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Abstract: A general chemo-enzymatic approach to synthesize both enantioenriched trans-3-alkoxy-
amino-4-oxy-2-piperidones, which are important scaffold for various naturally occurring alkaloids, is
reported. To this end, a selective transition-metal-free dual C−H oxidation of piperidines mediated
by the TEMPO oxoammonium cation (TEMPO+) was used, followed by enzymatic resolution of the
corresponding alkoxyamino-2-piperidones with Candida antarctica lipase (CAL-B), to yield the title
compounds in high enantiomeric excess (ee). The absolute configuration of both enantioenriched
compounds was determined using chemical correlation and circular dichroism (CD) spectroscopy.
The former method highlights the oxidative ring contraction of the trans-alkoxyamine-2-piperidone
ring into its corresponding 2-pyrrolidinone.

Keywords: trans-3-Alkoxyamino-4-oxygenated-2-piperidones; selective C−H oxidation; transition-
metal-free; enzymatic resolution; CAL-B; deconstructive lactamization; alkaloids

1. Introduction

Alkaloids are naturally occurring secondary metabolites containing a nitrogen atom in
the form of amines or amides [1–7]. Either natural or synthetic alkaloids have gained much
attention due to their biological activities with promising pharmacological applications [8].

For example, 3,4-dioxygenated-2-pyperidone derived alkaloids from piper species,
such as tedanalactam [9], piplaroxide [10], and 3β,4α-dihydroxy-1-(3-phenylpropanoyl)-
piperidin-2-one [11], are piperidone alkaloids with enormous pharmaceutical potential
(Figure 1).

Although the 3,4-dioxygenated-2-pyperidone system could be considered a non-
complex molecular motif, there are only a few known approaches to accessing them in an
asymmetric fashion [12].

In this regard, the dual C-H functionalization of piperidines to their 2-piperidones
dioxidized at the C3 and C4 positions has proven to be a versatile chemo- and regiose-
lective method to synthesize chiral alkaloid precursors [12,13]. However, given the fact
that the sp3 C-H bond is barely reactive, their functionalization poses a great synthetic
challenge [14,15]. For this reason, the use of metal catalysts is normally applied [16–18].
Unfortunately, these catalysts are generally quite expensive and toxic, causing economic
and ecological drawbacks [19,20]. Most recently, a dual C-H oxidation of piperidines to
their corresponding piperidin-2-one derivatives under transition-metal-free conditions has
shown to be an efficient, accessible, and eco-friendly approach for accessing biologically
important alkaloids [21–23].
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bility [24,25], is probably Lipase B from Candida Antarctica (CAL-B). Another characteristic 
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lyze many kinds of organic reactions with a wide variety of substrates in different organic 
solvents [26–34]. Thus, the chemo-enzymatic resolution of the racemic mixtures catalyzed 
by CAL-B, through alcohol acylation or ester hydrolysis [35–44], would be a practical ap-
proach for accessing the desired chiral products. Since the resolution of secondary alco-
hols and amines of medium size is the main application of CAL-B, there is a great interest 
in methods of kinetic resolutions for bulky alcohols [44,45]. 
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On the other hand, chemo-enzymatic resolution of the racemic mixtures subjected
to lipases-catalyzed hydrolysis reactions or esterases-catalyzed ester bond formation has
been shown to be a convenient tool for accessing the desired alkaloid chiral products in
high enantiomeric excess [23]. The most popular enzyme that carried out hydrolysis and
transesterification, along with other reactions, because of its catalytic promiscuity capabil-
ity [24,25], is probably Lipase B from Candida Antarctica (CAL-B). Another characteristic of
CAL-B which is widely exploited by synthetic organic chemists is its capability to catalyze
many kinds of organic reactions with a wide variety of substrates in different organic
solvents [26–34]. Thus, the chemo-enzymatic resolution of the racemic mixtures catalyzed
by CAL-B, through alcohol acylation or ester hydrolysis [35–44], would be a practical ap-
proach for accessing the desired chiral products. Since the resolution of secondary alcohols
and amines of medium size is the main application of CAL-B, there is a great interest in
methods of kinetic resolutions for bulky alcohols [44,45].

In this regard, we discuss the advances of a new approach to access trans-3-alkoxyamine-
4-oxygenated-2-piperidones enantiomerically enriched taking advantage of the selective
transition-metal-free dual C-H oxidation of piperidines followed by the enzymatic kinetic
resolution (EKR) of racemic esters with CAL-B.

