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Abstract: Bimetallic catalysts based on multi-walled carbon nanotubes (MWCNT), graphene oxide
(GO) and ultradispersed diamonds (UDD) supports for the process of electroreduction of oxygen
from alkaline electrolyte were obtained using high-temperature synthesis. The materials were charac-
terized by low-temperature nitrogen adsorption, Raman spectroscopy, scanning electron microscopy
and X-ray structure analysis. The synthesized bimetallic catalysts contain meso- and micropores.
Based on the study by Raman spectroscopy, it is shown that high-temperature synthesis of MWCNT
with metal phthalocyanines leads to doping of this material with nitrogen and the appearance of
significant defects in the structure. Carbon nanotube-based catalysts showed enhanced activity com-
pared to other carbon materials. Moreover, bimetallic catalysts based on cobalt phthalocyanine and
palladium (MWCNT_CoPc_Pd) are characterized by higher activity on all carbon supports compared
to materials contain on copper and palladium. The specific current density in the diffusion region
of the MWCNT_CoPc_Pd catalyst is comparable to a commercial platinum electrode (Pt(20%)/C)
and equals to 2.65 mA/cm2. The area of the electrochemically active surface of all the obtained
catalysts was calculated from the CV data in a nitrogen atmosphere. The MWCNT_CoPc_Pd catalyst
is characterized by high corrosivity: after 2500 revolutions, the current density in the diffusion region
decreases by 7%, and, also, an increase in the values of E1/2 and Eonset is observed.

Keywords: electrochemical oxygen reduction; ORR; carbon nanotubes; graphene oxide; ultradis-
persed diamonds; doping of carbon materials; corrosion resistance; bimetallic electrocatalysts; metal
phthalocyanines; palladium

1. Introduction

One of the promising alternative sources of electricity is fuel cells. Fuel cells are
environmentally friendly, silent, fail-safe, and energy efficient. The work of fuel cells is
based on the oxygen reduction reaction. This reaction is slow, and therefore, the use of
catalysts is necessary. In modern industry, carbon-based platinum materials (~40% Pt) are
used as a catalyst, which significantly increases the cost of fuel cells [1]. That is why the
search for alternative catalysts for fuel cells is an urgent problem.

In recent years, the greatest interest has been directed to the development of catalysts
on various carbon supports [2–5]. Examples of such materials are carbon black [6,7],
carbon nanotubes [8,9], graphene oxide (for example, doped with nitrogen [10] or reduced
graphene oxide [11]), as well as ultrafine diamonds [12].

Many works are devoted to the study of the influence of various modifiers: metals and
alloys, monoatomic catalysts, or even metal-free catalysts are often used [13–15]. Moreover,
silver, palladium, iron, nickel, and other metals and their alloys are used as modifying
metals [16]. An example of monatomic catalysts can be materials with porphyrin-like
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active centers of the MeN4 type (representing a metal atom surrounded by 4 nitrogen
atoms) [17–19]. Metal-free catalysts are obtained by doping carbon materials with non-
metals: nitrogen, sulfur, phosphorus, and other non-metals [20,21].

The catalyst can be modified with various metals. In its pure form, platinum, palla-
dium, silver, and iridium, in decreasing order, show the highest activity [22]. Furthermore,
it is possible to improve the properties of a catalyst by adding some amount of another
metal to a metal with high catalytic activity. Thus, the addition of cobalt to platinum
makes it possible to increase the diffusion current during ORR in an alkaline medium
from 0.281 mA/µg-Pt to 0.460 mA/µg-Pt [23]. However, platinum alloys are expensive,
so scientists are looking for an alternative by developing non-platinum catalysts for ORR.
Catalysts based on palladium and cobalt oxide can serve as an example [24]. This catalyst
raises the diffusion current of the ORR to the level of the diffusion current on the platinum
catalyst. Moreover, this catalyst shows high stability: after 14,000 cycles, Eonset decreases by
12 mV versus 55 mV for platinum, while the E1/2 value remains the same, while it decreases
by 41 mV on a platinum catalyst [24]. On the other hand, another effect is possible from the
addition of a second metal. For a catalyst based on palladium and copper, an increase in
its stability is observed in comparison with a palladium catalyst, and, also, self-activation
of the catalyst occurs: during operation, part of the copper is washed out of the catalyst,
which increases the effective area of palladium from 21.79 to 28.69 m2/g [25].

