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Abstract: Owing to the energy crisis and environmental pollution, it is essential to develop cheap,
environmentally friendly and sustainable energy to replace noble metal electrocatalysts for use in
the hydrogen evolution reaction (HER). We report herein that a Cu/Cu3P nanoarray catalyst was
directly grown on the surfaces of Cu nanosheets from its Cu/CuO nanoarray precursor by a low-
temperature phosphidation process. In particular, the effects of phosphating distance, mass ratio and
temperature on the morphology of Cu/Cu3P nanoarrays were studied in detail. This nanoarray, as
an electrocatalyst, displays excellent catalytic performance and long-term stability in an acid solution
for electrochemical hydrogen generation. Specifically, the Cu/Cu3P nanoarray-270 exhibits a low
onset overpotential (96 mV) and a small Tafel slope (131 mV dec−1).

Keywords: Cu/Cu3P nanoarrays; Cu nano-substrates; electrocatalyst; HER

1. Introduction

Due to the excessive consumption of fossil fuels, the resulting environmental pollution
and global energy crisis have aroused widespread concern. It is essential to develop clean,
environmental friendly and renewable energy sources to reduce our dependence on fossil
fuels and benefit the environment by reducing greenhouse gas emissions [1–7]. Among
variable alternatives, hydrogen has been considered as an ideal energy carrier due to
its environmental friendliness and high energy density. Electrochemical water splitting
is one of the most simple and promising strategies to create high-purity hydrogen in
an economic way [8–14]. However, the production efficiency is low without the use of
electrocatalysts, which can significantly reduce the large overpotential for the hydrogen
evolution reaction (HER). It is well known that Pt, Ru-based and Ir-based catalysts are
regarded as the most promising electrocatalysts for the HER and OER, because of their high
electrocatalytic performance [15–23], whereas their widespread application is restricted by
their high costs and low abundance on Earth. Therefore, the major challenge in hydrogen
production is to reduce the use of noble metals or replace them with inexpensive non-
precious metal catalysts.

In recent years, a lot of effort in the field of highly active, Earth-abundant catalysts
has been dedicated to various types of alternative materials, such as transition metal
sulfides [24–26], metal carbides [27–29], metal nitrides [30–32], metal phosphides [33–36]
and even metal-free materials [37,38]. Transition-metal phosphides (TMPs) are an important
class of compounds with metalloid characteristics and good electrical conductivity. In the
structure of metal phosphides, negatively charged P atoms can act as ideal active centers for
proton adsorption, bringing about the dynamical optimization of the HER [39–41]. To date,
various metal phosphides have been adopted for electrochemical hydrogen evolution, such
as cobalt phosphide nanoparticles (CoP NPs [42]), nickel phosphide nanoparticles (Ni2P
NPs [43]), molybdenum phosphide nanoparticles (MoP NPs [44]) and Ni–Fe phosphide
nanohybrids [45], which have attracted attention for their excellent electrocatalytic activities
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for the HER. However, the relatively low electrical conductivity of most phosphide catalysts
remains a problem, leading to limited charge transfer and passivated electrocatalytic activity.
Furthermore, these electrocatalysts are prone to agglomeration under high current density
or long-term tests in practical application in the HER.

To overcome the above-mentioned issues, alternative architectural arrays grown on
conductive substrates have been explored due to the large surface area, abundant active
sites, and synergistic effects between the electrocatalysts and the conductive substrates.
Recently, Sun and co-workers [46] reported on porous urchin-like Ni2P microsphere su-
perstructures anchored on nickel foam, which afforded a current density of 10 mA cm−2

at a low overpotential of only −98 mV for the HER. Tan and co-workers [47] reported
on flower-like structures consisting of NiCoP-CoP nanowires grown directly on porous
nickel frameworks to achieve a highly efficient HER in an alkaline solution. For the HER,
a binder-free NiCoP-CoP/Ni/NF electrode can reach 10 mA cm−2 current density at a
quite low overpotential of 49 mV. Despite extensive progress in nanoarray architectures,
self-supporting nanoarray structures on conductive materials are still a key challenge.