2. Results and Discussion
2.1. Synthesis of Rac-Trans-2

As a widely applied method in our research group [12,22,23], a tandem dual C−H
oxidation was carried out using N-benzyl-4-hydroxy-piperidine 1 as starting material. The
piperidine derivative was mixed with the TEMPO oxoammonium cation in the presence of
sodium chlorite and sodium hypochlorite in acetonitrile to obtain the alkoxyamine lactam
(rac-trans-3), which, after acylation, produces rac-trans-2 in good yield (Scheme 1).

According to the proposed mechanism shown in Scheme 2, cation A promotes the
formation of the iminium ion intermediate 1B, which, after the loss of a proton, leads to
an enamine intermediate 1C. The addition of TEMPO comes after a nucleophilic attack
from the enamine. Finally, a nucleophilic attack by the chlorite ion to the iminium ion
intermediate 1D gives 1E, which, after HClO elimination, produces rac-trans-3.
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2.2. Enzymatic Resolution and Chiral-HPLC Enantiomeric Excess Evaluation

Once rac-trans-2 was obtained, two different approaches were considered for the
enzymatic resolution: (a) enzymatic-catalyzed acylation of rac-trans-3 and (b) enzymatic-
catalyzed hydrolysis of rac-trans-2 (Scheme 3).
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Scheme 3. CAL-B catalyzed enzymatic resolution: rac-trans-3 acylation (left) and rac-trans-2 de-
acylation (right).

First, rac-trans-3 was subjected to a typical enzymatic-catalyzed acylation using CAL-B
as a biocatalyst and prop-1-en-2-yl acetate as an acetyl-transfer agent and 2-methyl-2-
butanol (2M2B) as solvent [46]. The reaction was monitored with TLC; and after 22 h
formation of rac-trans-2 was not detected by TLC plate (Scheme 3, left). One possible
explanation is that the alcohol rac-trans-3 could not access the nucleophilic pocket due to
its structural characteristics (See Supplementary Material, Figure S1).
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Since it was not possible to achieve the enzyme-catalyzed acylation product mediated
by CAL-B, we decided to explore the enzymatic de-acylation using rac-trans-2 as sub-
strate [47], CAL-B as a biocatalyst, water as a reagent and 2M2B as the solvent (Scheme 3,
right). Several experiments were carried out to determine the best conditions to promote
the de-acylation reaction (Table 1).

Table 1. Reaction conditions for the enzymatic resolution of the racemic mixture of rac-trans-2 to
obtain (u)-trans-3.

Entry Substrate
(mmol)

Conc.
(mol/L)

Enzyme
(mg/mL)

H2O
(eq.)

Time
(h)

Temperature
(◦C)

Conversion a

(%) [α]D
20 ee (%) E

1 0.17 0.2 20 2 24 45 3 b Nd ≥99 c 205 d

2 0.15 0.2 20 4 72 45 13 e Nd ≥99 c 230 d

3 0.25 f 0.4 100 3 72 60 29 b +45.2 g ≥99 c 383 d

a Calculated using c = 1 − {[S]/[S0]}. b Determined as an isolated product. c Chiral-HPLC; OD-H chi-
ral column, elution system Hex:i-PrOH 98:02, flux 0.8 mL min−1, UV-Vis 210 nm. d Calculated using
E = ln[1 − c (1 + eep)]/ln[1 − c (1 − eep)]. e Determined with 1H NMR. f Enantioenriched starting material iso-
lated from previous experiments. g (c = 1.0, CHCl3).

The de-acylation reaction was carried out in a 0.2 M solution of rac-trans-2 in 2M2B. As
can be seen, a very low quantity of the product rac-trans-3 was isolated, which represents a
poor percentage of conversion (Entry 1, Table 1). In a second experiment, the equivalents
of water were doubled and the reaction time was increased to 72 h (Entry 2, Table 1), which
led to only a small improvement.

To enhance the conversion to alcohol (u)-trans-3, a third attempt was performed. We
suspect that the low conversion yield can be attributed to the poor interaction of the sub-
strate rac-trans-2 with the enzyme. Therefore, an assay where a more concentrated solution
and a higher quantity of the enzyme were considered as well as a higher temperature
(Table 1, Entry 3). A slight enhancement was measured. This last result supported the
proposed hypothesis. Furthermore, to evaluate the selectivity of CAL-B, it was decided
to use the recovered enantioenriched starting material trans-2. A lower conversion degree
was obtained because there was less trans-2 enantiomer, which is selectively recognized by
CAL-B.

