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Abstract: Water gas shift reactions (WGS) were evaluated over Ni/CeO2 and Ni/CeSmO catalysts
for hydrogen production. The effects of catalyst preparation method and Sm loading were inves-
tigated. The Ni/ceria and Ni/CeSmO catalysts were synthesized by combustion, sol gel and sol
gel-combustion method. After WGS tests, the catalysts were determined the carbon deposition by
thermogravimetric analysis. The thermogravimetric analysis and temperature programmed NH3

desorption showed that addition of Sm promoter made higher the weak acid sites and lower the
amount of carbon deposition than the unpromoted catalyst due to it being easily removed. CO
chemisorption result indicated that Ni/Ce5%SmO catalyst prepared by combustion method has the
highest Ni metal dispersion and metallic surface area compared to the other catalysts. The enhance-
ment of WGS activity of this catalyst is due to more surface active sites being exposed to reactants.
Furthermore, H2-temperature programmed reduction analysis confirmed an easiest reduction of this
catalyst. This behavior accelerates the redox process at the ceria surface and enhances the oxygen
vacancy concentration. The catalytic activity measurements exhibited that the optimum Sm loading
was 5% wt. and the best catalyst preparation was the combustion method. The high surface area and
small crystallite size of the 5%Ni/Ce5%SmO (combustion) catalyst resulted in sufficient dispersion,
which closely related to the WGS activity of the catalyst.

Keywords: hydrogen production; Sm; water gas shift; Ni; ceria

1. Introduction

H2 is considered as a prominent energy carrier in modern green chemicals. Water
gas (or syngas) is a mixture of CO and H2 which is considered to be an alternative to
conventional fuels in various applications. Hydrogen can be combusted similarly to natural
gas, used as fuel for fuel cells, or converted into other hydrocarbon fuels. The water gas
shift (WGS) reaction is applied in the syngas cleaning to remove carbon monoxide and
produce hydrogen along with carbon dioxide before using a syngas product stream for a
wide range of applications. The water gas shift process is a moderately exothermic and
reversible reaction which controls relative content of hydrogen and carbon oxides in the
product stream:

CO + H2O 
 CO2 + H2 ∆H = −41.2 kJ/mol (1)

The WGS reaction is quite sensitive to temperature and increasing the temperature
shifts to reactants. Due to the reversible process of the WGS reaction, the forward reaction
rate is greatly inhibited by reaction products. Generally, the maximum CO conversion and
selectivity are controlled by the equilibrium state. However, the kinetic potential of the
catalyst has a great influence on the actual reaction rate of the desired products. It depends
on the feed stream and the catalyst characteristics.

The water gas shift operation conditions and the nature of the metal phase and support
influenced the catalytic performance. There is strong evidence that the oxide-supported
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catalyst is directly involved in the water gas shift mechanism. CeO2-based catalysts are
very attractive because of their high oxygen storage capacity, mobility and reducibility.
CeO2 supported Pt catalysts are the most active for WGS reaction but economically not
feasible [1,2]. Ni/ceria-based catalysts are promising materials due to their high WGS
activity and low cost. This outstanding behavior is linked to the content of active metal, the
metal dispersion, the metal-support interaction and the composition of the support [3–5].
Moreover, mixed oxides have received much attention in water gas shift reaction due to
their excellent performance which is attributed to oxygen vacancy formation. A recent
study found that CeO2/TiO2 supported gold catalysts presented better water gas shift
activity than either of the individual oxide counterparts [6]. This result was due to the
higher concentration of oxygen vacancy in mixed oxide catalysts which facilitates the
limiting step of water gas shift reaction. Many studies have focused on the enhancement
of oxygen vacancy concentration by doping metal ions with different oxidation states
into the oxide, thus producing oxygen vacancies for charge compensation [7–9]. For
example, Ayesha A et al. [10] found that doping Cu and Sm into CeO2 increased the
CO oxidation activity by about 64% compared to that of pure ceria. Additionally, they
discovered that Cu2+ and Sm3+ dopants were located in the nearest neighbor sites of
oxygen vacancy which reveals that more oxygen defects were generated with doping Cu
and Sm. G. Avgouropoulos et al. demonstrated that doping Sm3+ into CeO2 increases
the dispersion of Au species on the metal oxide support. The doping of Sm improves the
catalytic performance of Au/CeO2 catalyst in the preferential CO oxidation reaction [11].
Moreover, the preparation methods of the catalysts have influence on the properties of
CeO2-based materials, such as crystallite phase, surface area, particle size, catalytic activity
and solubility limit of dopants in CeO2 [12]. Various synthesis methods are reported for the
preparation of ceria-based solid solutions such as co-precipitation [13,14], sol gel [15] and
combustion method [16,17]. Recently, Ni/CeO2 was synthesized by the sol-gel method and
compared with the Ni/CeO2 catalyst prepared by impregnation method [18]. The catalysts
performance was investigated in the dry reforming of methane. Ni/CeO2 prepared by
sol-gel method improved the resistance to sintering and reduced the carbon formation rates
during the methane dry reforming reaction. These results were due to the stronger metal
support interaction and greater amount of oxygen vacancies.

