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Abstract: Environmental contamination has become the most pressing issue in recent years. The
value of clean water to mankind has sparked interest in heterogeneous photocatalysis. In this study,
a novel photocatalyst has been synthesized by integrating WO3-doped MoO3 (WDM) and ZnO
through composite formation. The composite nature of the synthesized photocatalyst was confirmed
due to the presence of hexagonal ZnO and orthorhombic WDM phases in XRD pattern and scanning
electron micrographs. Solid-state absorption spectra and a bandgap analysis showed that WDM-
spectral ZnO’s response was better than that of pure ZnO. PL and EIS unveiled the effective role of
WDM in suppressing the e−–h+ recombination process and charge-transfer resistance, respectively,
in ZnO. The photocatalytic studies showed that WDM-ZnO was able to remove ~90% of 30 ppm
2-nitrophenol (2-NP) with a rate of 1.1 × 10−2 min−1, whereas ~65% 2-NP was removed by ZnO
(6.1 × 10−3 min−1 rate) under the exposure of natural sunlight (800 × 102 ± 100 lx). Moreover,
~52% higher total organic carbon (TOC) removal was observed by WDM-ZnO as compared to
ZnO. The photocatalytic removal of 2-NP by the produced photocatalysts followed the Langmuir–
Hinshelwood kinetic model, as shown by the kinetic studies. The reactive oxygen species (ROS)-
trapping established that the photocatalytic removal mechanism of 2-NP over WDM-ZnO in sunlight
illumination was mainly triggered by the superoxide anion (O2

•−) radical, however, the minor role
of hydroxyl (•OH) radicals cannot be completely ignored.

Keywords: sunlight photocatalysis; WDM-ZnO; 2-nitrophenol; TOC removal

1. Introduction

The global battle against the contamination of the environment is the most significant
task in this century. Water contamination is the biggest concern as a result of the many
different forms of environmental degradation that the world is presently experiencing.
Although chemical-based businesses play a significant role in human civilization, countless
anthropogenic and industrial activities have released enormous quantities of chemicals
into the environment, possibly affecting a wide range of ecosystems [1]. The recent growth
of the textile, paint, leather, plastics, food, and cosmetics sectors is linked to the release
of several organic pollutants that are detrimental to human health, aquatic systems, and
microorganisms [2,3]. In addition, key aspects of the discharged water, such as toxicity,
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biochemical oxygen demand, chemical oxygen demand, unpleasant odor, and color, may
alter because of the influence of these organic effluents in wastewater. Effluent may become
colored by even a small quantity of colorful organic molecules in the aquatic system.
Because tinted water makes it more difficult for aquatic life and plants to obtain sunlight,
it has a detrimental effect on the ecosystem by limiting photosynthesis. Consequently,
color removal and sanitization have turned into ecological issues and are essential for
maintaining the ecosystem [4,5].

Phenolic derivatives in wastewater sources have recently attracted much concern
due to their toxicity. Nitrophenol derivatives are regarded as the largest contaminant of
industrial wastewater due to their application in a number of chemical industries. The
massive use of these nitrophenols as a result of growing urbanization and globalization
has led to an excessive discharge of these pollutants into water bodies, creating a number
of environmental problems [6]. 2-nitrophenol (2-NP) is one of the most hazardous and
long-lasting organic contaminants found in industrial effluent and due to high water
solubility, intense color, stability, and resistance to degradation has attracted particular
attention [7,8]. The USEPA has declared 2-NP as a priority pollutant and has recommended
its concentration in natural waterways be limited to less than 5 ppb. Therefore, the removal
of 2-NP is highly desirable.

Due to the complexity and wide range of organic compounds utilized, it has become
difficult to find a single treatment approach that entirely covers the effective removal of
all these organic contaminants. The removal of these contaminants from wastewater has
historically been accomplished using a variety of conventional or traditional wastewater
treatment techniques, such as biological, physical, and chemical cleaning. However, tradi-
tional water treatment systems have been found to be unable to completely degrade organic
toxins in aqueous system [9]. The low cost and convenience of use are the advantages of
biological therapy, but the results are often subpar because of the considerable resistance to
aerobic biodegradation [10]. The physical processes of flocculation, precipitation, granular
activated carbon (GAC), and reverse osmosis are all used to extract phenols (RO). In most
cases, physical therapy is successful in eliminating dyes, but the post-treatment care is
challenging [11]. Other drawbacks of chemical treatment include the creation of hazardous
byproducts, the need for high chemical dosages, and incomplete disintegration [12].