To achieve the enantiomerical quantification of the desired enantioenriched product
(u)-trans-3, chiral-HPLC assays were developed. First, the rac-trans-2 substrate was injected
into Chiral-HPLC using an OD-H chiral column in an elution system Hex:i-PrOH 98:02
with a flux of 0.8 mL min−1, using a UV-Vis detector at 210 nm, where an excellent
chromatography resolution was observed. The corresponding retention times for both (u)-
trans-2 enantiomers were 14.18 min and 18.02 min, respectively. Once the HPLC parameters
were established, the next step was to demonstrate that these HPLC conditions were
applicable for the correct differentiation of rac-trans-2 and rac-trans-3 with a high level
of chromatography resolution. To this end, a 2:1 mixture of the corresponding rac-trans-
2 and rac-trans-3 was injected into the chiral HPLC. Retention times for both rac-trans-2
enantiomers were 13.36 min and 16.45 min, respectively, while an increase in retention times
was observed for both rac-trans-3 enantiomers with 18.69 min and 25.71 min, respectively
(Figure 2).

Percolated crude reactions, where rac-trans-3 de-acylated product predominates, were
analyzed using the Chiral-Column HPLC technique. Although with low conversion, an
excellent enantiomeric excess (99% ee, [α]D

20 = +45.2, c 1.0, CHCl3) was obtained, which
means that the enzymatic resolution of rac-trans-2 proceeds enantiospecifically (Figure 3),
and, moreover, it is a worthwhile method because of the high value (380) obtained for the
enantiomeric ratio (E).
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Along with the Chiral-Column HPLC Analysis, the NMR technique was used to
determine the conversion percentage of the enzyme-catalyzed-mediated hydrolysis.
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Both reactions previously mentioned were monitored with 1H-NMR using benzylic
protons shifts as a reference. At 24 h, there were no notable changes in the 1H-NMR spectra
compared with those for the starting material (rac-trans-2), as shown in Figure 4A. However,
when the reaction time is increased to 72 h, new signals appeared at 4.83 and 4.53 ppm,
which belong to the (u)-trans-3 product (Figure 4B).
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Finally, all isolated products (u)-trans-3 from each assay listed in Table 1 were collected
as unique samples and their ee value was measured again using Chiral-HPLC. Identical
values of ee as the individual measurements were obtained (≥99 ee). As can be seen, a peak
around 20.3 min is detected with no other signals (Figure 5).
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Figure 5. Chiral-HPLC de-acylation product (u)-trans-3.

Since remanent was used for a second and third enzymatic resolution with the expec-
tation to obtain a more enantiopure substrate (u)-trans-2, after analysis with Chiral-HPLC,
a dominant peak was observed at 10.87 min, ≥97 ee (Figure 6).
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Although energetically expensive (long reaction times and amount of enzyme), the
last method represents an excellent enantiospecific strategy. This result can be attributed to
the behavior exhibited by one of the rac-trans-2 enantiomers as the first substrate, which
effectively enters the acyl pocket (See Supplementary Material, Figure S1b).

2.3. Chemical Correlation

To assign the absolute configuration, a chemical correlation was performed. Taking
advantages that optically pure compound (S)-5 was prepared following Huang et al. [48]
from (S)-malic acid, we transformed (u)-trans-2 to (S)-5 by applying deconstructive lac-
tamization protocol [21] with m-CPBA followed by de-acylation in basic conditions of
lactam (S)-4 (Scheme 4). The specific rotation for (S)-5 matched to reported [α]D

20 = −76.2
(c 1.03, CHCl3).
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The last result allowed us to assign the absolute configuration of (u)-trans-2 to be (3R, 4S).
Finally, the highly enantioenriched isolated materials (u)-trans-2 and (u)-trans-3 were also

subjected to Circular Dichroism (CD) spectroscopy (λ = 350–195 nm, Conc. = 8 × 10−5 mol/L,
solvent = CH3CN). For the enzymatically solved alcohol (u)-trans-3, a negative Cotton effect
was observed (Figure 7), while the acylated starting material (u)-trans-2 showed an opposite
behavior to that expected from octant rule structures (Figure 8).
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3. Materials and Methods

Commercially available reagents were used without further purification. When in-
ertness conditions were required, the reactions were carried out under an inert argon
atmosphere with dry solvents under anhydrous conditions. Candida antarctica lipase B
(CAL-B) was obtained as Novozym®435 (Novozymes Mexico). Solvents were used as tech-
nical grade and freshly distilled prior to use. Column chromatography (CC) was performed
using silica gel (230–400 mesh) from Sigma-Aldrich, Toluca, Mexico with solvents indicated
in the text. Analytical grade solvents were purchased from Tecsiquim Toluca, Mexico
(i-PrOH), Caledon Laboratory Chemicals Georgetown, Ontario, Canada (n-hexane). NMR
spectra were recorded with Bruker-500 (500 MHz) using as reference: TMS for 1H (0.0 ppm)
and CDCl3 for 13C (77.16 ppm); chemical shifts (δ) are reported in parts per million (ppm)
and Hz for the coupling constants (J). The following abbreviations (or combinations thereof)
were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet,
m = multiplet, and br = broadened. Melting points were not corrected and carried out
using a Fisher-Scientific 12–144 melting point apparatus. Optical rotations were measured
with an Autopol-III polarimeter using the sodium D line (589 nm).