Over the past decade, Fe, Co and Ni as electrocatalysts have exhibited excellent
catalytic performance for the HER. Nevertheless, as an Earth-abundant transition metal,
Cu-based catalysts have been relatively less studied in terms of the HER. Therefore, it is sig-
nificant to design Cu-based materials with special structures for developing high-efficiency
electrocatalysts. Recent studies have shown that Cu3P is an excellent electrocatalyst for use
in the HER [48,49]. Herein, self-supported Cu/Cu3P nanoarrays were successfully grown
on the surfaces of Cu nanosheets from Cu/CuO nanoarrays precursor by a low-temperature
phosphidation process. The Cu/Cu3P nanoarray-270, as an electrocatalyst, displays excel-
lent catalytic performance and durability for electrochemical hydrogen generation, and
exhibits a low onset overpotential (96 mV) and a small Tafel slope (131 mV dec−1). The
morphology and nanostructure of the self-supported Cu/Cu3P nanoarray catalyst affect
the electrocatalytic efficiency significantly. The nanoarrays possess large surface areas and
a great number of active sites, which is immensely beneficial for electrocatalysis capacity
enhancement. At the same time, copper-based catalysts can also be used in other types
of organic reactions [50]. It is expected that this innovative approach will become a new
concept to synthesize highly efficient catalysts.

2. Results

The typical procedure for the synthesis of Cu/Cu3P nanoarrays is summarized in
Figure 1. In brief, Cu nanosheets are firstly synthesized according to hydrothermal method.
Then, Cu nanosheets, as both a self-template and nano-conductive substrate, are immersed
in a solution of NaOH/H2O2 for the formation of Cu/CuO nanoarrays. Cu/CuO nanoar-
rays and NaH2PO2 are calcinated under an Ar gas flow; the original black color of the
Cu/CuO turns gray after the phosphorization process, thus suggesting that the copper
oxides on the surfaces of Cu nanosheets are converted into cuprous phosphide.
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The X-ray diffraction (XRD) patterns of the Cu/CuO nanoarrays before and after
phosphidation are shown in Supplemaentery Figures S1c and 2a. The precursor shows
diffraction peaks characteristic of CuO (JCPDS No. 04-1548). In contrast, only peaks
corresponding to Cu3P can be observed for the resulting copper phosphide. Figure 2a
shows that all diffraction peaks are in accordance with the hexagonal structure of Cu3P
(JCPDS No. 02-1623), and the strong peaks at 43.4◦, 50.4◦ and 74.1◦ originate from the Cu
nanosheets (JCPDS No. 04-0836), indicating that all copper oxides are completely trans-
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formed into cuprous phosphides in the phosphating process, while the copper nanosheets,
as a conductive template, have not been completely consumed.
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The morphologies of products were characterized by scanning electron microscopy
(SEM). Figures 2b and S1a show the SEM images of Cu nanosheets as the self-template
and conductive substrate, which had a large area of 30–100 µm in diameter with smooth
surface. The SEM images of the Cu/CuO nanoarrays at different magnification are shown
in Figures 2c,d and S2. The CuO nanoarrays are uniformly distributed on the surface of
the Cu nanosheet, consisting of uniform nanoplates with a width ranging from 30 nm to
80 nm and are 3–5 µm in length. After phosphidation, the nanoarray morphology is still
preserved, as shown in Figure 2e,f. The plate Cu3P nanoarrays grown on the Cu nanosheet
substrate and the surfaces of the nanoarrays become rough. The high-magnification SEM
image of the Cu3P nanoplate is shown in Figure S3, and close observation reveals that
the thickness of an individual Cu3P nanoplate increases from 60 nm to 120 nm in the
phosphating process. The nanoarray structure helps to expose more active sites in the
catalytic reaction, and the interspace between the nanoarrays can favor the diffusion of
electrolytes. The high-resolution transmission electron microscopy (HRTEM) image (inset
f) shows clear lattice fringes with an interplane distance of 0.31 nm, corresponding to the
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(111) of the Cu3P. All these results clearly confirm the successful synthesis of Cu/Cu3P
nanoarrays by low-temperature phosphidation from the Cu/CuO nanoarray precursor.

