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Abstract: Biocatalysis has become an attractive tool in modern synthetic chemistry both in academic
and industrial settings, offering access to enantiopure molecules. In industry, biocatalysis found use in
small molecule pharmaceutical development. For several amine-containing drugs, biotransformations
were applied in the process routes, improving the original syntheses employing classical chemical
methods. This review illustrates how and why biocatalysis has been applied to create safer, more
efficient and less costly processes for the manufacture of chiral amine-containing pharmaceuticals and
alkaloids. Several enzyme classes have been applied to syntheses of natural products, pharmaceutical
products and their intermediates, including transaminases, imine reductases, monoamine oxidases
and Pictet-Spenglerases. The routes with and without application of biocatalysis are compared, and
the potential of these enzyme classes in redesigned synthetic routes to natural products, alkaloids and
high-value chemicals is evaluated, using syntheses of sitagliptin, suvorexant, PF-04449913, MK-7246,
vernakalant, GSK-2879552, boceprevir and (−)-strictosidine as examples. Application of biocatalysis
in the synthesis of amine-containing pharmaceuticals constitutes a greener alternative to transition
metal-catalysed routes, facilitates installation of chiral amine functionalities at a late stage of the
synthesis and provides exquisite stereocontrol. Opportunities and challenges of biocatalysis for the
synthesis of chiral amines are reviewed with respect to use in drug discovery and development.

Keywords: biocatalysis; chiral amine; transaminase; imine reductase; monoamine oxidase; Pictet-
Spenglerase; enzyme; pharmaceutical; drug development; API

1. Introduction

Innovations in synthetic chemistry at different stages of drug discovery and devel-
opment play an important role in the identification and production of new therapeutic
agents [1–7]. New methodologies have the power to change practice in drug discovery,
expanding the chemical space available to scientists and facilitating quick access to it. Many
of these advances are now driven by partnerships between pharmaceutical companies and
leading academic groups [1]. Biocatalysis is one area in which such collaborations have
been particularly effective, accelerating the pipeline from enzyme discovery to large-scale
practical application in synthesis [8]. The use of molecular biology, protein engineering
and bioinformatics tools helps to tailor the properties of a biocatalyst, such as activity and
selectivity, with the influence of the directed evolution of enzymes being highlighted by
the 2018 Nobel Prize in Chemistry awarded to Frances Arnold [8,9]. One of landmark
achievements of using biotransformations in industrial research was the application of a
recombinant engineered transaminase in the manufacture of sitagliptin (Januvia) by Merck
and Codexis, and this success drove further interest in the industrial use of biocatalysts [10].

Amine moieties, in particular, are common in drugs and biologically active compounds,
and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically enriched
chiral amines are of particular interest to the pharmaceutical and agrochemical indus-
tries [14,15]. Their classic chemical methods of asymmetric synthesis include asymmetric
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reduction, nucleophilic addition or diastereomeric crystallization [11,16–19]. However, the
last decade witnessed a significant growth of portfolio of biocatalytic processes for the
preparation of chiral amines. These enzymes include transaminases, imine reductases,
amine dehydrogenases, monoamine oxidases, Picter-Spenglerases and lipases [20–25]. This
review examines applications of these enzyme classes in the preparation of active phar-
maceutical ingredients (APIs) and alkaloids, and investigates how the synthetic routes
evolved. The examples of sitagliptin, suvorexant, PF-04449913, MK-7246, and vernakalant
are used to demonstrate applications of transaminases, whereas GSK-2879552, boceprevir
and (−)-strictosidine show synthetic use of imine reductases, monoamine oxidases and
Pictet-Spenglerases, respectively (Table 1). The purpose of the review is to summarise the
extent to which amine biocatalysis is being applied in the pharmaceutical industry and
scrutinize why enzymatic methods superseded existing chemical processes.

Table 1. List of compounds discussed in this review and enzymes used during their synthesis.

Compound Enzyme Class Enzyme Used

Catalysts 2022, 12, x 2 of 23 
 

 

Amine moieties, in particular, are common in drugs and biologically active com-
pounds, and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically 
enriched chiral amines are of particular interest to the pharmaceutical and agrochemical  

Table 1. List of compounds discussed in this review and enzymes used during their synthesis. 

Compound Enzyme Class Enzyme Used 
 

 
 

sitagliptin 

Transaminase ω-TAm ArRMut11 

 
 

 
 

Suvorexant  

Transaminase ω-TAm (CDX-017) 

Imine reductase 
IR1 Leishmania major 
from Y194F/D232H 

 

 
 

P 
F-0444913 

Transaminase ATA-036 

 
 

 
 
 

MK-7246 

Transaminase ω-TAm (CDX-017) 

 

O OMe

OMe

N

OH

 
 

vernakalant 

Transaminase ATA-303 

sitagliptin

Transaminase ω-TAm ArRMut11

Catalysts 2022, 12, x 2 of 23 
 

 

Amine moieties, in particular, are common in drugs and biologically active com-
pounds, and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically 
enriched chiral amines are of particular interest to the pharmaceutical and agrochemical  

Table 1. List of compounds discussed in this review and enzymes used during their synthesis. 

