid electron–hole recombination [68]. In
addition to bare TiO2, modified TiO2 is also utilized for the treatment of greywater collected
from the residential apartment. Some findings are summarized in Table 5. Behera and col-
leagues conducted studies of modified TiO2 catalyst coated on gravel catalyst under solar
light and solar photocatalytic-treatment in greywater under modified titanium-dioxide
catalyst. The NP-TiO2 shows high adsorption of light compared to TiO2 [82]. Various
modified titanium-dioxide catalysts were used in this study, namely, microwaved TiO2
(M-TiO2), ultrasonicated TiO2 (U-TiO2), nitrogen doped (N-doped) titanium-dioxide with
P25 (NP-TiO2) and N-doped titanium-dioxide with titanium isopropoxide (NT-TiO2) [83].

Table 6 highlights the studies on removal of COD in greywater for reclamation of
greywater using pilot scale solar photocatalytic tubular reactors. In addition, hydrogen
production along with the treatment of the waste-activated sludge was shown in a newly de-
signed photocatalytic reactor using glass-tubes coated with AgX/TiO2 [84]. By running the
reactors in the batch recycle mode under solar irradiation, the activity of the Ag/TiO2 was
investigated by monitoring degradation of organics present in greywater [85]. TiO2-coated
Al2O3 is utilized to process domestic and agricultural wastewaters [86]. Photocatalytic
treatment of metoprolol is performed using B-doped TiO2 [87].
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Table 4. Conditions and efficiency of TiO2 catalyst for photocatalytic treatment of greywater.

Source of
Greywater

Type of
Catalyst

Method
/Supplier Nature of Lamp Power (W) Intensity (kilo

lux)/(W/m2)

Time
(h)/(min), Reactor

Design with
Dimensions (L)

λ
(nm) Findings References

Laundry water TiO2 Sigma-Aldrich - - - 150 min,
UV-photoreactor -

The optimum conditions were = pH = 5,
photocatalyst amount = 0.1 gL−1

without compressed air sparging and
initial Reactive Black 5 (RB5)

concentration of a 1 ppm.
Reaction time = 150 min,

RB5 removal = 97%.
Lesser removal (76%) of Reactive
Black 5 from real greywater was

observed after 330 min.
The monitoring findings revealed 60%
O&G, 54% COD, 69% BOD5, and 41%

removal of TN.

[1]

Simulated
greywater

(Shower, hand
basin, washing

machine)

TiO2 P-25 Evonik UV-A lamp 9 Watt/78 Natural
Sunlight

250–300 min,
Thermostated pyrex

cell (0.5 L)
350–400 nm

In photo-Fenton-mediated titania
photocatalytic process, ~72% DOC

removal was observed in the
bench-scale treatment after 210 min,

whereas under the same photocatalytic
conditions but under solar light in pilot

reactor, the DOC removal reached
decreased to ~64%.

[6]

Hotel greywater
Laundry

greywater

TiO2
P-25

Evonik Degussa
(Aeroxide® P 25)

Hg lamp TQ
150Z1 (Heraeus

Nobelight)
- -

160–400 min, Batch
cylindrical glass

photoreactor (1.0 L)
200–700 nm

Treatment of greywater showed removal
of 65% DOC after 150 min.
Anionic surfactants were

completely removed.

[4]

Synthetic
greywater

TiO2
P-25 Evonik P-25

Black light
fluorescent lamp

(BLF)
125 W - 0–180 min 300–420 nm

The best dissolved organic carbon
removal rates were obtained from

greywater containing low OM and low
anion content (L1).

[80]

Shower water TiO2 Sigma-Aldrich UV mercury
lamp

Primarc Ltd.
(PM 3426,

800 W)
- 6.5 h, Pilot-scale

reactor (31 L)

Under optimum conditions,
approximately 57% removal of total
organic carbon (TOC) was achieved

after 6 h: initial solution pH = 3,
photocatalyst amount = 0.07 gL−1,

flow rate of air = 1.8 Lmin−1, circulation
rate of solution = 4.4 Lmin−1.

[81]
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Table 5. Studies showing the photocatalytic treatment of greywater with modified TiO2.