This work reveals the development of more simple methods to prepared ceria based
materials with high performance for water gas shift reaction (including combustion, sol gel
and sol gel-combustion method). The effect of Sm doped-ceria over Ni/CeO2 catalyst on
the water gas shift performance was also investigated. The Ni/ceria based catalysts were
evaluated in different temperature and Sm loading (0, 5, 10, 15 wt.%). The physicochemical
properties of the catalysts were studied by BET surface area, X-ray diffraction, Raman
spectroscopy, H2-Temperature programmed reduction, temperature programmed NH3
desorption, chemisorption technique and thermogravimetric techniques. The results of
the physicochemical characterization were discussed in correlation to the exhibited WGS
performance of the supported Ni catalysts.

2. Experimental Procedure
2.1. Catalysts Preparation

The catalyst preparation process is based on a redox reaction between a fuel (an organic
compound) and an oxidant (metal nitrate) which generates the exothermicity essential for
nucleation and growth of the metal oxide powder. Urea (NH2CONH2) is used as fuel to
ignite the reaction [19,20]. Additionally, urea is a complexing agent for a number of metal
ions because it contains the amino group at the end [21].

Ceria and samarium doped ceria supports were synthesized by combustion, sol gel
and sol-gel combustion method. For combustion method [22,23], Ce(NO3)3·6H2O (Sigma-
Aldrich Pte. Ltd., Singapore) and Sm(NO3)3·6H2O (Sigma-Aldrich Pte. Ltd., Singapore)
were used as starting materials for the preparation of pure ceria and cerium-samarium
oxide supports. They were mixed with urea using the stoichiometry between oxidant and
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urea is 2.5:1. The mixed reactant was dissolved with deionized water and heated by Bunsen
burner until an auto-ignition occurred. Heating at high temperature caused decomposition
of nitrate and other organic compounds. Therefore, the final product will be CeO2 and
CeSmO mixed oxide. In order to study the effect of percent Sm loaded into the support,
various amounts of Sm were varied as 0, 5, 10 and 15 wt.% which is denoted as CeO2,
Ce5%SmO, Ce10%SmO and Ce15%SmO, respectively.

For samples preparation procedure by sol gel method, the mixtures of Ce(NO3)3·6H2O,
Sm(NO3)3·6H2O and urea were dissolved with deionized water. NH3 solution was dropped
into the mixed solution to adjust the pH 10 under constant agitation using a magnetic
stirrer at 300 rpm and 80 ◦C. After 2 h of mixing, the obtained gel was dried at 100 ◦C for
24 h and followed by calcination at 450 ◦C for 4 h in an ambient atmosphere.