Compound Enzyme Class Enzyme Used 
 

 
 

sitagliptin 

Transaminase ω-TAm ArRMut11 

 
 

 
 

Suvorexant  

Transaminase ω-TAm (CDX-017) 

Imine reductase 
IR1 Leishmania major 
from Y194F/D232H 

 

 
 

P 
F-0444913 

Transaminase ATA-036 

 
 

 
 
 

MK-7246 

Transaminase ω-TAm (CDX-017) 

 

O OMe

OMe

N

OH

 
 

vernakalant 

Transaminase ATA-303 

suvorexant

Transaminase ω-TAm (CDX-017)

Imine reductase IR1 Leishmania major from
Y194F/D232H

Catalysts 2022, 12, x 2 of 23 
 

 

Amine moieties, in particular, are common in drugs and biologically active com-
pounds, and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically 
enriched chiral amines are of particular interest to the pharmaceutical and agrochemical  

Table 1. List of compounds discussed in this review and enzymes used during their synthesis. 

Compound Enzyme Class Enzyme Used 
 

 
 

sitagliptin 

Transaminase ω-TAm ArRMut11 

 
 

 
 

Suvorexant  

Transaminase ω-TAm (CDX-017) 

Imine reductase 
IR1 Leishmania major 
from Y194F/D232H 

 

 
 

P 
F-0444913 

Transaminase ATA-036 

 
 

 
 
 

MK-7246 

Transaminase ω-TAm (CDX-017) 

 

O OMe

OMe

N

OH

 
 

vernakalant 

Transaminase ATA-303 

PF-0444913

Transaminase ATA-036

Catalysts 2022, 12, x 2 of 23 
 

 

Amine moieties, in particular, are common in drugs and biologically active com-
pounds, and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically 
enriched chiral amines are of particular interest to the pharmaceutical and agrochemical  

Table 1. List of compounds discussed in this review and enzymes used during their synthesis. 

Compound Enzyme Class Enzyme Used 
 

 
 

sitagliptin 

Transaminase ω-TAm ArRMut11 

 
 

 
 

Suvorexant  

Transaminase ω-TAm (CDX-017) 

Imine reductase 
IR1 Leishmania major 
from Y194F/D232H 

 

 
 

P 
F-0444913 

Transaminase ATA-036 

 
 

 
 
 

MK-7246 

Transaminase ω-TAm (CDX-017) 

 

O OMe

OMe

N

OH

 
 

vernakalant 

Transaminase ATA-303 

MK-7246

Transaminase ω-TAm (CDX-017)



Catalysts 2022, 12, 595 3 of 22

Table 1. Cont.

Compound Enzyme Class Enzyme Used

Catalysts 2022, 12, x 2 of 23 
 

 

Amine moieties, in particular, are common in drugs and biologically active com-
pounds, and can also be valuable synthetic intermediates [11–13]. Thus enantiomerically 
enriched chiral amines are of particular interest to the pharmaceutical and agrochemical  

Table 1. List of compounds discussed in this review and enzymes used during their synthesis. 

Compound Enzyme Class Enzyme Used 
 

 
 

sitagliptin 

Transaminase ω-TAm ArRMut11 

 
 

 
 

Suvorexant  

Transaminase ω-TAm (CDX-017) 

Imine reductase 
IR1 Leishmania major 
from Y194F/D232H 

 

 
 

P 
F-0444913 

Transaminase ATA-036 

 
 

 
 
 

MK-7246 

Transaminase ω-TAm (CDX-017) 

 

O OMe

OMe

N

OH

 
 

vernakalant 

Transaminase ATA-303 

vernakalant

Transaminase ATA-303Catalysts 2022, 12, x 3 of 23 
 

 

 

 
 

GSK2879552 

Imine reductase IRED-M3 

 

 
 
 

abrocitinib 

Imine reductase SpRedAm-V6 

 
 

 
 
 

boceprevir 

Monoamine oxidase MAON401 

 
 

 
 

(−)-strictosidine 

Picter-Spenglerase Strictosidine syn-
thase cell-free lysate 

2. Transaminases 
2.1. Overview 

Transaminases offer access to primary amines by converting carbonyl substrates to 
the target amine. They require a sacrificial amine donor and vitamin B6 derivative pyri-
doxal-5’ phosphate (PLP) as a cofactor (Scheme 1) [24]. This class of enzymes has found a 
number of applications in the preparation of complex pharmaceutical intermediates [15], 
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2. Transaminases
2.1. Overview

Transaminases offer access to primary amines by converting carbonyl substrates to the
target amine. They require a sacrificial amine donor and vitamin B6 derivative pyridoxal-5’
phosphate (PLP) as a cofactor (Scheme 1) [24]. This class of enzymes has found a number
of applications in the preparation of complex pharmaceutical intermediates [15], and
commercially available panels of transaminases can be used without specialist equipment
to solve challenging synthetic problems [25].

However, transaminases catalyse the reversible transfer of the amino group, so it might
be necessary to shift the equilibrium towards the product by using excess amounts of the
amine donor. If isopropylamine is used as the donor, giving acetone as the side-product, re-
action mixture sparging can be performed to shift the equilibrium. An alternative approach
uses diamines as ‘smart’ amine donors which cyclise on deamination [26]. A final way of
overcoming the unfavourable thermodynamics is to set up a cascade which uses the reaction
product directly [27]. Various enzyme classes can be used in cascades with transaminases,
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e.g., alanine dehydrogenase, lactate dehydrogenase, pyruvate dehydrogenase, alcohol
dehydrogenase [28], carboxylic acid reductase [29], monoamine oxidase [30,31] or imine
reductase [32]. From the synthetic point of view, the key limitation of transaminases is
that only primary amines can be generated from the ketone congeners [18]. As a result,
although transaminases have found widespread use in industry, they are beginning to
face competition from emerging enzyme classes, such as amine dehydrogenases and imine
reductases, which do not have this limitation [25].
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2.2. Sitagliptin

