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Abstract: In this work, the highly active polyoxometalate (PW2Mo2) with Venturello structure and
its corresponding catalyst were applied in catalytic desulfurization for the first time. PW2Mo2 as an
active component was effectively encapsulated in hollow periodic mesoporous organosilica (HPMOS)
to form the nanoreactor PW2Mo2@HPMOS, where the central cavity and mesoporous shell facilitate
mass transfer and both provide a stable place to react with organic sulfides. Desulfurization test results
show that the hollow nanoreactor PW2Mo2@HPMOS can almost remove four sulfides simultaneously
from diesel in 2 h under mild conditions. Besides, the nanocatalyst PW2Mo2@HPMOS can be reused
and recycled for at least seven consecutive tests without any noticeable loss in performance. With
the rapid development of the economy, the massive use of sulfur-containing fuel has a huge impact
on the global climate. After combustion of sulfur-containing fuel, the realized SOX is an important
inducement of the formation of acid rain, and the realized sulfur particle is also a major source
of haze. Therefore, removing sulfur compounds from fuel is an important issue that needs to be
solved immediately.

Keywords: polyoxometalates; hollow periodic mesoporous organosilica; nanoreactor; desulfuriza-
tion; chemical process

1. Introduction

With the development of the economy and the improvement of people’s living stan-
dards, the demand for fuel oil has increased rapidly [1,2]. From 2010 to 2020, China’s
apparent total consumption of refined oil products (gasoline, diesel, and kerosene) in-
creased from 246 million tons to 289 million tons. Global fuel oil demand will continue
to grow strongly over the next few years. However, the large amount of sulfur oxides
emitted by fuel combustion causes a series of environmental problems, such as acid rain
and haze [3,4]. Therefore, in order to improve the environment and reduce pollution, it
is urgent to desulfurize fuel and use low sulfur or even sulfur-free fuel. At present, most
countries in the world have adopted increasingly strict sulfur emission policies to eliminate
the harm caused by sulfur oxides [5–8]. Even so, it is still necessary to develop efficient and
convenient desulfurization technology to produce ultra-low sulfur or even sulfur-free fuel.

The most common industrial technology for desulfurization of crude oil is hydrodesul-
furization [9,10]. However, this method needs to operate under extreme conditions (high
temperature and high pressure), which requires sufficient energy and high production costs,
as well as potentially unsafe hydrogen. In this respect, alternative non-hydrodesulfurization
technologies, such as the oxidative method, extraction method, adsorption method, and so
on, have become urgent research topics. Extraction oxidation desulfurization (EODS) tech-
nology is a new efficient method that combines extraction desulfurization and oxidation
desulfurization [11,12]. In the extraction oxidative desulfurization process, the sulfides in
the diesel are transferred to the extraction layer, where they are oxidized to sulfones until
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the diesel is sulfide-free. The extraction oxidation desulfurization technology overcomes
the complex two-step operation of the traditional oxidation separation technology, which
requires oxidation first and then removal, and the defects of the low efficiency of pure
extraction desulfurization. One of the key points of EODS is the selection and preparation
of a high activity catalyst.

Some metal-containing materials, such as polyoxometalates composed of Venturello
anions and organic cations, have attracted extensive interest from researchers due to their
excellent catalytic activity and have been widely used in various catalytic oxidation re-
actions [13–17]. At the same time, polyoxometalate, with its simple preparation, stable
structure, and lack of pollution, is considered an economic and environmental desulfuriza-
tion catalyst. It was shown by Wenshuai Zhu and co-workers that the dibenzothiophene
(DBT) can be completely oxidized to the corresponding sulfone within 2 h under the
catalyze of polyoxometalate catalyst [(n-C8H17)3NCH3]3[PO4{WO(O2)2}4] [18]. Salete S.
Balula’s research group prepared the supported catalyst by embedding the active ingre-
dient (nBu4N)3{PO4[WO(O2)2]4} in the SBA-15 channel through a simple impregnation
method. The catalyst could achieve a desulfurization efficiency of 100%, but its reusability
remains to be improved [19]. A large number of studies have shown that polyoxometalate
has high desulfurization activity but is difficult to recycle due to its solubility in organic
solvents. Loading or encapsulating the active component onto carrier material can improve
its reusability while ensuring its high activity.