Method for 1-Benzyl-2-oxo-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)piperidin-4-yl
acetate (rac-trans-2): To a solution of 4-hydroxy-3-alkoxyaminolactam rac-trans-3 [16] (1.2 g,
3.33 mmol) and 4-DMAP from Sigma-Aldrich, Toluca, Mexico (0.4 g, 3.33 mmol) in 33.3 mL
of anhydrous CH2Cl2 at 0 ◦C was added Et3N (0.5 g, 5.0 mmol) and acetic anhydride from
Sigma-Aldrich, Toluca, Mexico (1.02 g, 10 mmol). After 5 min, the reaction mixture was left
to warm and stirred for 1 h. Afterward, 20 mL of water was added, and both phases were
separated. The aqueous phase was extracted with CH2Cl2 (25 mL × 3). The combined
organic phases were dried (Na2SO4), and the solvent was removed under reduced pressure.
The residue was purified using column chromatography [SiO2, hexanes:EtOAc, 5:1] to give
1.2 g (90%) of rac-trans-2 as a white solid. M.p.: 73–74 ◦C; 1H NMR (500 MHz, CDCl3) δ:
1.13 (br s, 6H), 1.25 (br s, 6H), 1.31–1.35 (m, 1H), 1.47–1.52 (br m, 5H), 1.90–1.95 (m, 1H), 2.01
(s, 3H), 2.28–2.35 (m, 1H), 3.21 (ddd, J = 12.5, 9.5, 6.0 Hz, 1H), 3.30 (ddd, J = 12.5, 7.5, 3.5
Hz, 1H), 4.29 (d, J = 15.0 Hz, 1H), 4.38 (d, J = 2.0 Hz, 1H), 4.94 (d, J = 15.0 Hz, 1H), 5.42 (q,
J = 3.5 Hz, 1H), 7.25–7.33 (m, 5H); 13C NMR (125 MHz, CDCl3) δ: 17.2, 20.3, 20.7, 21.1, 23.0,
33.3, 33.9, 40.4(2C), 42.2, 50.1, 60.6(2C), 69.2, 80.7, 127.5, 128.2(2C), 128.6(2C), 136.9, 167.4,
169.9. HRMS (FAB+) m/z: [M+H]+ Calcd for C23H35N2O4

+ m/z: 403.5350, Found 403.2599.
Method for (3S,4R)-1-Benzyl-4-hydroxy-3-((2,2,6,6-tetramethylpiperidin-1-yl)oxy)-

piperidin-2-one ((u)-trans-3). Enzymatic de-acylation reactions were carried out in sealed
glass vials. The reactions consisted of the preparation of a solution of rac-trans-2 0.2 M in
2M2B, 2 to 4 equivalents of water, and 20 to 100 mg mL−1 of CAL-B (Novozym®435). The
reaction mixtures were stirred in a thermostated water bath at 45 ◦C or 60 ◦C. At the end of
the reaction, the enzyme was filtered off and washed with DCM. The solvent was evap-
orated in vacuum. The residue was purified using column chromatography, Hex:EtOAc;
95:05 to 60:40] to give the product (u)-trans-3 as a white solid. Yield 39%; [α]D

20 = +45.2 (c
1.0, CHCl3) for product obtained at 60 ◦C. Spectral data 1H and 13C NMR are consistent
with the literature [16]. δ: 1.21–187 (m, 18H), 2.06 (dq, J = 13.5, 3.8 Hz, 1H), 3.14–3.24 (m,
2H), 4.28 (d, J = 14.6 Hz, 1H), 4.33 (m, 1H), 4.53 (d, J = 8.7 Hz, 1H), 4.83 (d, J = 14.6 Hz, 1H),
6.37 (br, 1H), 7.23–7.38 (m, 5H); 13C NMR (125 MHz, CDCl3) d: 17.2, 20.3, 20.7, 21.1, 23.0,
33.3, 33.9, 40.4(2C), 42.2, 50.1, 60.6(2C), 69.2, 80.7, 127.5, 128.2(2C), 128.6(2C), 136.9, 167.4,
169.9 HRMS (FAB+) m/z: [M+H]+ Calcd for C21H33N2O3