Sitagliptin, the active ingredient in Merck’s Januvia, is used for treatment of type
II diabetes [33–35]. The manufacturing process of the phosphate salt of sitagliptin was
developed by Merck in collaboration with Selvias and Codexis [35]. In synthetic terms,
the evolution through three generations of process research and development shows
moving from setting the stereochemistry early in the synthesis to installation of the amine
functionality late in the synthesis by asymmetric catalytic hydrogenation and finally the
application of a transaminase (Schemes 2–4).
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The first-generation process route introduced the asymmetric bias by means of a
ruthenium-catalysed asymmetric hydrogenation of β-keto ester 1 (Scheme 2) [36]. The
amine functionality was then introduced by the formation of a benzyl-protected hydrox-
yamide followed by the stereospecific displacement of the alcohol by the NH of the hy-
droxyamide. The subsequent hydrolysis of the resulting protected cyclic hydroxyamide 3,
amide coupling, deprotection and salt formation gave sitagliptin as the phosphate salt 7.
The total 52% yield over eight steps provided 100 kg of sitagliptin phosphate for early
clinical studies. However, the first-generation process had some significant drawbacks,
particularly in the sequence employing the EDC coupling and the Mitsunobu reaction,
which suffers from poor atom economy and with the by-product being difficult to remove.
The chiral amine was also introduced in a circuitous way.

Improvements with respect to the first-generation process led to the second-generation
sitagliptin synthesis, the key feature of which was three-step, one-pot transformation start-
ing from triflurophenyl acetic acid 8 and leading to dehydrositagliptin 12 (Scheme 3a) [37].
The overall yield of the process was 82%. Dehydrositagliptin 12 was then subjected to
rhodium-catalysed asymmetric hydrogenation, followed by crystallization of sitagliptin
phosphate 7. The yield over three steps from 8 to 12 was 82%. Then an asymmetric,
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rhodium-catalysed hydrogenation step installed the chiral amine, using 0.15 mol% of the
catalyst to give sitagliptin 13 in 98% yield and 95% ee. Crystallisation of the final product
sitagliptin phosphate 7 enhanced ee to 99.9% ee. The rhodium catalyst was subsequently
removed using activated carbon. The protecting-group-free, second-generation process
had a total yield of 65% for the three-step process. With respect to the first-generation route,
a significant reduction of waste was achieved. The total waste produced per kilogram of
the final product was reduced from 250 kg to 50 kg.

Further improvements to the second-generation route were then made [37]. β-
Ketoamide 11, which was previously an intermediate en route to dehydrositagliptin 12, was
isolated in order to be subjected to a ruthenium-catalysed asymmetric reductive amination
reaction, thus directly converting the β-keto amide to β-amino amide 14 (Scheme 3b).

Despite improvement with respect to the first-generation process, the disadvantages
of the second-generation route were inherent to the use of the transition metal catalysts,
including the necessity of removal of ruthenium or rhodium from the product stream using
specialized, high-pressure equipment. The rhodium-catalysed step (95% ee) also required
an extra crystallization step to enhance the optical purity of the final product.

The aforementioned challenges were solved by the application of a highly evolved
transaminase to transform 11 to sitagliptin 13 in the third-generation process, which was
developed by means of collaboration between Merck and Codexis [10]. The research started
with R-selective transaminase that was evolved utilizing computation modelling and itera-
tive directed evolution. The final enzyme applied in the route contained 27 mutations. The
optimized process employed 6 g/L of the evolved transaminase and 200 g/L concentration
of β-keto amide 11 in 50% DMSO at 40 ◦C to afford sitagliptin 13 in 92% yield and >99.95%
ee (Scheme 4). The third-generation process increased the yield and reduced the total
amount of waste produced.

2.3. Suvorexant

Suvorexant 20 (Scheme 5) is an orexin antagonist used to treat insomnia, formerly
known as MK-4305 [38]. It was approved for sale by the FDA in 2014. Key structural
features include a 1,4-diazepine core with a stereogenic centre at the 7-position bearing a
methyl group alpha to one of the nitrogens. While attaching the benzoxazole and aromatic
amide moieties to the core is relatively straightforward, the requirement for an enantiopure
chiral diazepine core with (R)-configuration constituted a significant challenge on scale-up
from the medicinal chemistry preparation to the process route.
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Originally, the (R) enantiomer of intermediate 19 was prepared by preparative chiral
HPLC separation of the Cbz- and Boc-protected rac-19 following the low-yielding aza-
Michael reaction and was successful for preparation of multigram quantities of 20 during
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early development phase and quick exploration of structure activity relationships thanks
to the orthogonal protection of nitrogen atoms of the diazepane core (Scheme 5) [38,39].