The good support material can not only improve the reusability of the catalyst but
also disperse the active components well and prevent them from agglomerating. Suitable
pore size, a large specific surface area, and a stable structure are the factors to be consid-
ered in the selection of support materials. In recent years, metal-organic frame materials,
carbon materials, mesoporous silicon materials, and so on have aroused people’s interest.
Among them, the hollow periodic mesoporous organosilica (HPMOS) is a new kind of
organic-inorganic hybrid material with a central cavity and an ordered mesoporous shell,
which has a great potential for application in many fields, such as catalysis, drug deliv-
ery, chromatographic separation, sensing, drug release, insulation, and fuel cells [20–22].
And due to its characteristics of high specific surface area, adjustable pore size, ordered
mesoporous channel, and central hole, it is a promising candidate material for nanoreactors
with remarkable catalytic performance [23]. In theory, HPMOS, as a nanoreactor, can well
accommodate the active component, and its cavity and mesoporous shells are conducive to
mass transfer. Significantly, the nanoreactor allows the catalytic reaction to take place in
a confined space where the substrate can effectively contact the active site, resulting in a
significant increase in catalytic activity.

In this work, Venturello structure polyoxometalate (TBA)3[PO4{W2Mo2O20}]·6H2O,
denoted PW2Mo2, was encapsulated into the mesoporous of HPMOS to form a catalytic
nanoreactor PW2Mo2@HPMOS, which was used for desulfurization of multicomponent
model diesel. The prepared nanoreactor PW2Mo2@HPMOS showed excellent catalytic
activity for the EODS in the presence of H2O2, and almost all sulfides (BT, DBT, 4-MDBT,
4,6-DMDBT) were removed simultaneously from diesel in 2 h under mild conditions. At
the same time, the excellent reusability of the nanoreactor also indicates that the confined
effect of the mesoporous shell contributes to solidifying the active component.

2. Experimental Section
2.1. Materials

Sodium molybdate (99%), disodium hydrogen phosphate (99%), sodium tungstate (99%),
tetrabutylammonium chloride (TBAC, 97%), cetyltrimethylammonium bromide (CTAB, 98%),
benzothiophene (BT, 95%), dibenzothiophene (DBT, 98%), 4-methyldibenzothiophene (4-MDBT,
96%), 4,6-dimethyldibenzothiophene (4,6-DMDBT, 97%), and tetradecane (99%), butyl-3-
methylimidazolium hexafluorophosphate ([Bmim]PF6, 97%), and 1,2-Bis(triethoxysilyl)ethane
(BTSE, 96%) were bought from Aladdin Co., Ltd., Shanghai, China, Octane (99.9%) and
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30% aqueous hydrogen peroxide (H2O2) were purchased from Tianjing Fuchen chemical
reagent factory.

2.2. Catalyst Preparation
2.2.1. Preparation of PW2Mo2

Firstly, the α-Keggin-type heteropolyacid H3PW6Mo6O40·nH2O was synthesized
according to the method based on published procedures [24]. Then, the peroxoheteropoly
species [PO4{W2Mo2O20}]3− was prepared by oxidizing H3PMo6W6O40·nH2O with H2O2.
The detailed process is as follows [25–27]: 30% aq. H2O2 (10 mL) was poured into an
aqueous solution of H3PMo6W6O40·nH2O (0.5 mmol) under magnetic stirring at room
temperature. After stirring for 60 min, 3 mL of an aqueous solution containing tetrabuty-
lammonium chloride (1.6 mmol) was added while fiercely stirring. After reaction, the
resultant precipitate (TBA)3[PO4{W2Mo2O20}] 6H2O, denoted PW2Mo2, was separated
by vacuum filtration, washed with distilled water for three times, and dried overnight at
50 ◦C.

PW2Mo2. Anal. Calcd. (%) for (TBA)3[PO4{W2Mo2O20}]·6H2O (1813.48): C, 30.85; H
6.56; N 2.26. ICP anal. (g/kg): W, 399.23; Mo, 210.67. Selected FT-IR (cm−1): 2963 (s), 2873
(s), 1485 (s), 1387 (m), 1076 (s), 1043 (w), 971 (s), 870 (s), 795 (w), 740 (w), 661 (s), 589 (s), 543
(s), and 430 (m).