Another approach to modification is single-atom catalysts. Most often, porphyrins
and phthalocyanines of various metals are used on various carriers: multi-walled carbon
nanotubes, graphene, carbon based on titanium carbide, volcano carbon XC-72R, meso-
porous carbon. For materials modified with iron and nickel phthalophanines, multiwalled
carbon nanotubes and mesoporous carbon showed the highest activity [26]. Catalysts con-
taining cobalt and nickel phthalocyanines (E1/2 = 0.83 eV) [27], as well as iron and cobalt
(E1/2 = 0.86 eV) [28] performed well with similar supports. Moreover, high activity was
achieved on MOFs modified with iron and cobalt (E1/2 = 0.864 eV) [29] and on a covalent
organic polymer modified with iron and nickel phthalocyanines (E1/2 = 0.803 eV) [30].

The aim of this study was to investigate the activity of MWCNT, GO and UDD-
based electrochemical oxygen reduction (ORR) catalysts doped with copper and cobalt
phthalocyanines and modified with small amounts of palladium.

2. Results and Discussions
2.1. Synthesis of Catalysts

Accurate weights of carbon carriers (MWCNT, GO, and UDD), metal phthalocyanines,
and palladium chloride were dissolved in 50 mL of ethyl alcohol and subjected to ultrasonic
treatment for 4 h. The reaction mixture was dried in a muffle furnace at 90 ◦C and subjected
to pyrolysis in a nitrogen atmosphere at 1000 ◦C with a heating gradient of 5 ◦C/min.
The pyrolysis time was 1 h. The following catalysts were obtained: MWCNT_CoPc_Pd,
MWCNT_CuPc_Pd, GO_CoPc_Pd, GO_CuPc_Pd, UDD_CoPc_Pd. The content of cobalt
and copper was 10 wt.%, and palladium was 10 wt.%.

The synthesis of the MWCNT_CoPc and MWCNT_CuPc catalysts was carried out un-
der similar conditions without using a palladium source at the initial stage of the synthesis.

The textural characteristics of the synthesized catalysts were studied by the method
of low-temperature adsorption-desorption of nitrogen. The shape of the isotherms for
the synthesized catalysts is displayed in Figure 1, and the textural parameters are shown
in Table 1.

The total pore volume Vp (included both micropores and mesopores) was estimated
by converting the amount of N2 gas adsorbed at a relative pressure of 0.99 to the liquid
volume of the adsorbate (N2). The micropore volume Vmicro was determined using the
density functional theory (DFT).

The N2 adsorption-desorption isotherm for UDD are of type IV according to the
IUPAC classification [31]. Furthermore, the isotherm exhibited a type H2 hysteresis loop at
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medium-high pressures (from 0.45 to 0.95) produced by capillary condensation, which are
typical for mesoporous materials.
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Figure 1. Low-temperature nitrogen adsorption-desorption isotherms for the synthesized catalysts.

Table 1. The textural characteristics of the supports and catalysts.

Sample Surface Area,
SBET, m2/g

Pore Volume,
VP, cm3/g

Micropore Volume,
Vmicro, cm3/g

MWCNT 14.9 0.08 -
UDD 296.2 0.54 -

MWCNT_CoPc_Pd 52.1 0.23 0.02
MWCNT_CuPc_Pd 58.5 0.21 0.02

GO_CoPc_Pd 36.8 0.15 0.02
UDD_CoPc_Pd 88.8 0.25 0.11

All others adsorption-desorption isotherms are typical for a mesoporous material with
a hysteresis loop at high partial pressures. The adsorption isotherm of GO is featureless,
and did not show the pore structure (not shown in the figure), which is in agreement with
that reported in the literature [32].

The pore size distribution obtained from the desorption branch of the isotherm shows
the presence of mesopores with diameter 2–20 nm. No predominance of any particular
pore size was observed.

According to BET analysis, a total specific surface area of 52–58 m2/g is obtained for
the catalysts on MWCNT (MWCNT_CoPc_Pd and MWCNT_CuPc_Pd), which is larger
than that of the pure MWCNT (14.9 m2/g), which may be due to the decomposition of
carbon oxygen compounds during the catalyst synthesis [33]. After the supporting of
metals on the UDD, the surface area is decreased by about 3 times (see Table 1).

Figure 2 shows the Raman spectra and gives additional information about the surface
of the synthesized carbon materials.