Source of
Greywater

Type of
Catalyst

Material/
Method

Nature of
Lamp Power (W) Intensity (kilo

lux)/ (W/m2)
Time

(h)/(min)
λ

(nm)
Reactor Design with

Dimensions Findings References

Residential
apartment

Gravel-NP-
TiO2

Sol-gel method Solar light - 18.3, 45.7 kilo lux 6 h - Tray-type reactor

Significant removal was achieved by solar
photocatalytic process: TOC removal was 93.7 %

with 0.393 h−1 removal rate.
Approximately 50% TKN was removed with

photocatalytic oxidation to nitrate.
43% removal of nitrate was observed due to

photocatalytic reduction.
Toxicity of the treated greywater(for 30 min

incubation) was reduced from the 13.6 to 4%.

[82]

Simulated
greywater

M-TiO2
U-TiO2

NP-TiO2
NT-TiO2

Microwave
Ultrasonication

Modified
sol-gel

Visible light
Tungsten-

halogen lamp
150 W

- 3 h
6 h 400–700 nm

Pencil-type
immersion

photo-reactor
Solar photocatalytic

reactor

The performance of different photocatalysts for
the mineralisation was found to be

NT-TiO2 > UeTiO2 > NP-TiO2M-TiO2 > P-25. The
maximum mineralisation (~75%) was observed

after 3 h in presence of NT-TiO2.
Then activity for nitrate degradation

was determined to be
NT-TiO2 > UeTiO2~NP-TiO2 > M-TiO2 > P-25.

The nitrate degradation was ~92.5 %.
As compared to other photocatalytic systems, the

NT-TiO2 was found to be most energy-efficient
(~31.86 kWh (kgCOD)1).

[83]

Table 6. Removal of COD from greywater by solar photocatalytic treatment using doped TiO2 catalyst.

Source Catalyst Reactor Light Source Findings Reference

Bathroom and
kitchen Greywater Ag deposited TiO2 catalyst tubular reactors sunlight

In presence of bare and Ag-modified TiO2, the COD removal was ~32% and ~69%,
respectively. The experiments were conducted under sunlight at neutral pH for 3 h. The

findings suggest that silver deposition boosted the effectiveness of TiO2 photocatalysis by
serving as electron sink and facilitating interfacial electron transport, minimizing the charge
carrier recombination- and producing more ROS in Ag coated titanium dioxide as compared

to bare titanium-dioxide.

[85]

Greywater Silver and silver compounds (AgX)
doped TiO2 film

fluidized tubular photocatalytic
reactor (SFTPR) sunlight

The AgX/TiO2 filmcoated reactor had a substantially higher rate of waste activated sludge
(WAS) degradation, as measured by COD elimination, than the titanium-dioxide filmcoated

reactor, with 69.1 percent and 45.3 percent respectively, in 72 h.
[84]

Greywater TiO2 (coated on α-alumina) Photoreactor sunlight Chen et al. used TiO2-coated –Al2O3 to treat wastewater originated from domestic and
agricultural uses (COD was 36.27.4) before transferring them to a bench-scale wetland system. [86]

Greywater Boron-modified TiO2 solar simulator Sunlight
A total of 35% COD reduction was achieved in the UW trials. The consequent mineralization,

on the other hand, was lower [12%], indicating that chemicals in the effluent are
resistant to mineralization.

[87]
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5.3. ZnO Photocatalyst Degradation of Organic Compounds

In photocatalytic processes, ZnO is the most potential substitute for TiO2, which has
been most widely used photocatalyst. This is because of its band gap of (3.37 eV), low cost
and low technological requirements [88]. With an exciton binding energy of 60 meV, ZnO
has a strong capacity to absorb UV irradiation [89]. Zinc oxide is designated as a “GRAS”
substance by the Food and Drug Administration (FDA) of the United States of America [90].
Zinc oxide does not permeate or can only penetrate the surface of skin, which indicates its
nontoxicity towards humans and the environment [91]. Due to a variety of qualities, ZnO
is an ideal alternative to TiO2 as a photocatalyst. According to new research, ZnO is more
effective than TiO2 at photocatalytically destroying organic molecules under visible light.
As result, in the presence of sunlight, zinc oxide is the best photocatalyst for removing
organic molecules from photodegraded materials [92]. Poulios et al. [93] investigated
how ZnO and TiO2 photodegrade Auramine O in aqueous solution. When compared to
TiO2, evidence shows that ZnO degrades it more quickly (Degussa P25). Kaneva et al. [94]
discovered that ZnO NPs degrade pollutants more quickly than TiO2 NPs. The higher
activity was attributed to efficient absorption by ZnO NPs and bigger light quanta as
compared TiO2 [95]. ZnO produces H2O2 more efficiently than TiO2 which facilitates the
removal of xenobiotic organic compounds. ZnO possessed high mineralization rate and a
greater number of active centers per surface area.