The detailed elemental compositions and valence states of as-synthesized Cu/Cu3P
were characterized by X-ray photoelectron spectroscopy (XPS), as shown in Figure 3. The
full survey XPS spectrum (Figure S4) shows that the Cu/Cu3P comprises Cu, P, O and C
elements. As shown in Figure 3a, two main peaks of Cu 2p are located at 934.6 eV and
954.4 eV, which represent the Cu 2p3/2 and Cu 2p1/2 peaks, respectively. The peaks at
933.1 eV and 935.1 eV are assigned to the Cuδ+ in the Cu3P and oxidized Cu for the Cu
2p3/2 energy level, while the peaks at 940.8 and 944.1 eV belong to the satellite peaks of Cu
2p3/2. The three peaks appearing at 952.8, 955.2 and 962.9 eV are indexed to the Cuδ+ in the
Cu3P, oxidized Cu and the satellite for Cu 2p1/2, respectively [51,52]. In Figure 3b, the peak
at 133.6 eV could be indexed to oxidized phosphate species, resulting from the exposure of
the sample to air. The lower binding energy peaks situated at around 129.1 eV and 129.9 eV
correspond to P 2p3/2 and P 2p1/2 of Cu/Cu3P nanoarrays, respectively [53,54]. Note that
the binding energy of P 2p (129.9 eV) shows a negative shift from elemental P (130.2 eV),
indicating that P carries a negative charge (δ-). The results suggest that charge transfer
occurs between Cu and P, in which Cu may serve as the hydride-acceptor center and P may
act as the proton-acceptor center [55].
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The fabrication process of the Cu/Cu3P nanoarray is illustrated in Figure 4a. The mor-
phology of the products was found to strongly depend on the distance between Cu/CuO
nanoarrays and sodium hypophosphite in the phosphating process. When the distance
between the two precursors is less than 5 cm, the nanoarray structure on the surface of the
Cu nanosheets disappears and its surface becomes rough, as shown in Figure 4b,c. Further
increasing the phosphating distance to 16 cm, part of the array structure on the surface
can be observed, as shown in Figure 4d. The nanoarrays are obviously thicker than the
original CuO nanoplate, and agglomeration between the nanoarrays is more serious. When
the phosphating distance was extended to 24 cm (in Figure 4e), the nanoarray structure
composed of Cu3P nanoplates with a width of around 300–800 nm and lengths of up to sev-
eral micrometers was vertically grown on the surface of the Cu nanosheets. The topotactic
conversion of the Cu/CuO nanoarrays into the Cu/Cu3P nanoarray could be explained
as follows: first, the thermal decomposition of NaH2PO2 generates PH3, and the CuO
nanoarrays are reduced to Cu nanoarrays by PH3. Then, the resulting Cu subsequently
catalyzes the decomposition of PH3 into elemental P. Finally, the elemental P further reacts
with Cu to form Cu3P nanoarrays.