The first kilogram-scale synthesis of 20 replaced the Cbz group with the benzoxazole
functionality as a surrogate protecting groups during the aza-Michael reaction (Scheme 6).
The diazepane ring system was made by Boc deprotection of 23, followed by reductive
amination to afford the racemic precursor of suvorexant rac-25. The racemic mixture was
subsequently subjected to classical resolution using dibenzoyl-D-tartartic acid to obtain 27
with a maximum enantiomeric excess of 74% and in 39% yield on scale. The enantiomeric
excess value was further increased to 96% with 74% yield after reslurring using methanol
and isopropyl acetate (27% yield from aminoketone 24) [38].
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Scientists at Merck sought further improvements in the synthesis of the chiral di-
azepane core [40,41]. The intramolecular asymmetric reductive amination of aminoketone
24 mediated by a ruthenium-based transfer hydrogenation catalysts 28 afforded (R)-25 in
97% yield and 94.5% enantiomeric excess. The catalyst employed was a new variant of
Noyori’s (S,S)-RuCl(p-cymene)ArSO2DPEN) catalyst and the reaction was run on >100 kg
scale (Scheme 7) [40].
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Merck also reported the first enantioselective synthesis of suvorexant that employed a
tandem transamination and seven-membered ring annulation in the key step (Scheme 8) [41].
The crucial sequence of reactions posed several challenges. Firstly, a suitable (R)-selective
transaminase had to be found. Installation of a primary amine with transamination could
trigger ring opening of the benzoxazole, which was previously found to be labile to nu-
cleophilic attacks. Amine 25 was previously found to be prone to isomerisation, and the
mesylate leaving group could undergo hydrolysis. Ultimately, (R)-selective transaminase
evolved during the manufacturing process of sitagliptin (CDX-017) [10] gave good conver-
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sion and excellent enantioselectivity (>99% ee). Employing moderate pH and slow addition
of a DMSO solution of the substrate to the reaction mixture gave 71% yield reported on a
multigram scale (Scheme 8) [41].
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Imine reductases constitute another class of enzymes that were used to synthesise su-
vorexant (Section 3.4) [42]. The synthetic routes employing the ruthenium catalyst, transam-
inase and imine reductase all achieved excellent enantiopurity of the chiral diazepane
intermediate and went beyond the 50% yield that is the limit for the classic resolution
approach initially employed by Merck (Scheme 6). Ruthenium-catalysed intramolecular
reductive amination requires transition metal and organic solvents, and biocatalytic routes
help to decrease the environmental impact of preparation of the key intermediate. Even
though the reported scales of transaminase and imine reductase-mediated biotranforma-
tions were much lower than that of the ruthenium-catalysed transfer hydrogenation, the
example of suvorexant shows that enzymes are viable synthetic solutions when moving
from drug discovery to development.

2.4. PF-0444913

PF-0444913 38 (also known as glasdegib, Scheme 9) is an inhibitor of the Hedgehog
signaling pathway developed by Pfizer that is used for the treatment of acute myeloid
leukemia. The original medicinal chemistry route started with commercially available
(2R,4S)-1-tert-butyl 2-methyl 4-hydroxypiperidine-1,2-dicarboxylate 30 with two stere-
ogenic centres allowing synthetic manipulations to obtain PF-0444913 with desired config-
uration. The syn relationship between chiral centres in 30 was changed to anti by means of
alcohol activation and SN2 chemistry, with facile transformations following to install the
benzoimidazole alpha to the nitrogen and form the final urea (Scheme 9) [43].
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In the drug development phase, it was necessary to provide a practical and scalable
synthesis of PF-04449913 38. The key challenge was establishing that the anti relationship
between the stereogenic centres in 38 and 30 employed in the original route was not
readily available on scale. Installing the primary amine functionality on the piperidine core
required three steps and the use of sodium azide posed safety concerns. In order to generate
the primary amine and also establish the anti relationship between the chiral centres by
means of dynamic kinetic resolution, transaminases were employed (Scheme 10) [44].

Catalysts 2022, 12, x 9 of 23 
 

 

Scheme 9. Medicinal chemistry route to PF-04449913. 

In the drug development phase, it was necessary to provide a practical and scalable 
synthesis of PF-04449913 38. The key challenge was establishing that the anti relationship 
between the stereogenic centres in 38 and 30 employed in the original route was not read-
ily available on scale. Installing the primary amine functionality on the piperidine core 
required three steps and the use of sodium azide posed safety concerns. In order to gen-
erate the primary amine and also establish the anti relationship between the chiral centres 
by means of dynamic kinetic resolution, transaminases were employed (Scheme 10) [44]. 

 
Scheme 10. Synthesis of PF-04449913 by transamination and DKR. 

The 4-pyridinone substrate for transaminase application 43 was made by addition of 
benzimidazole 39 to pyridinium salt 40, followed by acidic hydrolysis to yield enone 42. 
The latter species 42 was converted to 43 by conjugate reduction and acidic deprotection 
of the tosylate group. Commercially available transaminase ATA-036 was used for the 
amine formation and dynamic kinetic resolution step, giving amine 36 in 85% assay yield, 
with the anti/syn ratio exceeding 10:1 and >99% ee. Due to low stability of 4-pyridinone 43 
at elevated temperatures (>60 °C), the reaction was performed at 50 °C for 50 to 60 h. 
Product 36 displayed very high aqueous solubility, making organic extraction difficult, so 
the DMSO/water mixture was subjected directly to the last step. Here, a suitable N-car-
bamoylimidazole reagent was employed instead of the previously used isocyanate to ad-
dress the safety issues. The entire synthesis required five linear steps, affording 38 in 40% 
overall yield without a requirement for chromatography and on a reported multigram 
scale [44]. 

2.5. MK-7246 
MK-7246 47 is a CRTH2 antagonist developed for treatment of respiratory diseases 

by Merck [45,46]. This example demonstrates how enzymes were employed to evolve the 
synthesis during drug development to obtain quantities of exceeding 10 kg for late-stage 
development into phase II of clinical trials and beyond. 