+ m/z: 361.4680, Found 361.2516.
Spectroscopyc data for (u)-trans-3 enantiomerically pure agree with those reported for
racemic alcohol

Method for (S)-1-Benzyl-2-oxopyrrolidin-3-yl acetate (S-4): To an enantioenriched
solution of (u)-trans-2 (0.1 g, 0.25 mmol) in 8.3 mL of Et2O at 0 ◦C was added m-CPBA
(77%; 0.17 g, 0.75 mmol) slowly. After 10 min of stirring at this temperature, Et3N (0.23 g,
2.25 mmol) and 5 mL of H2O were added. The phases were separated, and the aqueous
phase was extracted with Et2O (3 × 8 mL). The combined organic phases were dried with
Na2SO4, and the solvent was removed under reduced pressure. The residue was purified
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using column chromatography [SiO2, hexanes/EtOAc; 4:1 until TEMPO came out of the
column, then 1:1] to give 23.9 mg (50%) of S-4 [2] as a colorless oil. [α]25

D = −36.0 (c = 1.0,
CHCl3); 1H NMR (500 MHz, CDCl3) δ: 1.93 (tdd, J = 13.5, 9.5, 8.0 Hz, 1H), 2.16 (s, 3H),
2.50–2.56 (m, 1H), 3.21 (dt, J = 10.0, 7.5 Hz, 1H), 3.29 (td, J = 9.5, 2.5 Hz, 1H), 4.45 (d,
J = 14.5 Hz, 1H), 4.54 (d, J = 14.5 Hz, 1H), 5.35 (t, J = 8.0 Hz, 1H), 7.24–7.36 (m, 5H); 13C
NMR (125 MHz, CDCl3) δ: 21.1, 26.1, 43.1, 47.2, 71.4, 128.0, 128.4(2C), 129.0(2C), 135.7,
170.2, 170.5.

Method for (S)-1-Benzyl-3-hydroxypyrrolidin-2-one (S-5): To a solution of S-4 (0.02 g,
0.086 mmol) in 2.9 mL of THF:H2O (2:1) at 0 ◦C was added LiOH (6.2 mg, 0.26 mmol). The
reaction mixture was stirred and monitored with TLC. Upon completion, an aqueous solu-
tion of KHSO4 was added until a pH of 1–2 was reached. Then, 10 mL of Et2O was added,
the phases were separated, and the aqueous phase was extracted with Et2O (3 × 10 mL).
The combined organic phases were dried with Na2SO4, and the solvent was removed
under reduced pressure. The residue was purified using column chromatography [SiO2,
EtOAc:EtOH; 1:2] to give 13 mg (79%) of S-5 as a white solid. M.p.: 69–70 ◦C; [α]25

D = −79.0
(c = 0.55, CHCl3); 1H NMR (500 MHz, CDCl3) δ: 1.91–1.99 (m, 1H), 2.39–2.45 (m, 1H),
3.15–3.27 (m, 2H), 4.01 (br, 1H), 4.41–4.51 (m, 3H), 7.23–7.35 (m, 5H); 13C NMR (125 MHz,
CDCl3) δ: 27.9, 43.2, 47.2, 70.2, 127.9, 128.3(2C), 128.9(2C), 135.8, 175.0.

4. Conclusions

An asymmetric synthesis approach to trans-3-alkoxyamine-4-oxy-2-piperidones from
a simple 4-hydroxypiperidine is described. The synthetic goal was achieved by combining
selective dual C−H oxidation of piperidines mediated by the TEMPO cation and CAL-B
enzymatic resolution. Since the functionalization of sp3 C−H bonds is performed under
transition-metal-free conditions and using cheap and innocuous reagents, this approach
represents an eco-friendly alternative to access valuable alkaloid intermediates. This
methodology also provides evidence for the capability to use the remaining material in
order to achieve a good atom economy. Furthermore, the hydrolysis strategy seems to
be a better alternative for bulky alcohol resolution. Deconstructive lactamization of an
enantioenriched compound allowed for not only assigning the absolute configuration of the
two chiral centers in the title compounds by chemical correlation but also enabled access to
another valuable chiron with a high optical purity: (S)-4-hydroxy-2-pyrrolidinone [(S)-5].
Additionally, applications of this novel approach in the total synthesis of biologically
important alkaloids will be reported in due course.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal13040703/s1, Figure S1. Schematic representation for: (a) resolution
of the rac-trans-3 as the second substrate (for enantiomer (3S,4R)) and (b) resolution of the rac-trans-2
intermediate as the first substrate (for the fast-reacting enantiomer (3S,4R)-2).
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