Two main peaks located at 1330 (D band) and 1590 cm−1 (G band) are related to the
disordered carbon and graphitic carbon peak, respectively. The process of doping the
surface of carbon materials is usually accompanied by the formation of defects [34]. Table 2
shows the results of spectral analysis.

Doping of MWCNT with copper and cobalt phthalocyanines followed by modification
with palladium leads to a significant decrease in the IG/ID ratio, as well as to a shift in the
characteristic bands.
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Table 2. Results of the Raman spectra of the synthesized catalysts and initial carbon supports.

Sample ν(D),
cm−1

ν(G),
cm−1

ν(2D),
cm−1 ID IG I2D IG/ID I2D/IG

MWCNT 1336 1565 2666 187 1942 1273 10.4 0.66
MWCNT_CoPc_Pd 1345 1574 2684 425 1792 1436 4.2 0.80
MWCNT_CuPc_Pd 1350 1582 2698 639 2537 2068 4.0 0.82

GO 1357 1598 - 791 1004 - 1.3 -
GO_CoPc_Pd 1350 1588 - 1036 967 - 0.9 -

UDD_CoPc_Pd 1337 1593 - 852 845 - 1.0 -
UDD 1328 1608 - 3537 2898 - 0.8 -

MWCNT_CoPc 1343 1577 2690 855 3359 2504 3.9 0.75
MWCNT_CuPc 1338 1568 2674 348 3010 2114 8.6 0.70

In the process of high-temperature treatment of MWCNT with metal phthalocyanines,
the intensity of the D peak also increases significantly. In parallel, there is a shift in the
2D peak and an increase in the I2D/IG ratio. All the above transformations of the Raman
spectrum point to the doping with nitrogen process of MWCNT during its high-temperature
treatment with metal phthalocyanines, as well as the formation of defects and disordering
of the MWCNT structure [35,36]. It has been shown that high-temperature treatment of
copper with phthalocyanine, without additional modification by palladium, does not lead
to significant transformations of MWCNT. On the contrary, the treatment of cobalt with
phthalocyanine is accompanied by serious changes in the MWCNT structure.

A similar modification of graphene oxide (GO) and ultra-dispersed diamonds (UDD)
does not lead to additional formation of reaction centers, since these materials initially
have a high degree of disorder and are characterized by a large number of defects on the
surface. Some ordering of the UDD structure is observed after the synthesis and deposition
of metals on its surface.

The morphology of the samples was studied by scanning electron microscopy (SEM).
Photographs for the synthesized samples are shown in Figure 3.
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Figure 3. SEM photographs: (a) MWCNT (magnification 5000 times); (b) GO; (c) UDD;
(d) MWCNT_CoPc_Pd (magnification 5000 times); (e) MWCNT_CuPc_Pd (magnification 4000 times);
(f) UDD_CoPc_Pd (magnification 5000 times); (g) GO_CoPc_Pd (magnification 5000 times).
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MWCNT-based catalysts have the structure of intertwining nanotubes on which metal
particles are localized. It can be seen that the metal particles have a spherical structure and
are regularly distributed in the bulk of the nanotubes; the average size of most particles does
not exceed 100–150 nm. Catalysts based on UDD and GO have an amorphous structure in
the form of irregularly shaped conglomerates. Metals on UDD and GO form sufficiently
large particles and are unevenly distributed over the carrier surface.

For the qualitative identification and quantitative determination of metals, X-ray fluo-
rescence analysis and thermogravimetric analysis were used, respectively. Figures 4 and 5
show the corresponding diagrams for some samples of the synthesized catalysts.
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X-ray fluorescence spectra contain only signals characteristic of copper, cobalt, and
palladium metals in all samples under study. The values of the signal intensities ratios of
palladium to cobalt and copper, the corresponding catalysts, are practically the same (about
3). This indirectly indicates the same atomic ratio of these metals in different samples
of synthesized catalysts. Thermogravimetric analysis indicates a total metal content in
the catalysts of about 20%. This is consistent with the calculated amounts in the process
of synthesis of these catalysts. For other catalysts, the content was confirmed by the
gravimetric method after combustion in oxygen.
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2.2. Electrochemical Experiment

The electrochemical experiment was carried out in the modes of linear and cyclic
voltammetry. Figure 6 shows linear voltammograms for the synthesized catalyst samples
obtained using a rotating disk electrode.
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Figure 6. Polarization curves for O2 reduction on an electrode with various catalysts in an oxygen-
saturated KOH solution with a concentration of 0.1 M: potential sweep rate 5 mV·s−1, electrode
rotation speed 1500 rpm, catalyst loading about 80 µg·cm−2: (a) LV of catalysts based on MWCNT,
(b) LV of catalysts based on GO and UDD, (c) LV of the studied catalysts, (d) kinetic part of LV of the
studied catalysts.