The original medicinal chemistry route of MK-7246 47 involved HPLC separation at 
the last step. The synthesis scalable to 1-10 kg and developed to supply the animal toxicity 
studies and phase I clinical trials involved the ring-opening of enantiopure aziridine 41 as 
the key strategic step, followed by Friedel-Crafts cyclisation onto the C2 position of indole 
45 (Scheme 11) [46]. 

Scheme 10. Synthesis of PF-04449913 by transamination and DKR.

The 4-pyridinone substrate for transaminase application 43 was made by addition of
benzimidazole 39 to pyridinium salt 40, followed by acidic hydrolysis to yield enone 42.
The latter species 42 was converted to 43 by conjugate reduction and acidic deprotection
of the tosylate group. Commercially available transaminase ATA-036 was used for the
amine formation and dynamic kinetic resolution step, giving amine 36 in 85% assay yield,
with the anti/syn ratio exceeding 10:1 and >99% ee. Due to low stability of 4-pyridinone
43 at elevated temperatures (>60 ◦C), the reaction was performed at 50 ◦C for 50 to 60 h.
Product 36 displayed very high aqueous solubility, making organic extraction difficult,
so the DMSO/water mixture was subjected directly to the last step. Here, a suitable N-
carbamoylimidazole reagent was employed instead of the previously used isocyanate to
address the safety issues. The entire synthesis required five linear steps, affording 38 in
40% overall yield without a requirement for chromatography and on a reported multigram
scale [44].

2.5. MK-7246

MK-7246 47 is a CRTH2 antagonist developed for treatment of respiratory diseases
by Merck [45,46]. This example demonstrates how enzymes were employed to evolve the
synthesis during drug development to obtain quantities of exceeding 10 kg for late-stage
development into phase II of clinical trials and beyond.

The original medicinal chemistry route of MK-7246 47 involved HPLC separation at
the last step. The synthesis scalable to 1-10 kg and developed to supply the animal toxicity
studies and phase I clinical trials involved the ring-opening of enantiopure aziridine 41 as
the key strategic step, followed by Friedel-Crafts cyclisation onto the C2 position of indole
45 (Scheme 11) [46].

The aziridine 41 was prepared from D-aspartic acid 39 available from the chiral
pool in a synthesis involving sulfonamide formation, ester reduction to form a diol that
was subjected to the intramolecular Mitsunobu reaction to form the target aziridine 41.
Addition of the aziridine 42 to the N-anion prepared from indole acetic ester 42 resulted in
regioselective ring opening to give sulfonamide anion 43 that was methylated. After the
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removal of the TBS protecting group and oxidation of the alcohol 44 to the corresponding
aldehyde 46, the latter species was subjected to mild acidic conditions to facilitate cyclisation
and subsequent dehydration to afford allylic sulfonamide 46. This was reduced and
deprotected to give MK-7246 47 (Scheme 11).
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The route had a few limitations, including processing difficulties for a few steps and
instability of intermediates in the route, which made it impractical for preparation of >10 kg
quantities of 47. At the same time, the medicinal chemistry program was still identifying
potential backups for MK-7246, and the route installed the sulfonamide moiety early in the
synthesis, which complicated SAR exploration.

For the second-generation approach, the chiral amine was installed from prochiral
ketone 48 with the aid of a transaminase (Scheme 12). Prochiral ketone 48 was screened
against an array of R-selective transaminases, with CDX-017 giving 98–99% ee and 81%
HPLC yield. Control of pH was required to prevent ester hydrolysis and the biotransfor-
mation was performed with nitrogen purging to minimize alpha-hydroxylation of ketone
48 under the basic conditions while shifting the equilibrium of the biotransformation to-
wards amine 49. Biocatalytic preparation of amine 49 facilitated SAR exploration around
the amine functionality at a late stage of the synthesis, and gave access to laboratory-scale
quantities of 49. However, the bottleneck of the synthesis was preparation of ketone 48,
which was complicated by dearth of crystalline intermediates and necessity of purification
by chromatography after each step. In the manufacture route to MK-7246 47, the synthesis of
ketone 48 was altered while keeping the transaminase step unchanged. The route employed
Fischer indolization to yield diester 52. Subsequently, sulfoxonium ylide 53 was prepared,
and it was subjected to Ir-catalysed N-H insertion giving ketone 48. The biotransformation
employing transaminase was reproducible on scale-up, and isolation was facilitated by
hydrochloride salt formation, giving amine 49 in 76% yield and >99% ee (Scheme 12).

2.6. Vernakalant

Vernakalant 59 is an antiarrhytmic agent to treat atrial fibrillation. It was originally
developed by Cardiome Pharma Corp [47]. Various approaches to the aminoether core of
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the molecule were reported and usually utilized classic resolution or separation of racemic
intermediate or included an expensive chiral starting material [48–51].
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Merck reported a novel approach to the drug with a key step including dynamic kinetic
resolution mediated by a transaminase (Scheme 13). The synthesis was commenced by the
alpha-etherification of alpha-chloroketone 55 with alcohol nucleophile 54. The ketone 56
was screened against various transaminases. Interestingly, initially it was the amine with
syn relationship between the stereogenic centres that was the major product. In silico design
and directed evolution of transaminase ATA-013 gave a new variant that displayed reverse
diastereoselectivity furnishing the anti product. Concurrent enhancement of reactivity and
selectivity as well as high pH tolerance were observed. The optimized conditions included
isolation of the amine as the D-malate salt 57 to give 58 in 81% yield with 99.6:0.4 dr and
>99% ee. Apart from the purity upgrade, the malate salt facilitates direct formation of
the hydroxypyrrolidine ring. The malate salt was converted to succinimide intermediate
in a step catalysed by alkyl boronic acid catalyst and subsequently reduced to obtain
vernakalant (Scheme 13).
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3. Imine Reductases
3.1. Overview