2.2.2. Preparation of Hollow Periodic Mesoporous Organosilica (HPMOS)

HPMOS was prepared using a one-step method. Firstly, CTAB (0.64 g) was poured
into a mixed solution of ethanol (30 mL), ammonia (2 mL), and distilled water (150 mL)
under magnetic stirring to obtain a transparent solution. Secondly, a mixture of etnanol
(30 mL), BTSE (0.48 g), and octane (0.02 mL) was added to the above transparent solution.
After stirring for 60 min, the white product was formed, collected by centrifugation, and
washed with distilled water three times. Thirdly, the solid was transferred to a 100 mL
ethanol solution containing 1 mL hydrochloric acid and heated at 80 ◦C for 6 h; this step
was repeated three times to fully remove CTAB. Finally, the product HPMOS was collected
by centrifugation, washed with distilled water and etanol, and then dried at 60 ◦C for 6 h.

HPMOS. Selected FT-IR (cm−1): 1640 (m), 1419 (w), 1274 (m), 1166 (s), 1038 (s), 913 (m),
773 (m), 701 (m), and 454 (m).

2.2.3. Preparation of Composite PW2Mo2@HPMOS

The hollow nanoreactor PW2Mo2@HPMOS was prepared by the facile impregnation
method. HPMOS (0.5 g) was poured into a 5 mL acetonitrile solution containing active
component PW2Mo2 (0.3 g) at room temperature under magnetic stirring for 24 h. Then
the product was collected by centrifugation and washed with acetonitrile three times, and
dried at 60 ◦C for 12 h.

PW2Mo2@HPMOS. ICP anal. (g/kg): W, 36.24; Mo, 18.74. Selected FT-IR (cm−1):
1640 (m), 1462 (m), 1419 (w), 1384 (m), 1276 (s), 1166 (s), 1038 (m), 913 (m), 775 (m), 770 (m),
and 454 (m).

2.3. Characterizations

Inductively coupled plasma mass spectrometry (ICP-MS) was performed on the
PerkinEImer NexION 300× instrument to analyze the metal content of samples. Fourier
transform infrared (FT-IR) spectra of different samples were carried out on an EQUINOX
55 spectrometer using the KBr pellet method with a wavenumber range of 4000–400 cm−1.
X-ray diffraction (XRD) patterns of high-angle and low-angle were measured on a Bruker
D8 Advance diffractometer and a Shimadzu XRD-7000S, respectively. Thermogravimetric
curves were recorded on a NETZSCH STA 449A thermal analyzer from 30–1000 ◦C with a
heating rate of 5 ◦C/min. N2 adsorption-desorption isotherms were collected on the TriStar
II 3020 sorption analyzer at 77 K. Scanning electron microscopy (SEM) with electron energy
dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) were tested
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on the SU 8010 instrument and the Talos F200X instrument to analyze the morphology of
samples. A gas chromatogram was carried out on the Agilent 7890 to detect the change in
sulfide concentration during the reaction.

2.4. Catalytic Testing

A certain amount of BT, DBT, 4-MDBT, and 4,6-DMDBT in n-octane simultaneously to
prepare a multicomponent simulated diesel with a total sulfide concentration of 2000 ppm,
in which the single component concentration was 500 ppm. A typical desulfurization test
was performed in a 5 mL closed borosilicate reactor including 0.75 mL simulated diesel,
0.75 mL extractant ([Bmim]PF6), a certain amount of catalyst, and 0.3 mmol H2O2, which
was equipped with a magnetic stirrer and soaked in a 70 ◦C constant temperature oil bath.
Extractive oxidation desulfurization consists of two processes: raw materials were first
mixed and stirred for 10 min, then an oxidizing agent (H2O2) was added to activate the
oxidation process. Both processes were carried out at 70 ◦C with stable magnetic stirring.
Residual sulfide concentration in fuel oil at different times was detected by GC analysis
using tetradecane as the internal standard.

During the reusability test of the catalyst, the catalyst was separated, washed, and
dried after each cycle. Then, the recovered catalyst, fresh model diesel, extractant, and oxi-
dant were added to the reactor to start the next test. The recyclability of the desulfurization
system was carried out by removing the desulfurized diesel at the end of the reaction and
then adding fresh model diesel and oxidant to start the next cycle.