In another study [94], it has been demonstrated that zinc oxide has higher photocat-
alytic efficacy than TiO2 due to separation of the high mobility, production, photoinduced
electrons and holes. As a result, there is an increasing trend to integrate water that has
been treated with visible light in photocatalyst applications. Yashni et al. [96] performed
the study of photocatalytic degradation in artificial bathroom greywater under solar light
using zinc oxide nano-particles (ZnO NPs). The optimum amounts of ZnO NPs, pH
and BR51 concentration were identified by evaluating the efficacy of degradation when
comparing different amount of zinc oxide nano-particles, using different pH levels and
BR51 concentrations. ZnO NPs loadings of 50, 100, 150 and 200 mg were investigated for
degradation. A constant volume (100 mL) of artificial bathroom greywater was exposed
to direct solar irradiation for 5.5 h to determine whether the degradation of BR51 in arti-
ficial bathroom greywater is due to photocatalytic degradation. The BR51 was degraded
to 74.48% at the loadings of 100 mg ZnO NPs. The higher the zinc oxide nanoparticles
loading from 100 mg to 150 mg and 200 mg, the lower the degradation rate of BR51. The
photocatalytic treatment of a range of pollutants from greywater is shown in Table 7.
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Table 7. ZnO-supported photocatalyst matrix is used to photocatalytically degrade organic pollutants in greywater.

Organic Pollutant in Greywater Type of Catalyst
Amount of

Catalyst (g)/Time
of Irradiation (h)

Catalyst Synthesis Method Findings References

MB CdS/ZnO composites 3/3
Adsorption, interaction of successive

ionic layers. Deposition in a
chemical bath

Methylene blue degradation is estimated to be around 91%. [95]

MO,
Methyl green ZnO / PVP composites 0.1/4 Coprecipitation Both MO and methyl-green degraded at a rate of 82.7 percent

and 99.5 percent. [97]

Amoxycillin ZnO ultrathin layers 0.2/2 Deposition of Sol-gel, and
spin-coatings The efficacy of degradation increased by about 65%. [98]

Color Nb2O5-ZnO-composite -/4 Chemical solution method with no
smooth surfactants

Nb2O5/ZnO had ability to elutriate POME with a
colour-removal rate of 100%. [99]

Caffeine ZnO/ZEO-composite 25/2 Impregnation method UV light was able to remove nearly all of the caffeine. [100]
Crystal violet, Methyl red

and Basic blue ZnO, SnO2 and TiO2 -/- NA When compared to TiO2 and SnO2, ZnO had highest
photocatalytic activity. [101]

Crystal violet ZnO-modified polymer nanocomposite 0.1/5 Chemical precipitation, free
radical polymerization

The elimination efficiency was 94 percent in presence of
sunlight and 84 percent in the absence of the

sunlight, respectively.
[102]

RhB Mg/ZnO nano-particles -/2 Sol-gel
The Mg/ZnO nano-particles photocatalytic activitywas

controlled by their maximum content, with best removal
attained at 2 weight percent Mg.