Analyzing Figure 6a,b it can be seen that the non-metal modified carbon materials are
generally characterized by low efficiency in the oxygen electroreduction reaction. Graphene
oxide is the least active carbon matrix. Carbon nanotubes and ultra-dispersed diamonds
are characterized by two pronounced waves of oxygen electroreduction process. Moreover,
copper catalysts on all used substrates are also characterized by two pronounced waves
on the polarization curves, and are significantly inferior in efficiency to cobalt-containing
catalysts (Figure 6c,d). Two waves on the polarization curve can be related to the stepwise
mechanism of electroreduction of oxygen from an alkaline electrolyte [37]. The first stage is
characterized by a two-electron process of the formation of HO2

− ions, followed by the
formation of water. Monometallic and bimetallic cobalt catalysts based on MWCNTs are
characterized by a pronounced one plateau in the polarization curve and are character-
ized by a four-electron mechanism for the electroreduction of oxygen from an alkaline
electrolyte [37]. In addition, some thermodynamic and kinetic characteristics of the reac-
tion of oxygen electroreduction from an alkaline electrolyte were calculated based on the
polarization curves (Table 3).
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Table 3. Kinetic and thermodynamic parameters for ORR on the studied catalysts in KOH solution
(O2-saturated, 1500 rpm).

Catalyst jdif (−0.75 V),
mA/cm2 E1/2, V Eonset, V jkin (−0.05 V),

mA/cm2

Pt/C 3.41 −0.128 −0.053 0.2160
GO_CuPc_Pd 1.84 −0.321 −0.163 0.0168
GO_CoPc_Pd 2.64 −0.229 −0.116 0.0245

MWCNT_CoPc_Pd 3.33 −0.190 −0.109 0.0302
MWCNT_CuPc_Pd 2.20 −0.261 −0.139 0.0235

UDD_CoPc_Pd 3.04 −0.204 −0.127 0.0265
GO - * - * - * - *

MWCNT 1.52 −0.361 −0.247 0.0133
MWCNT_CuPc 2.76 −0.343 −0.165 0.0267
MWCNT_CoPc 3.45 −0.215 −0.116 0.0278

UDD 1.33 −0.370 −0.227 0.0049
* The data are not shown due to the low activity of the catalyst and the low severity of the parameters.

Analyzing Table 3, it can be seen that the doping of carbon materials with metal
phthalocyanines and palladium significantly increases the current density in both the diffu-
sion and kinetic regions. The E1/2 and Eonset characteristics are also significantly shifted to a
more positive area. The MWCNT_CoPc monometallic catalyst is characterized by compara-
ble current densities with the MWCNT_CoPc_Pd bimetallic catalyst but has more negative
E1/2 and Eonset characteristics; the difference between these values on these catalysts is
0.025 and 0.007 V, respectively. The copper-containing MWCNT_CuPc catalyst is character-
ized by much lower current densities compared to the cobalt-containing MWCNT_CoPc
catalyst; the difference in current densities jdif for these catalysts is 0.69 mA/cm2. The E1/2
and Eonset values for MWCNT_CuPc are much more negative than those for MWCNT_CoPc.
Additional modification of the copper-containing catalyst with palladium leads to a shift in
the values of E1/2 and Eonset to a more positive region and, to an increase in the efficiency
of the oxygen electroreduction process.

Comparative diagrams of the kinetic and thermodynamic characteristics of the process
of oxygen electroreduction from an alkaline electrolyte were constructed for a more visual
analysis of the characteristics of bimetallic catalysts on various carbon materials, (Figure 7).