3. Results and Discussion
3.1. Catalyst Characterization

In order to test the content of the active component in the composite, the composite
was examined by ICP-MS. The result confirms that the loading amount of the active
component PW2Mo2 was 0.12 mmol/g. The functional group of synthesized materials
was monitored by FT-IR spectroscopy (Figure 1). The FT-IR spectrum of PW2Mo2 exhibits
some characteristic peaks in the 1100–540 cm−1 range assigned to the Venturello structure
anion, and the stretching vibration characteristic peak attributed to the O-O bond appears
at 870 cm−1 [28,29]. The FT-IR spectrum of HPMOS shows several strong peaks located
at 1035, 773, and 454 cm−1 ascribed to antisymmetric stretching vibration and symmetric
stretching vibration of Si-O-Si [30,31]. The immobilization of PW2Mo2 was verified by the
FT-IR spectrum, which showed some peaks that belonged to the active component at 1462,
1384, and 480–580 cm−1.
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The HPMOS before and after introducing the active component was studied by X-ray
diffraction (Figure 2). The low angle XRD pattern of HPMOS shows a well-resolved peak
at 2θ = 0.89◦, indicating the existence of mesoporous structures on the hollow silicon
shell [32,33]. After immobilized PW2Mo2, the XRD pattern of the composite is similar to
that of HPMOS, which verified that the ordered structure of HPMOS was not damaged
in the synthesis process. In addition, the high-angle XRD pattern of PW2Mo2@HPMOS
did not display peaks assigned to the active component, further confirming the successful
introduction of the active component into the pores of the carrier material.
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Figure 3 exhibits the thermal stability of the PW2Mo2@HPMOS composite, pure
HMPOS, and PW2Mo2. The TG curve of PW2Mo2 shows four weight-loss processes: the
first step, losing 7.0% mass from room temperature to 171 ◦C, is due to the removal of
adsorbed water and solvent; the second step, from 171 ◦C with 25.6% mass loss, may
be attributed to the decomposition of a cation the third stage occurrs at 262 ◦C, losing
18.1% mass, which is due to the decomposition of the anion; and the last stage, from
406 ◦C with 17.7% mass, the dehydration-condensation reaction. The total weight loss
of HPMOS is 15.6%, which is due to solvent volatilization, template decomposition, and
Si-OH condensation. The TG curve of the composite PW2Mo2@HPMOS is similar to that of
PW2Mo2, and the total weight loss is 22.9%, which is consistent with the result of ICP-MS.
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The mesoporous structure of pure HPMOS and composite PW2Mo2@HPMOS was
researched through nitrogen adsorption-desorption isotherm measurements (Figure 4,
Table 1). HPMOS and PW2Mo2@HPMOS both show type IV adsorption-desorption
isotherms, indicating the presence of characteristic porous structures. Meanwhile, the
H4-type hysteresis loops in the p/p0 range of 0.45–1.0 are observed in the two isotherms,
which further proves that the materials have microporous and mesoporous structure
(Figure 4a). In addition, the results show that the HPMOS has a high specific surface area
(942.05 m2/g) and a large pore volume (1.45 cm3/g), and the pore size mainly concentrates
at 2.0–3.7 nm and 3.7–5.2 nm. Compared with HPMOS, the specific surface area and pore
volume of the composite PW2Mo2@HPMOS are lower, which is due to the pore space
occupied by the active component PW2Mo2. At the same time, the pore size distribution
curve also shows that the pore size of PW2Mo2@HPMOS becomes smaller due to the
successful introduction of the active component (Figure 4b).
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Table 1. The specific surface area, pore volume, and pore diameter of the samples.

Sample SBET (m2/g) V (cm3/g) D (nm)

HPMOS 942.05 1.45 5.62
PW2Mo2@HPMOS 326.46 0.48 5.88

The morphology and element distribution of the synthesized materials were analyzed
by SEM, TEM, and EDX. The SEM image shows that PW2Mo2 is an irregularly shaped block
(Figure 5a). The SEM and TEM images of HPMOS are displayed in Figure 5b,d, indicating
their well-defined hollow periodic mesoporous nanosphere structure with a diameter of
about 200 nm. Figure 5c,e shows that the morphology of a hollow periodic mesoporous
nanosphere of composite is maintained after the immobilization of PW2Mo2. As can be
seen from Figure 5f–m, the mapping of the Si, O, and C elements of PW2Mo2@HPMOS on
individual nanospheres further verifies the successful formation of the internal cavity, and
the mapping of the P, W, and Mo elements further confirms the successful immobilization
of PW2Mo2, which was distributed uniformly in the pore of the HPMOS.
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3.2. Desulfurization Efficiency Catalyzed by PW2Mo2@HPMOS Nanoreactor