As pointed out previously, the main limitation of transaminases is their ability to
generate only primary amines. This difficulty can be overcome by employing imine
reductases (IREDs), being NAD(P)H-dependent oxidoreductases that reduce imines to
the corresponding substituted amines. This class of enzymes can perform both imine
reduction and reductive amination (Scheme 14). The later process is particularly impressive
considering the unfavourable equilibrium of imine formation in the aqueous medium [52].
For this reaction to be efficient, imine reductases must be chemoselective to avoid reduction
of the carbonyl to the corresponding alcohol. Since 2010, when Mitsukura and co-workers
published the application of an imine reductase isolated from the Streptomyces species to
the reduction of 2-methyl-1-pyrrolidine [53,54], several publications and patents have been
issued each year [20]. However, until recently few industry-relevant applications have
been reported. The section below describes the use of imine reductases in the manufacture
of GSK2879552 [55], and a team from Pfizer Worldwide Research and Development have
also applied this family of enzymes to the synthesis of JAK1 inhibitor abrocitinib [56].
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3.2. GSK2879552

Imine reductases facilitate production of chiral amines by catalysing asymmetric
reductive amination of ketones or aldehydes with amines. Despite a lot of momentum in
their research since the disclosure of the first imine reductase by Mitsukura in 2010 [53,54],
few industrial applications were exemplified until recently. The application of an imine
reductase by the GSK in the manufacture of lysine-specific demethylase-1 LSD1 inhibitor
GSK2879552 64 is a spectacular demonstration of the potential of this class of enzymes
(Schemes 15 and 16) [55].
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The imine reductase used was a wild-type enzyme that was then engineered to a more
stable and active variant in three rounds of evolution, giving access to kilogram quantities
of GSK2879552 64. The key intermediate in the synthesis was afforded in 84% yield, 99.9%
purity and >99.7% ee. The reductive amination step also performed amine resolution of
the chiral substrate amine. At the time of publication, GSK2879552 was in Phase II clinical
trials to treat small cell lung cancer and acute leukaemia [57].

The advantage of using biocatalysis in the preparation of the compound is clear when the
enzymatic route is compared to the original chemical process requiring resolution of racemate
of amine tranylcypromine sulfate (rac-trans-60) to the (1R, 1S)-62 enantiomer. Following the
resolution of 62, chemical reductive amination at low temperature including several workups
and generating boron-containing waste was performed to give 63 (Scheme 15).

After screening a panel of IREDs, IR-46 gave the best results on a 1 g scale with cell-free
lysate, affording (1R,2S)-64 with 73% conversion and >99% e.e. after 2 h. However, in order
to give a commercially viable process, it was concluded that enzyme evolution had to be
performed. The desired improvements included a reduced catalyst loading of biocatalyst,
increased substrate concentration and higher isolated yield while maintaining the high
enantioselectivity of the reaction. A lower, moderately acidic pH was desired to enhance
product stability as well as solubility of both the substrate and product. After three rounds of
directed evolution the best variant M3 met the target process criteria and it was used in 20 L
scale manufacture of 64. With the biotransformation run in three batches, 1.4 kg of 64 was
afforded in 84.4% isolated yield, >99.9% purity and 99.7% enantiomeric excess with excellent
batch-to-batch reproducibility (Scheme 16). To avoid the risk of emulsion formation and
maximise product isolation, a product precipitation work-up was implemented. The desired
susbtrate loading in the process was lower compared to other industrial processes because
of the low solubility of aldehyde 65 and product 65. However, the developed process was
still highly advantageous with respect to the original chemical one.

3.3. Abrocitinib

In 2021, Weaver and coworkers published a synthesis of late-stage drug candidate
abrocintinib, a Janus kinase 1 (JAK1) inhibitor, using an engineered IRED, SpRedAm-R3-
V6 (Scheme 17c) [56]. Some IRED enzymes have been referred to as reductive aminases,
or RedAms, to highlight their activity in intermolecular reductive amination where the
ratio of amine to ketone or aldehyde is close to 1:1. The Pfizer team describes a >200-fold
improvement in performance for their evolved enzyme over the wild-type IRED in the key
reductive amination of isopropyl 3-oxocyclobutane-1-carboxylate 65 with methylamine.
The process was carried out on metric tonne scale and replaced a chemical reduction
with LiBH4 which was not sufficiently diastereoselective (Scheme 17a) and required a low
reaction temperature. A transaminase route was also explored (Scheme 17b); however
since the product is a secondary amine, it would have required further alkylation after the
transaminase step. Kumar et al. sought to avoid this due to the risk of over-alkylation and
the genotoxicity of typical alkylating agents.
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Scheme 17. Chemical and enzymatic routes to abrocitinib precursor: (a) chemical amination and
reduction with subsequent recrystallisations to afford a single diastereomer; (b) highly selective
transaminase-catalysed amination with subsequent alkylation; and (c) imine reductase-catalysed
reductive amination using methylamine to afford 67 in a single step with excellent diastereoselectivity.