The procedure for the preparation of Sm-doped ceria by sol gel-combustion method
is a combination of the combustion and sol gel method. The mixtures of Ce(NO3)3·6H2O,
Sm(NO3)3·6H2O and urea were dissolved with deionized water. NH3 solution was dropped
into the mixed solution to adjust the pH 10 under constant agitation using a magnetic
stirrer at 300 rpm and 80 ◦C. After 2 h of mixing, a homogenous solution was heated by
Bunsen burner until an auto-ignition occurred.

Impregnation method was used for the preparation of Ni catalysts. Nickel (II) nitrate
hexahydrate (Alfa Aesar, Thermo Fisher Scientific Inc, Seoul, South Korea) was dissolved in
minimal amount of DI water. The salts solution of nickel was added to CeO2 and Sm-doped
ceria supports. All samples were dried overnight at 100 ◦C and calcined at 650 ◦C for 8 h.

2.2. Catalyst Characterization

Pore size and specific surface area of the samples were measured with BELSORP-
MAX instrument. The catalysts were treated under vacuum at 300 ◦C for 3 h before the
measurement. The specific surface areas of all samples were determined by N2 adsorption-
desorption isotherms at 77 K in the relative pressures range of 0.05–0.3.

X-ray power diffraction pattern of all samples was operated at 0.02◦ per step and 0.5 s
per step over a 2θ range of 20–80◦ with the current of 40 mA and 40 kV using an X’Pert
Pro diffractometer (PANalytical). Nickel-filtered Cu Kα radiation was used to collect the
X-ray diffractograms. The full width at half maximum of the strongest (111) reflection was
considered for the calculation of the CeO2 crystallite size from Scherrer’s formula.

The Raman spectra of Ni/ceria and Ni/Ce5%SmO prepared by combustion method
were performed using Perkin Elmer System 2000 FTIR/FT-Raman. Ar ion laser irradiation
was used to collect the Raman spectra in the range of 200–1000 cm−1 with an output power
of 10 mW and wavelength of 532 nm.

H2-Temperature Programmed Reduction (H2-TPR) measurement was employed to study
the reduction behavior of the catalysts from a catalysts analyzer BELCAT-B. Prior to a TPR
experiment, the catalyst was treated under high purity helium at 120 ◦C for 30 min. A mixture
of 5%H2 and argon was utilized for TPR experiments operating from 40 ◦C to 1000 ◦C with the
rate of 10 ◦C/min. During the reduction of the catalyst, the H2 consumption was determined
by thermal conductivity detector (TCD).

The acid sites of the catalysts were investigated by temperature programmed NH3
desorption. First, a mixed gas of 10% NH3 in helium was adsorbed by the reduced catalysts
at 50 ◦C for 1 h. Then, the excessive unadsorbed NH3 was cleaned with a flow of He for
1 h. After that, the sample was heated to 500 ◦C with a heating rate of 10 ◦C/min under He
flow. The NH3 desorption curve was plotted as a function of temperature.

Thermogravimetric analysis of the used catalysts was conducted on by an integrated
thermal analyzer (STA 449C) from 300 to 800 ◦C with heating rate of 10 ◦C/min under
30 mL/min of air atmosphere.

The metal surface area and metal dispersion were calculated from the total gas
chemisorption using a mixture of 10% carbon monoxide and helium carrier gas. All
samples were reduced with hydrogen at 400 ◦C for an hour. After cooling with helium, CO
chemisorption pulse was operated under the flow of 10% CO/He at 50 ◦C at the rate of
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30 mL/min. The flow of CO out from the reactor was monitored by thermal conductivity
detector.