Figure 7a shows a comparative diagram of current density values in the diffusion region
at a potential of −0.75 V. It has been established that cobalt-containing catalysts have higher
diffusion current values compared to copper-containing catalysts. The MWCNT_CoPc_Pd
catalyst is characterized by the highest current density in the diffusion region, and the
GO_CoPc_Pd by the lowest. This is probably due to the fact that metal particles are more
regularly distributed over the MWCNT surface, forming a large number of reaction centers
for the oxygen electroreduction reaction. For graphene oxide, which is characterized by a
large number of conglomerates and uneven distribution of metal particles on the surface,
the number of reaction centers is lower. This may also be due to the larger specific surface
area of the MWCNT_CoPc_Pd catalyst compared to GO_CoPc_Pd, which results in better
adsorption of ORR participants on MWCNT_CoPc_Pd. Bimetallic cobalt catalyst based
on UDD is characterized by an intermediate value of the current density in the diffusion
region. The diffusion currents for the synthesized MWCNT_CoPc_Pd catalyst and the
commercial platinum Pt/C catalyst are practically the same.

In the kinetic region (Figure 7b) at a potential of −0.05 V, the platinum catalyst is
characterized by a significantly higher current density compared to all synthesized catalysts.
Figure 7c shows a comparative diagram of the values of the initial potential Eonset and
the half-wave potential E1/2. Cobalt catalysts are characterized by more positive values
of these characteristics, compared with copper-containing catalysts on the corresponding
carbon carriers. The MWCNT_CoPc_Pd catalyst has the closest Eonset and E1/2 values to
the commercial platinum catalyst.
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To compare the activity of the catalysts, the Koutecky–Levich equation was used [38,39]:

1
j
=

1
jk
+

1
jd

=
1

nFkCO2

+
1

0.62nFD2/3
O2

ϑ−1/6CO2 ω1/2

where j is the measured current density, jk and jd are the kinetic and diffusion-limited
current densities, respectively, k is the electrochemical rate constant for O2 reduction,
DO2—is the diffusion coefficient of oxygen (1.9 × 10−5 cm2 · s−1), CO2—is the concentration
of oxygen in the bulk (1.2 × 10−3 mol · L−1), ν is the kinematic viscosity of the solution
(0.01 cm2 · s−1), ω is the electrode rotation rate and n is the number of electrons transferred
per O2 molecule.

Figure 8 shows the dependences in the coordinates of the Koutecky–Levich equation
for all synthesized catalysts, obtained from the data on oxygen reduction at different speeds
of rotation of the disk electrode in a 0.1 M KOH solution with O2—saturated.
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The dependences in the Koutetsky–Levich coordinates are linear with high determina-
tion coefficients (not less than 0.97). The number of electrons (n) involved in the studied
electrochemical reaction was calculated based on these dependences (Figure 9).
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Extrapolation of the lines to a zero value of the reverse speed of rotation of the electrode
leads to a value of the reverse current that is different from zero. This indicates that the pro-
cess of electroreduction of oxygen on the synthesized catalysts from an alkaline electrolyte
is under the control of a mixed diffusion-kinetic limiting stage [40]. The MWCNT_CoPc_Pd
catalyst is characterized by the highest value of n equal to 3.6. For this catalyst, the number
of electrons remains almost constant at all used potentials, and indirectly indicates the
predominance of water in the final reaction product. For other synthesized catalysts, the
value of n is much lower and sharply decreases when the potential is shifted to a more
positive region. This indicates the predominance of the side reaction with the formation of
the HO2

− ion.
Figure 10 shows cyclic voltammograms in a nitrogen atmosphere for the synthesized

bimetallic catalysts on various carbon substrates.
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solution: potential scan rate 50 mV·s−1.

Some cyclic voltammograms are characterized by two peaks in the cathode region
around −0.230 V and −0.600 V. The peak with a potential of −0.230 V probably char-
acterizes the PdO reduction process and characterizes the availability of palladium in
the process of oxygen electroreduction from an alkaline electrolyte [41]. The most active
MWCNT_CoPc_Pd catalyst is characterized by a pronounced peak at −0.230 V. The least
efficient GO_CuPc_Pd and UDD_CoPc_Pd catalysts have almost no such peak. Apparently,
the availability of palladium and its phase composition depend on the nature of the metal
in the phthalocyanine structure and the carbon material. A signal at a potential of −0.6 V is
observed on cobalt catalysts with MWCNTs and GO. This signal is not traced on the UDD.
It is difficult to identify this signal at this stage and requires further research.

Based on the CV, the amount of electricity in the cathode region (qcatod) was calcu-
lated, which correlates with the specific electrochemical surface of the studied catalysts
(SEAS) [42]. The dependence of the diffusion current on the amount of electricity (specific
electrochemical surface) was plotted (Table 4 and Figure 11).