The removal of organic sulfides was carried out at 70 ◦C under continuous magnetic
agitation in a microreactor including a certain amount of catalyst containing 5 µmol active
component, 0.75 mL of multicomponent simulated diesel consisting of four refractory
sulfur-containing compounds, namely BT, DBT, 4-MDBT, and 4,6-DMDBT, and an equal
volume of [Bmim]PF6 as an extractant. After stirring for ten minutes, the sulfides in the
multicomponent simulated diesel were extracted into the extractant, and the extraction
equilibrium was reached. Then, aqueous hydrogen peroxide (0.3 mmol) was injected as an
oxidant into the reactor to activate the catalytic oxidation process.

The catalytic behavior of PW2Mo2, HPMOS, and hollow PW2Mo2@HPMOS were
assessed under initial conditions, as shown in Figure 6. The result shows that HPMOS had
no catalytic effect on EODS. PW2Mo2 and PW2Mo2@HPMOS, as homogeneous catalysts
and heterogeneous hollow nanoreactors, promoted near total desulfurization of the model
diesel with sulfide removal rates of 99.8% and 99.9%, respectively. In other words, the
introduction of HPMOS can maintain high catalytic activity.
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oxidant at 70 ◦C.

3.3. Condition Optimization

According to the above result, a hollow nanoreactor containing PW2Mo2 exhibits
significant activity in the removal of four organic sulfides. Therefore, under the catalysis
of PW2Mo2@HPMOS, the influence of three parameters, including catalyst dose, oxidant
amount, and temperature, on the total desulfurization efficiency was carried out to achieve
the best result under optimal conditions.

Using as few catalysts as possible to minimize the cost and maximize the desulfu-
rization efficiency is the goal pursued by the industry. Therefore, the effect of catalysts
containing different amounts of the active component PW2Mo2 was studied and shown
in Figure 7a. With the amount of PW2Mo2 catalyst increasing from 1 µmol to 5 µmol, the
total desulfurization rate improved from 67.5% to 99.9% at 120 min. Subsequently, with the
PW2Mo2 amount increased to 7 µmol, the conversion of sulfides was almost complete. The
results show that with the increase in PW2Mo2 amount, the content of the active molecule
increases rapidly and the reaction rate increases. At the same time, when the sulfide conver-
sion reached its peak, increasing the catalytic dose had no significant effect on the reaction.
Therefore, the optimal content of the active component PW2Mo2 was 5 µmol.
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H2O2, as an oxidant, plays an important role in the catalytic oxidation of sulfides
(Figure 7b). An increase in the H2O2 dose from 0.1 mmol to 0.4 mmol leads to an improve-
ment in the total desulfurization rate. When the dosage of H2O2 reaches 0.3 mmol, the
total desulfurization rate reaches the maximum value of 99.6%. The total desulfurization
efficiency did not increase significantly when the amount of oxidant was increased. So,
0.3 mmol was determined to be the optimal value of the H2O2 dose.

Appropriately high temperatures can effectively accelerate the catalytic reaction rate,
which is once again verified in this experiment (Figure 7c). When the EODS test was carried
out at 40 ◦C, 50 ◦C, 60 ◦C, and 70 ◦C, the corresponding maximum desulfurization efficiency
was 77.1%, 85.3%, 91.9%, and 99.9%, respectively. When the temperature continues to rise
to 80 ◦C, the desulfurization rate is accelerated. However, considering that increasing the
temperature will increase the production cost, the optimal temperature is finally determined
to be 70 ◦C.

Under the optimum reaction conditions: a certain amount of catalyst containing
5 µmol PW2Mo2, 0.3 mmol H2O2, and 70 ◦C, the concentration of four sulfides over time
was detected (Figure 7d). During the catalytic oxidation process, the order of activity in
sulfur oxidation was DBT > 4-MDBT > 4,6-DMDBT > BT, which is affected by the electron
density and steric hindrance of the sulfur atom.
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3.4. Reusability of Catalyst and Recyclability of the EODS System