Amount of adsorption per 1 g of sample (Vm, cm3/g−1)

Vm = Vchem/m (2)

% Metal dispersion (D)

D = Vchem/22,414 × SF × MW × 100/c (3)

Metal weight (c, g)
c = m × p/100 (4)

Metal surface area (surface area of metal per 1 g of sample) (Am, m2/g)

Am = Vchem/22,414 × SF × 6.02 × 1023 × σm × 10−18/m (5)

where Vchem: amount of adsorption/cm3, m: sample weight/g, MW: metal atomic
weight/gmol−1, SF: stoichiometry factor, p: weight percentage of supported metal con-
tent/wt%, σm: cross-section area of one metal atom/nm2.

2.3. Water Gas Shift Activity

The performance of the water gas shift reaction was studied in the temperature range
of 100–500 ◦C. About 150 mg of the catalysts were placed in a stainless steel fixed bed
flow reactor between two layers of quartz wool. Prior to the water gas shift activity
measurement, the prepared catalyst was reduced by heating in 5% H2/N2 balanced gas
from room temperature to 400 ◦C and maintaining at this temperature for 1 h. The tube
furnace was used to control the temperature of the reactor. For WGS activity testing, H2O
was fed through a pre-heater using a syringe pump. The feed gas contained 5% CO, 10%
H2O and 85% N2. The gas mixtures of carbon monoxide and nitrogen were fed into the
reactor with water vapor. Preliminary measurements were operated to consider proper
conditions from which internal and external mass transfer effects are not dominant. When
considering the effect of external mass transfer, the particle size diameter of the catalysts
was between 100–200 µm in all testing. Furthermore, the total flow rate was kept constant at
100 mL min−1 in all experiments. Reaction products were analyzed by an on-line Shimadzu
GC-14B gas chromatography equipped with thermal conductivity detector and a Unibeads
C column. The catalytic activities of water gas shift reaction can be calculated by the
formula:

%COconversion =
COin − COout

COin
× 100 (6)

3. Results and Discussion
3.1. Catalysts Characterization

Figure 1 presents the X-ray diffraction profiles of the synthesized catalysts. The
formations of ceria phases with fluorite-type cubic crystal structure were found in all
samples which corresponded well to JCPDS no. 43-1002 of standard ceria. In addition,
the diffraction peaks of NiO crystalline phase were found at around 2θ = 37.3◦, 43.4◦ and
63.2◦ for 5%Ni/CeO2(combustion), 5%Ni/Ce5%SmO (sol gel) and 5%Ni/Ce5%SmO (sol
gel-combustion). However, the absence of reflection peak of NiO in 5%Ni/Ce5%SmO
(combustion) indicates that NiO is highly dispersed on the ceria surface.

The physical characteristics of supported Ni catalysts were showed in Table 1. The
specific surface area was determined by using multipoint Brunauer-Emmett-Teller (BET)
method. The pore volume and mean pore diameter were obtained by applying the Barrett-
Joyner-Halenda (BJH) method. As is clear, the enhancement of the Sm amount from 5 to
15 wt.% led to a decrease of the surface area of catalysts from 54 to 29 m2/g, respectively. It
should be noted that a partial destruction and blockage of some micropores on the support
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surface were due to the increase of the Sm content. Hence, reducing of pore volume of
the catalyst leads to lowering of catalyst surface area. In addition, larger pore diameter
when higher Sm content indicates that Sm moves to occupy pore area and may block up
small pores underneath. This in turn resulted in reduction of surface area. On the other
hand, Sm3+ in 5%Ni/Ce5%SmO prepared by combustion method stabilizes the support
and can prevent the support from the sintering by maintaining small crystallite size and
high surface area.
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Figure 1. XRD patterns of Ni catalysts, (a) CeO2(combustion), (b) 5%Ni/CeO2(combustion), (c)
5%Ni/Ce5%SmO(combustion), (d) 5%Ni/Ce5%SmO(sol gel-combustion) and (e) 5%Ni/Ce5%SmO(sol
gel). * CeO2 JCPDS 43-1002, ∆ NiO JCPDS 75-0197.

Table 1. BET surface area, average pore diameter and total pore volume of Ni-based catalysts
prepared by different methods.