[103]

Orthonitrophenol ZnO nano-particles 0.05/5 Microwave assisted combustion 98 percent of the orthonitrophenol was removed. [104]
MB SnO2 doped ZnO nano-particles 1/2 Smooth chemical method SnO2 doping boosts the photocatalytic activity of ZnO. [105]

Aniline Hybrid chitosanphthalocyanine- TiO2 0.04/1 SolGel Using chitosan-phthalocyanine-TiO2 as a hybrid photocatalyst
resulted in more degradation. [106]

Anthracene ZnO nano-particles 1/5 Corriandrum Sativum by green
synthesis method Anthracene was photocatalytically degraded at a rate of 96%. [107]

MB Poly(Ethylenedioxy-Terthiophene)/ZnO
Composites -/5 Ball mill

Using Poly(Ethylenedioxy-Terthiophene)/ZnO Composite
produced by ball-milling and exposed to UV radiation, nearly

100 percent elimination was achieved.
[108]

Malachite green ZnO nano-particles with activated carbon 0.005/1 Sol-gel method
The high-adsorption capacity of ZnO NPs loaded on activated
carbon (322.58 mg g-1) enabled the removal of malachite green

within twenty min of adsorption.
[109]

Benzene Pt-ZnO hydroxyapatite nano-particles -/- Template and ultrasonication
The photocatalytic activity of Pt–ZnO NPs altered with

hydroxyapatite for benzene removal from aqueous solution
was significantly improved.

[110]

Dichloro-benzene Methyl orange ZnO and Fe-doped ZnO (ZnO/Fe) nanowires 0.1/4 Hydro-thermal ZnO/Fe nano-wires outperform ZnO in terms of
photocatalytic activity. [111]

RhB ZnO nano-powder 0.02/0.13 Solution-combustion Application of the ZnO catalyst resulted in the most dye
decolorization (more than 95%). [79]

MB Surface-decorated ZnO nano-particles -/0.8 Solution-combustion ZnO NPs-mediated colour removal from waste-water while
lowering chemical oxygen requirement by 62 percent. [112]

MB Ag/ZnO nano-particles 0.15/8 Laser induction MB has been degraded by 92 percent. [113]

MB ZnO/RGO -/0.6 Hydro-thermal RGO was mixed with ZnO nano-particles to
increase colour removal. [114]

RhB Zinc-oxide modified Titanate nanotubes
(ZnO–TNTs) 0.2/0.8 Smooth chemical method ZnO-TNTs nanocomposite outperformed both pure TNTs

and ZnO for removal of RhB to. [115]

MB = Methylene blue, MO = Methyl orange, RhB = Rhodamine B, RGO = reduced graphene oxide.
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To suppress the recombination of electron-hole pairs and retain their reducing and
oxidizing ability, special strategies are required to design optimal photocatalysts [98]. A
simple and facile chemical method is to synthesize SnO2 doped ZnO nanostructures
which have been observed in the presence of polyethylene glycol (PEG) as a surfac-
tant for highly efficient photocatalysis. The structural investigation indicated that the
XRD patterns reveal highly crystalline ZnO nanoparticles. The FE-SEM images show
that the synthesized SnO2 doped ZnO has aggregated layers with cave-like structures.
The newly prepared SnO2 doped ZnO nanostructures have been evaluated for pho-
todegradation of methylene blue (MB) under visible light. The photodegradation of
MB proceeds much more rapidly in the presence of SnO2 doped ZnO compared to
the undoped ZnO nanoparticles. The photocatalytic performance was in the order of
0.5% SnO2/ZnO > 1.0% SnO2/ZnO > 0.2% SnO2/ZnO > undoped ZnO, suggesting that
doping of SnO2 improves the photocatalytic activity of ZnO. These results indicate that
SnO2 doped ZnO nanostructures are very promising to fabricate highly efficient photocata-
lysts [105].

Heterojunction modification is necessary to address the high recombination rates of
photogenerated electron-hole pairs as well as their inadequate reduction and oxidation
capabilities in a single photocatalyst. The type-II and Z-scheme heterojunctions are the
two most common types of heterojunctions to gain attention. This direct Z-scheme het-
erojunction photocatalyst has a low fabrication cost that is comparable to standard type-II
heterojunction systems. It also has other benefits, such as the ability to tailor its redox
potential to specific photocatalytic activities. Furthermore, because of the electrostatic at-
traction between electrons and holes, charge transfer on the direct Z-scheme heterojunction
photocatalyst is physically better than that on the type-II heterojunction photocatalyst [116].
Figure 4 shows the various types of heterojunction photocatalyst used for degradation of
organic pollutants present in greywater.
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6. Factors Controlling Photocatalytic Reaction