Table 4. Electrochemical active surface values (SEAS) for the catalysts (ϑ = 50 mV/s ).

Catalyst q(as SEAS), mC/cm2

Pt/C 26.4
GO_CuPc_Pd 8.6
GO_CoPc_Pd 9.7

MWCNT_CoPc_Pd 12.1
MWCNT_CuPc_Pd 9.6

UDD_CoPc_Pd 11.1

There is a tendency for the limiting current to increase with the increase in the electro-
chemically active surface.

The most active catalyst MWCNT_CoPc_Pd was tested for corrosion resistance by
running 2500 cycles in a stream of oxygen. After cycling, a linear voltammogram was taken
and the diffusion current was calculated at a potential −0.80 V. (Figure 12).



Catalysts 2022, 12, 1013 12 of 17

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

Table 4. Electrochemical active surface values (SEAS) for the catalysts (𝜗 = 50𝑚𝑉 𝑠⁄ ). 

Catalyst q(as SEAS), mC/cm2 
Pt/C 26.4 

GO_CuPc_Pd 8.6 
GO_CoPc_Pd 9.7 

MWCNT_CоPc_Pd 12.1 
MWCNT_CuPc_Pd 9.6 

UDD_CoPc_Pd 11.1 

 
Figure 11. Influence of an electrochemically active surface on the limiting current for the synthe-
sized catalysts. 

There is a tendency for the limiting current to increase with the increase in the elec-
trochemically active surface. 

The most active catalyst MWCNT_CoPc_Pd was tested for corrosion resistance by 
running 2500 cycles in a stream of oxygen. After cycling, a linear voltammogram was 
taken and the diffusion current was calculated at a potential −0.80 V. (Figure 12). 

 
(a) 

Figure 11. Influence of an electrochemically active surface on the limiting current for the synthesized
catalysts.

Catalysts 2022, 12, x FOR PEER REVIEW 12 of 17 
 

 

Table 4. Electrochemical active surface values (SEAS) for the catalysts (𝜗 = 50𝑚𝑉 𝑠⁄ ). 

Catalyst q(as SEAS), mC/cm2 
Pt/C 26.4 

GO_CuPc_Pd 8.6 
GO_CoPc_Pd 9.7 

MWCNT_CоPc_Pd 12.1 
MWCNT_CuPc_Pd 9.6 

UDD_CoPc_Pd 11.1 

 
Figure 11. Influence of an electrochemically active surface on the limiting current for the synthe-
sized catalysts. 

There is a tendency for the limiting current to increase with the increase in the elec-
trochemically active surface. 

The most active catalyst MWCNT_CoPc_Pd was tested for corrosion resistance by 
running 2500 cycles in a stream of oxygen. After cycling, a linear voltammogram was 
taken and the diffusion current was calculated at a potential −0.80 V. (Figure 12). 

 
(a) 

Catalysts 2022, 12, x FOR PEER REVIEW 13 of 17 
 

 

 
(b) 

Figure 12. Corrosion resistance test of the MWCNT_CoPc_Pd catalyst: (a) LV before and after 2500 
cycles; (b) comparative diagram of diffusion current density (−0.80 V) before and after 2500 cycles. 

After 2500 cycles in an oxygen atmosphere, the current density in the diffusion re-
gion for the MWCNT_CoPc_Pd catalyst decreases by 7%, which indicates a high corro-
sion resistance of material in the studied process. It has also been found that the initial 
potential and the half-wave potential are increased. A slight increase in the half-wave 
potential (~0.01 V) may be associated with the effect of catalyst self-activation [25], asso-
ciated with the washing out of one of the catalyst components, leading to the exposure of 
the surface of the other component. A cobalt-palladium intermediate of such a phase 
composition can also be formed, which makes it possible to enhance the reaction of elec-
troreduction of oxygen from an alkaline electrolyte 

Table 5 compares the characteristics of the studied reaction obtained in this work 
with the literature data. 

Table 5. Comparison of characteristics obtained in present work with literature data. 

Catalyst E1/2, V Eonset, V Source 
Pt/C −0.128 −0.053 This work 

GO_CoPc_Pd −0.229 −0.116 This work 
MWCNT_CоPc_Pd −0.190 −0.109 This work 

UDD_CoPc_Pd −0.204 −0.127 This work 
Pd@Au/RGO −0.157 0.183 [43] 
Pd@Ag/RGO −0.174 0.183 [43] 

nanoFeTSPc-0-MWCNT −0.32 −0.020 [44] 
nanoFeTSPc-s-MWCNT −0.40 −0.200 [44] 

FePc/SWCNT −0.10 n/a [45] 

It can be seen that the synthesized bimetallic catalysts on MWCNT are characterized 
by E1/2 and Eonset characteristics comparable with some obtained in similar studies. 