Catalysts BET Surface Area a

(m2/g)
Total Pore Volume a

(cm3/g)
Average Pore

Diameter a (nm)
Crystallite Size b

(nm)

5%Ni/CeO2(combustion) 29 0.06 8.35 13.35

5%Ni/Ce5%SmO(combustion) 54 0.08 5.88 9.01

5%Ni/Ce10%SmO(combustion) 34 0.06 6.96 9.55

5%Ni/Ce15%SmO(combustion) 29 0.05 7.51 10.44

5%Ni/Ce5%SmO(sol gel) 46 0.08 7.24 13.41

5%Ni/Ce5%SmO(sol
gel-combustion) 48 0.08 6.78 11.32

a Estimated from N2 adsorption at −196 ◦C; b Calculated from the 111 diffraction peak broadening.

Defect structures of ceria, 5%Ni/ceria and 5%Ni/Ce5%SmO prepared by combustion
method were investigated by Raman spectroscopy (Figure 2). All catalysts present a Raman
peak at about 460 cm−1 which is assigned to the F2g mode of the cubic fluorite crystal
structure of ceria. In 5%Ni/Ce5%SmO catalyst, F2g mode exhibits a systematic shift to
lower energies. Such a decrease in energy is consistent with dilatation of unit cell parameter
due to the incorporation of large Sm3+ ions in cerium lattice. Moreover, there is another
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broad peak at around 550–650 cm−1. It indicates the presence of a surface defect of doping
cations which is related to oxygen vacancies evolution [24].
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Figure 2. Raman spectra of ceria, 5%Ni/ceria and 5%Ni/Ce5%SmO prepared by combustion method.

The TPR profiles of 5%Ni/CeO2 and 5%Ni/Ce5%SmO (Figure 3) catalysts prepared
by different methods are characterized by a low-temperature peak at 260–280 ◦C, medium
temperature features located at 350–370 ◦C and the bulk reduction at 850 ◦C. The consump-
tion peak at low temperature is attributed to reduction of NiO species [25–27]. The peak
at medium temperature is attributed to the Ni−catalyzed reduction of the surface shell of
ceria [28,29]. The H2−TPR of 5%Ni/Ce5%SmO (Figure 3) prepared by combustion method
exhibited two NiO reduction peaks at 260 ◦C and 290 ◦C which indicated a different envi-
ronment of Ni. The peak at 260 ◦C is similar to the reduction peak of Ni in the vicinity of
ceria while the peak at 290 ◦C is probably due to the present of Sm. The NiO reduction peak
of 5%Ni/Ce5%SmO prepared by combustion method appeared at the lowest temperature
when compared with 5%Ni/Ce5%SmO prepared by sol gel and sol gel-combustion method.
Figure 4 displays the H2−TPR profiles of Ni/ceria and Ni/CeSmO prepared by combustion
method with different wt.% of Sm. It is interesting to note that addition of 5%Sm to ceria
support prepared by combustion method shifts the reduction temperature of NiO species
from 275 ◦C to 260 ◦C. The result indicates that 5%Ni/Ce5%SmO catalysts should be more
active than 5%Ni/ceria. Addition of Sm2+/Sm3+ at higher contents (10 wt.% and 15 wt.%)
does not improve the reducibility and this is probably due to aggregation of SmOx particles.
The H2−TPR of 5%Ni/Ce15%SmO prepared by combustion method is different from those
of other catalysts. Only one reduction peak at high temperature of this catalyst is due to
a concurrent reduction of NiO species and surface ceria. The reduction temperature of
5%Ni/Ce5%SmO catalyst prepared by combustion method is the lowest. Generally, the
oxygen vacancies formation leads to the exchange of oxygen easily. Therefore, reactive
oxygen species can be produced and easily reduced by hydrogen at a low temperature.
Combined with the result of Raman spectra, it was found that the presence of the oxygen
vacancies improves the reduction of solid solutions.
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different samarium loading.