Photocatalysis is influenced by various factors such as pH, catalyst quantity, con-
centration, and content of organic contaminants. It is critical to use enough catalyst in
the process to degrade organic contaminants [117,118]. The above-mentioned increase in
catalyst concentration can result in light scattering, a screening effect, and lower specific
activity. As a result, the catalyst surface is no longer available for photon absorption and
pollutant adsorption, resulting in a reduction in reaction rate [119,120]. An important
characteristic for consideration is the pH because different effluents must be handled at rec-
ommended pH levels. pH dictates the photocatalyst’s surface and charge properties [121].
Other factors that have significant impact on the photocatalytic degradation and reaction
kinetics are concentrations and nature of organic pollutants. Highly concentrated solutions
of organic pollutants in the aqueous media can adsorb significantly onto the surface of
catalysts and block the incident photons from interacting with the surface. As a result,
lower photonic efficiency is obtained. Some examples about the effect of different parame-
ters on the photocatalytic activity and/or degradation of organic pollutants are described
below [70,71].

The concentration of photocatalyst in the treatment system is critical during the degra-
dation process. The optimum dose is acquired by adjusting the catalyst loading amount
in order to cut costs and energy while increasing photocatalytic efficiency and perfor-
mance [122]. Several researchers have found that increasing the quantity of photocatalytic
activity in a treatment system increases the number of photons absorbed on the catalyst’s
surface [123,124]. As a result, the creation of electron–hole pairs increased, as did the
quantity of hydroxyl radicals (OH•).

The photocatalytic degradation rates are strongly influenced by the initial pH of the
aqueous solution. This is due to the pH of the solution, which might affect the adsorption
of contaminants on the photocatalyst’s surface [125]. In general, pH is critical because it
affects the surface charge of the photocatalyst, TiO2. When the pH of the solution is at
the catalyst particle’s point of zero charge (PZC) of the photocatalyst, the adsorption of
contaminants (such as dyes) is at its lowest [126,127]. In general, and in the instance of TiO2
as a photocatalyst, the contact in between catalyst particles and the water contaminate(s)
would be low at the PZC of TiO2. The lack of an electrostatic force is the reason for this.
When operating at pH PZC(TiO2), however, the photocatalyst’s surface charges become
positively charged, causing an electrostatic attraction force towards negatively charged
molecules. The adsorption of the organic contaminant(s) onto the surface of the activated
TiO2 will be intensified if the organic molecules present have an anionic charge, and
under such conditions [128]. When operating at pH > PZC(TiO2), on the other hand, the
photocatalyst surface is negatively charged, repelling anionic molecules in water [63].

7. Conclusions

In conclusion, semiconductor-based photocatalysts are widely used to mineralize the
organic compounds in greywater due to high reusability and being chemically inert; the
photocatalysts widely used in mineralising the organic compounds in greywater are TiO2,
modified TiO2 and ZnO. A few improvements are needed for the photocatalytic process
to decompose the organic pollutants in the greywater efficiently. One of the methods for
studying the optimum conditions for photocatalytic degradation is to include different light
intensities because light intensity affects photocatalytic performance in degrading organic
compounds. However, the photocatalytic process able to remove the organic compound
efficiently with oxidant (hydrogen peroxide) and Fe3+ causes the high generation of OH
radicals that enhance the mineralization rate. This process is called a photon-Fenton process.
Other than that, photocatalytic efficiency is also determined by solution pH, pollutant
concentration, amount of catalyst, and nature of the greywater. In contrast, different light
sources such as solar and UV light also show a significant difference in the removal of
organic materials whereby more degradation occurs under UV light. The higher the amount
of catalyst, the higher the degradation rate, but sometimes a high amount of catalyst does
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not show any improvement in degradation because the greywater becomes more turbid
and reduces the penetration of light causing low degradation. The pH value also affects
the TiO2 surface since it can alter the surface charge causing low degradation. Therefore,
the optimum pH and catalyst loading are required for efficient photocatalytic degradation.

A study on the morphology and characteristic of photocatalysts also should be con-
ducted. Further study is needed regarding new or unexplored catalysts for the photocat-
alytic process.
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