The reusability of the nanoreactor PW2Mo2@HPMOS was studied for several cycles
under optimal conditions. After each test, the material was separated, washed, and dried,
and then added to the next test. The recyclability of the EODS system was tested by
removing the desulfurized diesel after each test and then adding fresh diesel and H2O2 to
initiate the next EODS cycle. As can be seen in Figure 8, the reusability test showed that the
efficiency of the catalytic hollow nanoreactor decreased slightly to 90.6% after the seventh
cycle, which may be caused by the loss of active components during the cycle. In order
to detect the loss of active components in the recovered materials, ICP-MS analysis was
performed. The results of ICP-MS showed that the loading amounts of active components
in reused catalyst and recycled catalyst are 0.101 and 0.114 mmol/g, respectively. In
comparison, the desulfurization performance of the EODS system only decreased to 95.2%
after the seventh cycle due to the little or no loss of the active components. However,
the increased introduction of aqueous oxidizer may hinder the transfer of sulfides from
diesel to the extraction phase, resulting in a slight decrease in desulfurization efficiency. To
maximize desulfurization rate under the premise of lowest cost, the pursuit of industrial
applications is necessary. For industrial production, the costs can be reduced by reducing
material consumption and simplifying procedures, which are characteristics of the recycling
system of EODS. Therefore, the catalyst prepared in this work, possessing good recyclability
and excellent activity, is expected to be applied to industrial production.
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3.5. Stability of PW2Mo2@HPMOS Catalyst

After seven consecutive recyclability and reusability tests, the catalytic hollow nanore-
actors were separated, washed, dried, and characterized. The FT-IR spectra and SEM
images of treated PW2Mo2@HPMOS after recyclability and reusability tests maintain simi-
lar profiles to those of the fresh catalyst PW2Mo2@HPMOS (Figure 9). The FT-IR spectrum
of PW2Mo2@HPMOS after the first cycle is similar to that of a fresh catalyst. However,
some additional peaks can be observed at around 1600 cm−1 in the FT-IR spectra of re-
cycled and reused samples, which may be related to sulfur compounds adsorbed on the
catalyst surface [34,35]. The results show that the catalyst has excellent stability and a good
industrial application prospect.
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3.6. Comparison of Desulfurization of Fuel in a Nanoreactor

A comparison of the desulfurization results of model fuel catalyzed by different
nanoreactors reported in the literature is displayed in Table 2. The data show that DBT
can be almost completely removed from the fuel when it is catalyzed by different catalysts
under certain conditions. It is noteworthy that catalysts PW2Mo2@ HPMOS prepared in
this study can simultaneously remove multiple sulfides from fuel oil, indicating that the
catalyst has a certain potential in practical application.

Table 2. Comparison of the desulfurization of fuel in the nanoreactor.

Catalyst

Substrate Test Conditions
Desulfurization

Rate, % Reference
Species Concentration, ppm Oxidant [O]/S T, ◦C Reaction

Time, min

MoOx/HS
DBT 200

O2 3 50
60 99.7

[36]4-MDBT 200 60 99.6
4,6-DMDBT 200 90 39.3

PMo12/AmHMSiO2@C DBT 800 H2O2 6 40 180 >99 [37]

MoO2@GNF
BT 125

TBHP * 20 60 120
95.3

[38]DBT 500 98.8
4,6-DMDBT 125 94.8

MoO3/SiO2-1 HN DBT 500 H2O2 6 60 30 99.9 [39]

PW2Mo2@ HPMOS

BT 500

H2O2 10 70

90 100.0

This work
DBT 500 120 99.5

4-MDBT 500 120 100.0
4,6-DMDBT 500 120 99.9

* tert-butyl hydroperoxide.

4. Conclusions

In summary, Venturello-based complexes with the unique peroxide bond PW2Mo2
were successfully encapsulated in hollow periodic mesoporous organosilica (HPMOS) to
obtain a catalytic nanoreactor (PW2Mo2@ HPMOS), which was applied to the extraction, oxi-
dation, and desulfurization of synthetic diesel. The result shows that the PW2Mo2@HPMOS
nanoreactor displayed high activity for four refractory organic sulfides in a dual liquid
phase desulfurization system using H2O2 as an oxidant. Under the optimized conditions,
the four sulfides can be almost completely removed after 120 min of reaction, and the order
of activity in sulfur oxidation during the reaction was DBT > 4-MDBT > 4,6-DMDBT > BT.
The excellent performance is mainly attributed to the high efficiency of mass transfer in
the cavity and mesoporous channel, where the sulfide can enter and exit freely, providing
a place for the collision and reaction between the sulfide and the active component. In
addition, the catalyst reusability test and EODS system recyclability test show that the
catalyst has excellent reusability and a good industrial application prospect.
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