A dispersion of Ni over Ni/CeO2 and Ni/CeSmO prepared by different method and
Sm loading was studied by CO chemisorption analysis (Table 2). It was found that Sm
addition to Ni/CeO2 enhances the dispersion of Ni metal on the catalyst surface. However,
the increase of Sm amount to 15 wt.% leads to lowering of Ni metal dispersion. This result
is probably due to aggregation of Sm at high content. Moreover, metallic Ni was believed
to be active sites for the water gas shift reaction. The influence of Sm addition on metallic
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Ni surface area was investigated which revealed that 5%Ni/Ce5%SmO catalyst prepared
by combustion method has the highest Ni surface area of 1.25 m2/g. Generally, higher
metallic surface area of the catalysts provides an increase in WGS activity, as more surface
active sites are exposed to reactants [30].

Table 2. The surface area and dispersion of metallic Ni prepared by different methods.

Catalysts Ni Dispersion c (%) Ni Surface Area c (m2/g)

5%Ni/CeO2(combustion) 0.12 0.84

5%Ni/Ce5%SmO(combustion) 0.19 1.25

5%Ni/Ce10%SmO(combustion) 0.15 0.98

5%Ni/Ce15%SmO(combustion) 0.10 0.68

5%Ni/Ce5%SmO(sol gel) 0.13 0.85

5%Ni/Ce5%SmO(sol gel-combustion) 0.14 0.89
c Estimated from CO-chemisorption.

3.2. Catalyst Evaluation

Figure 5 illustrates %CO conversion of Ni/CeO2 and Ni/Ce5%SmO prepared by
different methods. For Ni/CeO2(combustion), the conversion started above 200 ◦C and
rises up slowly to reach the maximum of 90% conversion at 350 ◦C. Among all the catalysts,
5%Ni/Ce5%SmO(combustion) exhibited the best water gas shift activity with the highest
CO conversion of 99% at 350 ◦C. This result agrees nicely with the H2−TPR profile which
indicates that Ni/Ce5%SmO(combustion) is easiest to be reduced.
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Figure 5. Water gas shift activity of supported Ni catalysts.

In water gas shift reaction, CH4 is an undesired product because the decomposition
of CH4 may generate carbon which poisons the catalyst. The loss of WGS activity due to
carbon formation causes blockage of the catalyst active sites and the loss of effective surface
area [31]. Figure 6 shows CH4 and CO2 yield as a function of temperature. The amount of
CH4 decreases when the temperature increases from 300 to 500 ◦C. Ni/Ce5%SmO catalyst
had less CH4 production cause the reduction of coke formation. On the other hand, the
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CO2 yield increased with rising temperature. Maximum CO2 yield was found at around
350 ◦C and then the CO2 yield decreased if the temperature was further increased. At
higher temperature, there is no methanation, and the water gas shift reaction increases the
CO2 concentration. However, the reduction of CO2 yield was due to the reverse water gas
shift reaction when the temperature was further increased.
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Figure 6. The effect of temperature on the CO2 and CH4 yield of water gas shift reaction.

The WGS reaction stability of Ni/CeO2 and Ni/Ce5%SmO prepared by the combus-
tion method was tested at 280 ◦C under the feed gas composition of 5%CO, 10% H2O and
balance N2. As shown in Figure 7, the conversion of 5%Ni/CeO2 decreased from 47% to
36% after 60 h of the water gas shift reaction test whereas 5%Ni supported on Ce5%SmO
mixed oxide support retains a high water gas shift stability for the whole period of 60 h.
Therefore, the addition of Sm improved both WGS activity and stability of the Ni catalysts.
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Figure 7. Long term stability test at 280 ◦C for supported Ni catalysts prepared by combustion
method.