The influence of different mass ratios of phosphorus precursor and the Cu/CuO
nanoarrays on the morphology and crystal structure was investigated, as shown in Figure 5.
When the mass ratio of NaH2PO2 to CuO is 1, the morphology of Cu/Cu3P nanoarrays does
not change significantly (Figure 5a), and the corresponding XRD pattern shows that only a
small amount of Cu3P is formed in the product (Figure 5b), indicating that the CuO cannot
be converted into Cu3P at this ratio. When the mass ratio of NaH2PO2/CuO increases to
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2, the obtained array structure is thicker than that of the precursor (Figure 5c), and the
corresponding XRD pattern reveals that CuO has been converted into Cu3P completely,
but the amount of Cu3P in the product is small (Figure 5d). When the mass ratio of
NaH2PO2/CuO further increases to 2.5, the morphology of the product still maintains the
nanoarray structure (Figure 5e), and the corresponding XRD pattern shows that Cu3P is
generated, while the peak intensity of the copper substrate does not change significantly
(Figure 5f), indicating that the Cu nanosheet has not been converted. Until the mass ratio
of NaH2PO2/CuO reached 3, the corresponding SEM image of this sample reveals that the
Cu3P nanoarrays thickened and agglomerated together (Figure 5g). The intensity of the
XRD pattern of Cu in the product is significantly weakened (Figure 5h), indicating that the
Cu nanosheet substrate is partially converted into Cu3P during the phosphating reaction.
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The influence of the phosphating temperature on the nanostructures formed was
investigated, as shown in Figure 6. Figure 6a,b show that CuO and Cu3P were simulta-
neously observed on the Cu nanosheets at 260 ◦C.With the increase in temperature, the
thickness of nanoarrays composed of nanoplates was increased, while the CuO nanoarrays
were completely converted to Cu3P nanoarrays at 290 ◦C, as shown in Figure 6c,d. Until
the temperature reached 310 ◦C, the nanoarray structures grown on the surfaces of Cu
nanosheets experienced obvious agglomeration and collapse, and the corresponding XRD
pattern revealed that a part of the Cu nanosheets was converted to Cu3P in the phosphating
reaction (Figure 6e,f). The effects of phosphating time on the morphology and phase of
as-prepared nanostructures were likewise studied, as shown in Figure S5. When the calci-
nation time was increased to 1.5 h, the morphology of the product obtained was as shown
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in Figure S5c. The nanoarray structure composed of nanoplates is significantly thicker than
that obtained at 1 h (Figure S5a). Moreover, the weak diffraction peak of Cu indicated
that most of the Cu nanosheet substrates were transformed into Cu3P (Figure S5d). The
above results reveal that the phosphating temperature and time had a great impact on the
formation of the resultant Cu/Cu3P nanoarrays in the present study.
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As a comparison, the pure Cu nanosheet was directly phosphated and calcined under
the same conditions, while the morphology and crystal structure of the products were
characterized. As shown in Figure S6a, the 2D nanosheet morphology was still preserved,
and the smooth surface of the Cu nanosheets became rough after phosphating. At the
same time, the corresponding XRD pattern confirmed that Cu3P was indeed generated
(Figure S6b). The results indicate that the CuO nanoarray on the surface of the Cu nanosheet
plays a very significant role in maintaining the morphology of Cu/Cu3P nanoarrays.
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Figure 6. SEM images and XRD patterns of products at different phosphating temperatures:
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The electrocatalytic activity of the Cu/Cu3P nanoarray for the HER was tested by
using a standard three-electrode device in 0.5 M H2SO4 solution. Figure 7 shows the
polarization curves of these electrodes obtained at different temperatures without iR cor-
rection. The catalytic behavior of Cu/Cu3P NS obtained by the direct phosphating of
the Cu nanosheet was also investigated for comparison. Obviously, the Cu/Cu3P NS
showed poor electrocatalytic activity, with an onset overpotential value of 347 mV. In
sharp contrast, Cu/Cu3P nanoarray-270 was significantly active for the HER, with an onset
overpotential as low as 96 mV, and additional negative potential leads to a rapid rise in
the cathodic current. It requires 253 mV of overpotential (η10) to reach a current density (j)
of 10 mA cm−2, which is lower than that of Cu/Cu3P nanoarray-290 (η10 = 342 mV) and
Cu/Cu3P nanoarray-310 (η10 = 395 mV). Moreover, an overpotential of 424 mV is required
for Cu/Cu3P nanoarray-270 to reach the current density of 100 mA cm−2, which is much
lower than that of Cu/Cu3P nanoarray-290 (η100 = 589 mV) and Cu/Cu3P nanoarray-310
(η100 = 635 mV).