3. Materials and Methods 
3.1. Chemicals and Materials 

The following materials were used in the work: “Aldrich” multi-walled carbon 
nanotubes (MWCNT) (>95% carbon, diameter 50–90 nm); Graphene oxide (GO) manu-
factured by “Rusgrafen” (carbon content—about 46 wt%, oxygen—about 49 wt%, hy-
drogen—about 2.5 wt%, sulfur—no more than 3 wt%, specific surface area—20 m2/G); 
ultradispersed diamonds (UDD) of “Singa”. Metal phthalocyanines and potassium hy-
droxide were purchased from “Aldrich”. Palladium chloride was purchased from abcr. 
For comparison, commercial (HiSPEC) catalyst 20 wt% Pt/C was used. 

  

Figure 12. Corrosion resistance test of the MWCNT_CoPc_Pd catalyst: (a) LV before and after 2500 cy-
cles; (b) comparative diagram of diffusion current density (−0.80 V) before and after 2500 cycles.

After 2500 cycles in an oxygen atmosphere, the current density in the diffusion region
for the MWCNT_CoPc_Pd catalyst decreases by 7%, which indicates a high corrosion
resistance of material in the studied process. It has also been found that the initial potential
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and the half-wave potential are increased. A slight increase in the half-wave potential
(~0.01 V) may be associated with the effect of catalyst self-activation [25], associated with
the washing out of one of the catalyst components, leading to the exposure of the surface
of the other component. A cobalt-palladium intermediate of such a phase composition
can also be formed, which makes it possible to enhance the reaction of electroreduction of
oxygen from an alkaline electrolyte

Table 5 compares the characteristics of the studied reaction obtained in this work with
the literature data.

Table 5. Comparison of characteristics obtained in present work with literature data.

Catalyst E1/2, V Eonset, V Source

Pt/C −0.128 −0.053 This work
GO_CoPc_Pd −0.229 −0.116 This work

MWCNT_CoPc_Pd −0.190 −0.109 This work
UDD_CoPc_Pd −0.204 −0.127 This work
Pd@Au/RGO −0.157 0.183 [43]
Pd@Ag/RGO −0.174 0.183 [43]

nanoFeTSPc-0-MWCNT −0.32 −0.020 [44]
nanoFeTSPc-s-MWCNT −0.40 −0.200 [44]

FePc/SWCNT −0.10 n/a [45]

It can be seen that the synthesized bimetallic catalysts on MWCNT are characterized
by E1/2 and Eonset characteristics comparable with some obtained in similar studies.

3. Materials and Methods
3.1. Chemicals and Materials

The following materials were used in the work: “Aldrich” multi-walled carbon nan-
otubes (MWCNT) (>95% carbon, diameter 50–90 nm); Graphene oxide (GO) manufactured
by “Rusgrafen” (carbon content—about 46 wt%, oxygen—about 49 wt%, hydrogen—about
2.5 wt%, sulfur—no more than 3 wt%, specific surface area—20 m2/G); ultradispersed
diamonds (UDD) of “Singa”. Metal phthalocyanines and potassium hydroxide were pur-
chased from “Aldrich”. Palladium chloride was purchased from abcr. For comparison,
commercial (HiSPEC) catalyst 20 wt% Pt/C was used.

3.2. Characteristics of Catalysts

The textural characteristics of the synthesized supports and catalysts were studied
by low-temperature nitrogen adsorption using a Quantochrome Autosorb-1 porosimeter
(Quantachrome instruments). The specific surface area was calculated using the Brunauer-
Emmett-Teller (BET) model.

The qualitative analysis was carried out by the method of X-ray fluorescence (XRF)
analysis on a BRA-18.

Thermogravimetric analyzes were performed on a STA 449 F3 Jupiter (NETZSCH) in
the temperature range from 35 to 800 ◦C at a heating rate of 10 ◦C/min in an air flow with
a flow rate of 200 mL/min.