Thermogravimetric profiles (Figure 8) of the used 5%Ni/CeO2 and 5%Ni/Ce5%SmO
catalysts prepared by combustion method were further conducted for carbon deposits
analysis. Relative weight was slightly enhanced between 400 and 550 ◦C, which may be con-
tributed to by nickel oxidation to nickel oxide during the oxidative treatment. On the other
hand, relative weight was quickly decreased between 550 and 720 ◦C, which was due to the
oxidation of carbon deposits. Thermogravimetric analysis showed that 13% and 37% car-
bon was formed in the used 5%Ni/Ce5%SmO(combustion) and 5%Ni/CeO2(combustion),
respectively. Therefore, 5%Ni/Ce5%SmO catalyst provides lower carbon deposition after
the water gas shift reaction test than the 5%Ni/CeO2 catalyst, which is attribute to high
stable performance and greater hydrogen production rates.
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The acidity of Ni/CeO2 and Ni/Ce5%SmO catalysts prepared by combustion method
was investigated by temperature programmed NH3 desorption (NH3-TPD) technique
(Figure 9). Addition of Sm into 5%Ni/CeO2 shifts the NH3 desorption peak to a lower
temperature. It means that the weak acid site increased by the addition of Sm to the support.
The result of thermogravimetric analysis suggested that Ni/Ce5%SmO catalyst had less
carbon deposition. Therefore, the increase of weak acid sites of the Ni/Ce5%SmO catalyst
would decrease the carbon deposition due to them easily being removed.
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Figure 9. Temperature programmed NH3 desorption profile of 5%Ni/CeO2 and 5%Ni/Ce5%SmO
catalysts prepared by combustion method.

The combination of NH3-TPD with the water gas shift activity result indicated that
surface acidity of the catalyst is beneficial for CO adsorption because a CO reactant is a
weak base. Moreover, acidic character of the Ni catalyst surface facilitates CO2 desorption,
leaving free active sites for CO and H2O adsorption in subsequent WGS reaction cycle.
The desorbed NH3 content was calculated from the NH3desorption peak area. The NH3
desorption peak area of Ni/Ce5%SmO is greater than that of Ni/CeO2, which indicates that
the acidity of Ni/Ce5%SmO was higher than Ni/CeO2. Therefore, the increased acidity of
Ni/Ce5%SmO enhances the amount of adsorbed CO on the catalyst surface, consequently
increasing the water gas shift performance.

4. Conclusions

Ni/CeO2 and Ni/CeSmO were synthesized with different preparation methods and
Sm loading of 0–15 wt.%. Various preparation methods including combustion, sol gel and
sol gel-combustion have been studied to improve the water gas shift performance of nickel
catalysts. It was found that the promoted catalysts (Ni/CeSmO) exhibited greater catalytic
activity than the unpromoted catalysts (Ni/ceria). Among all investigated catalysts, the
one-step combustion method produced 5%Ni/Ce5%SmO catalyst with the highest activity
in the water gas shift reaction. This related to high surface area and dispersion of metallic
Ni, as more surface active sites are exposed to reactants. In addition, the increase of surface
acidity of 5%Ni/Ce5%SmO prepared by combustion method accelerates CO adsorption
consequently rising the water gas shift performance. Moreover, increasing the weak acid
sites of Ni/Ce5%SmO catalyst prepared by combustion method would decrease the carbon
deposition because it is easily removed. The enhancement of oxygen vacancy concentration
of 5%Ni/Ce5%SmO synthesized by combustion method facilitates the redox process at the
catalyst surface. These results are beneficial for H2 production with high efficiency and the
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long-term stability of the catalyst. The preparation of support by the combustion method
is beneficial on the water gas shift reaction. Stronger interaction between Ni and CeO2 is
formed results in high Ni dispersion which could have helped in preventing the sintering
of Ni–CeO2. Moreover, the combustion method produced homogeneous, very fine and
crystalline powders in a single step without the need of intermediate decomposition and
calcining steps, which leads to reducing time for the support preparation.
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