The Tafel slope is an effective means to assess the advantages of electrocatalysts. The
Tafel plots in Figure 7b were obtained from the linear portion that conformed to the Tafel
equation (η = a + b log j, where b is the Tafel slope and j is the current density). It can be
seen that the Tafel slope for Cu/Cu3P nanoarray-270 is 131 mV dec−1, much lower than that
of Cu/Cu3P nanoarray-290 (145 mV dec−1) and Cu/Cu3P nanoarray-310 (156 mV dec−1).
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These results indicate that Cu/Cu3P nanoarray-270 exhibits high electrocatalytic efficiency.
A detailed comparison of Cu/Cu3P nanoarray-270 with other electrocatalysts is shown in
Table S1, indicating its superior or comparable performance [56–59].
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The long-term stability of an electrode is another important issue to consider for prac-
tical applications. The durability of Cu/Cu3P nanoarray-270 was examined at 23 mA cm−2

in H2SO4 solution, as shown in Figure 7c. The current density curve related to time reveals
a minor increase after 15 h, indicating the high electrochemical stability of the Cu/Cu3P
nanoarray catalysts for the HER in an acidic solution. Electrochemical impedance spec-
troscopy (EIS) was performed to identify the interfacial properties and catalytic kinetics of
the as-synthesized Cu/Cu3P nanoarray catalyst in the HER process. As shown in Figure 7d
(inset: the equivalent circuit), the series resistance values (Rs) were obtained in the high-
frequency zone, and the semicircle in the low-frequency range reflects the charge transfer
resistance at the interface between the Cu/Cu3P and the electrolyte (Rct). The Nyquist
plots reveal that Cu/Cu3P nanoarray-270 (4.1Ω) exhibits a much smaller semicircle than
Cu/Cu3P nanoarray-310 (49.6 Ω), suggesting that it has fast charge transfer kinetics for
the HER. This result validates that the introduced Cu nanosheet, as a conductive substrate
and nano-template, can improve the charge transport and electrochemical activity of the
Cu/Cu3P nanoarray electrode.

3. Materials and Methods
3.1. Chemicals and Materials

Copper(II) sulfate (CuSO4·5H2O), glucose (C6H12O6), polyvinylpyrrolidone (PVP,
Mw = 30,000), hydrogen peroxide (H2O2, wt% = 30%), Nafion solution and sodium hy-
pophosphite (NaH2PO2) were purchased from Sigma-Aldrich. All chemicals were used
without further purification.

3.2. Synthesis of Cu Nanosheets

All chemicals in the experiment were analytical grade and used without purification.
The well-defined Cu nanosheets were prepared according to the procedures in our previous
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report [60]. In brief, 1.0 g C6H12O6·H2O, 0.5 g polyvinyl pyrrolidone (PVP) and CuSO4
were dissolved in 25 mL of deionized water with vigorous magnetic stirring, and then the
mixture was transferred into a Teflon-lined autoclave and heated at 180 ◦C for 3 h. The
brown-red products were collected, washed three times with deionized water and ethanol,
respectively, and then dried in a vacuum at 60 ◦C.

3.3. Synthesis of Cu/CuO Nanoarrays

The hierarchical Cu nanosheet@CuO nanorods were synthesized by a simple hy-
drothermal process. In a typical synthesis procedure, an amount of Cu nanosheets and
22 mL of NaOH (0.55 mol/L) were added into a Teflon-lined vessel with vigorous magnetic
stirring, and then 2 mL H2O2 (30%) was injected rapidly into the mixture solution under
stirring. Afterward, the vessel was sealed and then hydrothermally heated at 130 ◦C for
9 h; the as-prepared products were collected and washed three times with deionized water,
and then dried in a vacuum at 60 ◦C.