The Raman analysis was performed under backscattering geometry on a Renishaw In
Via micro-Raman spectrometer equipped with a Charged Coupled Device (CCD) detector,
Ar-ion laser (λ = 532 nm) and 1800 lines/mm grating with a spectral resolution of 1 cm−1.
The excitation source was focused down to a 2 µm spot with a laser power of about
1 to 5 mW.

The morphology of the synthesized samples was investigated by SEM using a scanning
electron microscope CarlZeiss Supra 25.

3.3. Electrochemical Experiment

The process of electrochemical reduction of oxygen from an alkaline electrolyte (0.1 N
KOH solution) was studied by the potentiometric method on a CorrTest device in the
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modes of linear and cyclic voltammetry (LV and CV). A three-electrode cell with a rotating
disk electrode was used. A disk glassy carbon electrode with a working surface of 0.071 cm2

was used as a working electrode. A platinum electrode with a large surface was used as
an auxiliary electrode; a silver chloride electrode was used as a reference electrode. Linear
voltammetry was carried out in an oxygen-saturated KOH solution in the potential range
of −800 ÷ 200 mV and a potential sweep rate of 5 mV/s. LV was filmed at different speeds
of rotation of the disk electrode: 500 ÷ 2500 rpm. CV was recorded in a nitrogen-deaerated
KOH solution in the potential range of −1000 ÷ 200 mV.

3.4. Preparation of Catalytic Ink

Accurate weighing of catalysts (0.02 g) was dissolved in 10 mL of ethanol and 200 µL
of Nafion solution was added and ultrasonic treatment was performed for 2 h. Then, the
catalytic ink was applied on the surface of the disk electrode (surface area 0.071 cm2) with
a calculated load of 80 µg/cm2 and dried on air for 8 h at a temperature of 90 ◦C.

4. Conclusions

Bimetallic catalysts based on copper and cobalt phthalocyanines with a small content of
palladium on various carbon substrates—graphene oxide (GO), ultra-dispersed diamonds
(UDD) and carbon nanotubes (MWCNT) have been synthesized. It is shown that the
process of doping MWCNT with metal phthalocyanines leads to a significant change in
the ordering of the surface of the carbon material with the formation of defects; no such
effect is observed for UDD and GO. Analyzing the transformation of the Raman spectrum,
it was found that high-temperature treatment of MWCNT with metal phthalocyanines
leads to doping of the carbon material with nitrogen. Moreover, it was found using
scanning electron microscopy that metal particles on MWCNT are distributed unregularly
in the volume of nanotubes, which contributes to an increase in the number of reaction
centers and, accordingly, an increase in the ORR efficiency. Bimetallic catalysts based on
MWCNT are more efficient than the same catalysts based on GO and UDD. Catalysts
based on GO, UDD, and MWCNT modified with cobalt show a higher catalytic activity
in ORR compared to those modified with copper. Copper catalysts on all used carbon
substrates are characterized by two pronounced waves on the polarization curves, which
indicates a two-electron mechanism of the oxygen electroreduction reaction with the
intermediate formation of the by-product HO2

−ion. Bimetallic cobalt catalysts based on
MWCNTs are characterized by a mechanism close to the four-electron mechanism of oxygen
electroreduction from an alkaline electrolyte. The number of electrons participating in the
studied reaction for MWCNT_CoPc_Pd is 3.6 at a potential of −0.8 V. The current density
in the diffusion region for the MWCNT_CoPc_Pd catalyst practically coincides with the
commercial platinum Pt/C catalyst. Cyclic voltammograms in a nitrogen atmosphere
for the most efficient cobalt catalysts based on MWCNT and GO are characterized by a
peak at a potential of −0.230 V, which indirectly indicates a great influence of the cobalt
atom in the composition of the bimetallic intermediate on the oxygen electroreduction
process. This signal is absent in the cyclic voltammogram of the least efficient GO_CuPc_Pd
catalyst. Likewise, a linear correlation is observed between the current density in the
diffusion region and the electrochemically active surface area of the catalyst (SEAS) for
all synthesized catalysts. The closest in efficiency to a commercial platinum catalyst is
the MWCNT_CoPc_Pd catalyst; it has a high corrosion stability—the decrease in current
density after 2500 cycles in oxygen is about 7%. There is some increase in the initial potential
and half-wave potential after corrosion testing. This is apparently due to the transformation
of the bimetallic intermediate in the MWCNT_CoPc_Pd structure and the formation of the
phase composition of the cobalt–palladium intermediate, which contributes to an increase
in the activity of the catalyst.
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