3.4. Suvorexant

Imine reductases were also used to synthesise suvorexant, which was described in
Section 2.3. Zhu and coworkers reported syntheses of both (R)-25 and (S)-25 by biocatalytic
asymmetric intramolecular reductive amination using enantiocomplementary imine reduc-
tases (Scheme 18) [42]. An (R)-Selective IRED from Leishmania major (IR1) was evolved, and
its double mutant Y194F/D232H was identified by saturation mutagenesis and iterative
combinatorial mutagenesis. A preparative biotransformation using the Y194F/D232H
mutant was performed on 100 mL scale with 100 mM substrate concentration to give (R)-25
in 81% isolated yield with excellent > 99% ee.
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4. Monoamine Oxidase
4.1. Overview

Monoamine oxidases are flavin-dependent enzymes that catalyse oxidation of amines
to imines using molecular oxygen, which is associated with concomitant FAD cofactor
reduction and hydrogen peroxide generation (Scheme 19) [21,23]. MAO-N isolated from
Aspergillus niger was amenable to protein engineering and gave several synthetically useful
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biocatalysts, which were applied in various transformations, including kinetic resolu-
tions [30], deracemisations [58] or oxidative desymmetrisations [59].
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The deracemization of chiral amines involves enzyme-mediated cycles of repeated
enantioselective oxidation followed by non-selective chemical reduction using reagents, such
as ammonia borane (Scheme 19) [60], and this process can be applied to primary, secondary
and tertiary amines. Preparative scale deracemisations of precursors to levocetirizine,
solifenacin [59] and telaprevir [61] were demonstrated. The section below describes the
application of monoamine oxidases to the preparation of a precursor to boceprevir by Merck.

4.2. Boceprevir

Boceprevir 71 (trade name Victrelis) is a peptidomimetic protease inhibitor used for
the treatment of chronic hepatitis C [62]. Its structure consists of three units and a Cap
(Figure 1). Unit P1 is a racemic β-aminoamide, P2 is a chiral dimethylcyclopropylproline
analogue, and P3 is (S)-tert-leucine, with the latter being capped with a tert-butylcarbamoyl
group. The P2 moiety was particularly challenging synthetically, and biocatalysis was
successfully employed in the synthesis of P2 to improve the sustainability and performance
of the manufacturing process of boceprevir.
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Figure 1. Structure of Boceprevir.

The hydrochloride salt of the dimethylcyclopropylproline methyl ester, being the
precursor for the P2 unit, was originally prepared on a large scale using caronic acid
74 as the starting material (Scheme 20) [63]. The latter species can be accessed in two
steps. Caronic acid 74 was desymmetrised using (R)-(+)-methylbenzylamine to obtain
enantiopure species 75 with two stereogenic centres. After four more steps, species 79
containing Cbz-protected amine and aldehyde functionalities was converted to 80, which
was subjected to diastereoselective cyanation to obtain 81. Nitrile hydrolysis and Cbz-
deprotection gave 83.
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The second-generation route performed the classical resolution of a racemic mixture
of aminoester 83 using tartrates at the end of the route (Scheme 21) [64,65]. The classical
resolution of the target enantiomer in the last step of the second-generation synthesis meant
the automatic loss of 50% of material, and the precursor of dimethylcyclopropylpyrrolidine
85 from the ethyl chrysanthemate 72 precursor (Scheme 20) used excess amounts of oxidants
and reductants, thus further increasing the amounts of the material lost in the preparation of
83. Hence, more practical approaches involving desymmetrisation of dimethylcyclopropy-
lpyrrolidine 85 were explored. The application of asymmetric phase-transfer catalysis for the
dehydrohalogenation of the chloroamine congener gave low enantiomeric excess of 20%.
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DTTA-di-p-toluoyl-L-tartaric acid.

Biocatalytic asymmetric oxidation was investigated as another approach [62,66]. FAD-
dependent monoamine oxidase from Aspergillus niger (MAO-N) uses molecular oxygen to
oxidise the amine to the corresponding imine, giving hydrogen peroxide as a side-product
(Scheme 22). The mechanism of the biotransformation created challenges from the process



Catalysts 2022, 12, 595 17 of 22

development point of view, the key points being application of molecular oxygen and
releasing a proton per turnover. The former aspect precluded using most organic solvents,
whereas the latter one necessitated monitoring the pH of the process.
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Scheme 22. Desymmetrisation of dimethylcyclopyrrolidine by oxidation with monoamine oxidase
MAO-N.

The enzyme optimization, initiated with the Aspergillus niger MAO-N enzyme, led to
variant MAON401 after four rounds of evolution. The variant met the stability and activity
targets and gave an eight-fold increase in activity with respect to the parent enzyme [62].

Due to the low solubility of oxygen in the aqueous medium of biotransformation (ap-
prox. 250 µM in pure water), the supply of oxygen was facilitated by passing air through a
gas dispersion tube, which maximized mass transfer. Catalase was used to decompose the
byproduct hydrogen peroxide, and the pH 7.4 was maintained by sodium hydroxide titra-
tion. The biotransformation had limited conversion since the imine product 86 irreversibly
inhibited MAO-N. Imine 86 had also low aqueous solubility and was volatile, constituting
a potential hazard upon exposure to oxygen. To solve this problem, imine 86 was converted
to a water-soluble amino sulfonate 91 upon the addition of sodium bisulfite to the reaction
mixture. The formation of amino sulfonate 91 helped to drive the conversion to 100%
by keeping the concentration of MAO-N inhibitor imine 86 low throughout the process.
The chiral amino sulfonate was telescopically subjected to cyanation, and the resulting
trans-nitrile 88 was obtained in approx. 90% yield from dimethylcyclopropylpyrrolidine
85. This was followed by conversion of the nitrile to the methyl ester and formation of the
hydrochloride salt, giving 83 HCl a 56% overall yield and >99% ee (Scheme 23).
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5. Pictet-Spenglerases