3.4. Synthesis of Cu/Cu3P Nanoarrays

To prepare Cu/Cu3P nanoarrays, NaH2PO2 was placed at the center of the tube
furnace and the Cu/CuO nanoarray was placed at the downstream side of the furnace at
carefully adjusted locations to set the temperature, and the distance between them was
measured to be approximately 24 cm. After flushing with Ar, the center of the furnace was
elevated to 270 ◦C with a heating rate of 2 ◦C/min and held at this temperature for 60 min.
For comparison, samples at different phosphating temperatures were synthesized by the
same process.

3.5. Material Characterization

XRD patterns were collected using an M21X diffractometer (MAC Science Co. Ltd.,
Japan) with high-intensity Cu Kα radiation (λ = 1.541Å). The morphology of the products
was characterized via scanning electron microscopy (SEM, ZEISS SUPRA55). The HRTEM
images were collected on a FEI Tecnai F20 electron microscope operated at 200 kV. The
elemental compositions and valence states of the samples were determined by XPS. XPS
measurements were performed using a Thermo Fisher Scientific, Escalab-250Xi spectrom-
eter with an Al Kα X-ray resource. The C 1s contamination peak was used for charge
correction (284.8 eV).

3.6. Electrochemical Measurements

The electrochemical performances of Cu/Cu3P nanoarrays were evaluated with the
CHI 660D electrochemical workstation. All the electrochemical measurements were con-
ducted in a typical three-electrode setup with an electrolyte solution of 0.5 M H2SO4 using
Cu/Cu3P nanoarrays as the working electrode, a graphite plate as the counter electrode
and Ag/AgCl as the reference electrode. In all measurements, the Ag/AgCl reference
electrode was calibrated with respect to a reversible hydrogen electrode (RHE). Linear
sweep voltammetry (LSV) measurements were conducted in 0.5 M H2SO4 with a scan rate
of 2 mV s−1. All the potentials reported in our work were versus the RHE according to
E vs. RHE = E vs. Ag/AgCl + Eθ

vs. Ag/AgCl + 0.059 pH. Impedance measurements were carried
out with a frequency range from 0.1 Hz to 10 kHz at the open-circuit potentials.

4. Conclusions

In summary, we have successfully prepared Cu/Cu3P nanoarrays via a facile two-step
synthetic strategy, including the hydrothermal synthesis of a Cu/CuO nanoarray precursor
and a low-temperature phosphorization process in an Ar atmosphere. The as-prepared
Cu/Cu3P nanoarrays, as electrocatalysts, display excellent catalytic performance and
durability for electrochemical hydrogen generation. Specifically, the Cu/Cu3P nanoarray-
270 exhibits a low onset overpotential (96 mV) and a small Tafel slope (131 mV dec−1).
The excellent electrocatalytic efficiency of the Cu/Cu3P nanoarray catalyst for the HER
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can be attributed to its unique architecture. The nanoarray structure provides more active
sites and contributes to the diffusion of the products. The Cu/Cu3P nanoarrays show
good electrical conductivity, which is favorable to a faster transfer rate of electrons. This
strategy provides an efficient technique that can be extended to other metal phosphides
and metal-based nanostructures, thus creating a new opportunity in hydrogen production.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal12070762/s1, Figure S1: Characterization of the morphology
and structure of samples: (a) SEM image of Cu nanosheet, (b) XRD patterns of Cu nanosheets,
and (c) XRD patterns of Cu/CuO nanoarrays; Figure S2: The high-magnification SEM images of
samples: (a,b) SEM image of Cu/CuO nanoarrays; Figure S3: The high-magnification SEM images of
(a) CuO nanoplate, (b) Cu3P nanoplate; Figure S4: XPS survey spectrum of Cu /Cu3P nanoarrays;
Figure S5: The SEM images and XRD patterns of samples at different phosphating time: (a,b) 1 h;
(c,d) 1.5 h; Figure S6: The pure Cu nanosheet was directly phosphated and calcined: (a) SEM image;
(b) XRD pattern; Table S1: Comparison of HER catalytic performance of Cu/Cu3P nanoarray-270 and
other non-noble-metal electrocatalysts in acidic media.
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