The Pictet-Spengler reaction plays an important role in the biosynthesis of alkaloids.
These reactions are catalysed by Pictet-Spenglerases. The biotransformations employing
them offer stereo-and regiocontrol with respect to the classical organic synthetic approaches.
Products of reactions mediated by Pictet-Spenglerases are tetrahydroisoquinoline and β-
carboline scaffolds, which are of interest to the pharmaceutical industry. Several enzymes of
this class have been identified in the literature but only two of them (norcoclaurine synthase
and strictosidine synthase) have been used to prepare novel alkaloids. Application of Pictet-
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Spenglerases as biocatalysts is limited due to a narrow substrates scope, problems with
isolations and enzyme stability [22].

Nonetheless, their use was recently demonstrated in a total synthesis of (−)-strictosidine
94 by Tang, Houk, Garg and co-workers [67], in which the last step of the 10-step synthesis
includes an enzymatic Pictet-Spengler reaction. The biocatalyst applied was strictosidine
synthase used as a cell free lysate with the intermediate (−)-secologanin 93 and tryptamine
92 on a milligram scale to afford the natural product 94 in 82% yield (Scheme 24). Strictosi-
dine is a natural substrate for this transformation that was previously employed in de novo
production of the alkaloid in yeast [68].
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It is worth emphasizing that the biotransformation furnishes a single diastereomer due to
the fully stereoselective formation of the chiral centre at position C3 (Scheme 25). However, the
same procedure was unsuccessful when applied to the synthesis of the epimer of strictosidine
96, which shows the substrate specificity of the enzyme. In this case, the tetrahydro-beta-
carboline scaffold was prepared using TFA on the acetate-protected epi-secologanin 95 and 92
to yield 96 as a 1:1 diastereomeric ratio with respect to position C3.
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6. Conclusions

The examples shown in this review demonstrate that biocatalysis found use in small
molecule pharmaceutical development CMC (Chemistry, Manufacturing and Controls).
In several cases biotransformations were not applied in the initial process route, which
can be rationalized by high substrate specificity of enzymes and having to evolve them
in order to meet the target requirements. With progress in protein engineering, these
timelines are getting shorter. It can be envisaged that the impact of biocatalysis on the
pharmaceutical industry will increase, particularly taking into consideration the potential
to provide greener, more sustainable and less expensive processes. Biocatalysis may be a
useful tool in drug discovery, but high enzyme specificity can hinder the SAR exploration,
and the potential necessity to evolve enzymes does not match the timelines of many
projects [9,25]. However, medicinal chemists should think about biocatalysis particularly
to bridge the gap between discovery chemistry and process chemistry, when the breadth
of chemical space becomes less important and more emphasis is put on robustness and
productiveness [3].

Transaminases are currently the most commonly used enzymes for the synthesis of
amine-containing drugs. Their application in the manufacture of sitagliptin helped to
develop a greener alternative to transition metal-catalysed hydrogenation when installing
the chiral primary amine, and introduced asymmetric bias at a late stage of the synthesis.
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Similarly, employing transaminases in the preparation of suvorexant gave an alternative to
transition metal-catalysed reductive amination and overcame the limitations of classical
enantiomer resolution originally employed in the synthesis. Both in the case of PF-0444913
and vernakalant, transaminases helped to establish the anti relationship between the chiral
centres by means of dynamic kinetic resolution. For MK-7246, application of transaminases
removed the necessity of installing chiral amine moiety at the beginning of the synthesis,
which supported the medicinal chemistry program and facilitated SAR exploration around
the sulfonamide functionality at a late stage of the synthesis. Despite their common use in
industry, application of transaminases faces challenges resulting from unfavourable equi-
libria and being limited to preparation of primary amines. This means that they are facing
competition from emerging enzyme classes, most notably imine reductases. It was demon-
strated very well in the case of abrocitinib, in synthesis of which both transaminases and
imine reductases were investigated. It was the latter enzyme class that was applied in the
multi-kilogram-scale preparation of the drug intermediate by giving directly a secondary
amine and removing necessity of an extra alkylation of primary amine step with respect
to the transaminase route. The number of applications of imine reductases for large-scale
preparation of chiral amines is likely to grow in the next few years. Monoamine oxidases
have also found industrial applications, as shown for boceprevir, but their mechanism of
action employing oxygen and generating hydrogen dioxide as well as a proton makes their
use on a large scale challenging.

It is important to note that many of the final processes described here relied on enzyme
evolution to achieve the desired yield and turnover. Enantioselectivity is not typically the
limiting factor, but rather the stability of the enzyme preparation under intensive process
conditions and its activity towards a particular pharmaceutical intermediate. This protein
engineering can be outsourced but is increasingly carried out in-house, typically in a semi-
rational way which cuts down the number of mutants to be screened while still relying
on automation to meet drug development timelines. Methods such as the Combinatorial
Active-Site Saturation Test, Iterative Saturation Mutagenesis, and Focused Rational Iterative
Site-specific Mutagenesis combine the Nobel Prize-recognised directed evolution approach
with modern computational tools [69]. Fortunately, biotransformations generally lend
themselves to high-throughput screening due to the aqueous reaction media and non-toxic
nature of the catalysts themselves.
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