Due to the shortcomings of current wastewater treatment systems, it is essential
to design a significantly improved wastewater treatment technology. In this context,
photocatalytic water decontamination methods using a natural light source, i.e., sunlight,
has received considerable attention due to their green approach and the formation of benign
products without leaving toxic content after the degradation process [13,14]. This has been
shown to be a viable alternative to traditional wastewater treatment for removing organic
contaminants from a variety of industrial waste [15]. When a photocatalyst is stimulated
by light, ROS are produced. ROS also convert organic toxins into harmless molecules [16].
In this context, various metal oxides such as TiO2, ZnO, CeO2, Fe2O3, SnO2, Bi2O3, etc.,
have been used as photocatalysts for the removal of organic pollutants [17].

Among metal oxides, ZnO is extensively used as a photocatalyst because of its low
cost, tunable bandgap, n-type nature, natural abundance, and non-toxicity. However,
its wide application is limited because of its high bandgap energy (~3.3 eV), which lies
in the UV region of the light spectrum, low photonic yield, and high electron–hole pair
recombination rate [18]. It utilizes only ~5% of sunlight, i.e., the UV portion, however, it
cannot harvest the visible portion (~45%) of natural sunlight due to its wide bandgap [19].
Due to these restrictions, researchers now have a new area of inquiry, how to broaden or
move the ZnO absorption spectrum from the UV to the visible range. According to several
studies, ZnO’s photocatalytic activity can be enhanced by improving the spectral response
and lowering of the charge recombination rate. These problems related to ZnO can only be
accomplished by modifying ZnO through doping or composite formation [20,21].

In this study, hexagonal ZnO has been modified with WO3-doped MoO3 using com-
posite formation, since tungsten oxide and molybdenum oxide have comparable ionic
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radii and electronic structures, and tungsten oxide is a natural option for molybdenum
oxide doping in order to produce a doped oxide in the host oxide. This makes it easy
to incorporate W6+ into the crystalline lattice of molybdenum oxide. Phuruangrat et al.
successfully synthesized W-doped MoO3 using a hydrothermal method and reported its
excellent chemical stability, reusability, and photocatalytic activity for the removal of methy-
lene blue (MB) dye [22]. Moreover, these oxides are essential components for a wide range
of crucial applications, including solar energy materials and smart window technologies
as well as electrical devices including photoelectrodes, organic electronics, sensors, and
optical devices [23]. These above-mentioned properties have encouraged us to utilize
WO3-doped MoO3 to enhance the photocatalytic activity of ZnO for wastewater treatment.
The WDM-ZnO and pristine ZnO photocatalysts were characterized using DRS, PL, XRD,
and SEM for optical, structural, and morphological evaluation. Under irradiation with
natural sunlight, a photocatalytic experiment was carried out to remove 30 ppm 2-NP from
the synthesized photocatalysts, and the removal of organic content was determined using a
TOC analyzer. The charge-transfer resistance posed by the materials was assessed through
a Nyquist plot. Moreover, the contribution of ROS in the photocatalytic removal of 2-NP by
WDM-ZnO was also estimated to establish the photocatalytic mechanism.

2. Results and Discussion

The XRD measurements of MoO3, WO3, and WO3-doped MoO3 (WDM) are provided
in Figure 1a. The main reflections owing to pure MoO3 and WO3 were in accordance
with orthorhombic MoO3 (JCPDS#05-0508) and monoclinic WO3 (JCPDS#43-1035), respec-
tively [24–26]. In WDM, a minor peak shift towards a lower diffraction angle and a decrease
in the peak intensities of the preferred planes (021) and (020) of MoO3 were noticed, as
presented in Figure 1b,c. Whereas peaks related to the presence of WO3 in the structure
were also observed. The major peaks’ variation, either in position or intensity, reveals the
incorporation of W6+ into the structure of MoO3 [27]. Moreover, the presence of major
reflections due to hexagonal ZnO (JCPDS# 36-1451) and the newly synthesized WDM in the
XRD pattern of WDM-ZnO confirm the formation of the composite, as shown in Figure 2.
The presence of hexagonal ZnO and orthorhombic-like WDM in the SEM images as shown
in Figure 3 serves as further evidence of the synthesized photocatalyst’s composite nature.
The microstructural parameters such as crystallite size (D), interplanar distance (d), disloca-
tion density (δ), micro-strain (ε), and stacking fault (SF) of the synthesized materials were
calculated using Equations (1)–(4) and are presented in Table 1. Using the Debye–Scherrer
equation shown below, the crystallite size (D) was determined [28]:

D =
Kλ

β cos θ
(1)

where K is a shape factor and the Scherrer constant, β is the full width at half maximum
(FWHM), λ is the X-ray wavelength, and θ is the Bragg diffraction angle. The dislocation
density (δ) was calculated using the following equation [28]:

δ =
1

D2 (2)

where δ and D are the dislocation density and crystallite size (nm), respectively. Further-
more, the following equations were used to compute the micro-strain (ε) and stacking fault
(SF) [29].

ε =
β Cos θ

4
(3)

SF =
2π2 × β

45×
√

3 tan θ
(4)
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Table 1. The microstructural parameters of the synthesized materials.

Synthesized
Material

2θ (◦) with
Preferred

Plane
Orientation

(hkl)

Interplanar
Distance (d)

(Å)

Crystallite Size
(D) (nm)

Micro-Strain
(ε)

(10−4)

Dislocation
Density (δ)
(1014 m−2)

Stacking Fault
(SF)

(10−3)

WO3 24.32 (200) 3.6569 38.5659 9.3839 6.7235 2.0927

MoO3 27.12 (021) 3.2853 65.6305 5.5142 2.3216 1.1689

WDM * 27.10 (021) 3.2877 63.1970 5.7265 2.5038 1.2143

ZnO 36.28 (101) 2.4741 36.3663 9.9515 7.5614 1.8515

WDM-ZnO 36.28 a (101) 2.4741 36.3663 9.9515 7.5614 1.8515

WDM-ZnO 27.10 b (021) 3.2877 62.2745 6.2274 2.5786 1.2323
* WDM is the short name given to WO3-doped MoO3. a Peak position of ZnO (101) plane in WDM-ZnO composite,
b peak position of MoO3 (021) plane in WDM-ZnO composite.

For pure MoO3 and WDM, the diffraction pertaining to the plane orientation (021)
was preferred to estimate the crystallite size of orthorhombic MoO3 in pure MoO3 and
WDM. A decrease in crystallite size from 65.6305 nm (MoO3) to 63.1970 nm (WDM) was
noticed after the introduction of W6+ in the structure of MoO3. Whereas a minor increase
in the micro-strain, dislocation density, stacking fault, and interplanar distance was ob-
served in WDM in comparison to pure MoO3. These changes in microstructural properties
and decrease in crystallite size of WDM reveal a minor disturbance in the MoO3 lattice
due to the introduction of W6+. Similar changes in the lattice of MoO3 due to the incor-
poration of different dopants have been reported previously [27,29,30]. Moreover, the
microstructural properties of the WDM-ZnO composite were also determined and com-
pared with the properties of ZnO and WDM, as shown in Table 1. In contrast, a smaller
crystallite size and a slight increase in other microstructural characteristics (Table 1) were



Catalysts 2023, 13, 1262 6 of 16

discernible in comparison to pure WDM, whereas no changes were seen in the properties of
hexagonal ZnO.

In Figure 4, the absorption spectra of ZnO and its composite with WDM are contrasted.
When compared to pure ZnO, the WDM-ZnO composite exhibits a reduction in UV light
absorption and an increase in photon absorption in the visible area. This extended absorp-
tion response of the composite material is mainly due to the presence of Mo6+- (major)
and W6+- (minor) based phases in the composite, whereas a mild shift in the absorption
edge of ZnO to lower wavelength is attributed to the lowering of the ZnO conduction
band (3d10 4s0), primarily by Mo6+ entities. The direct bandgap energies of pure ZnO and
WDM-ZnO were calculated by plotting a graph of (F(R)*hv)2 against hv (eV) as shown in
the inset of Figure 4. The bandgap energy evaluated for pure ZnO (~3.17 eV) was in good
accord with literature assessments [31]. The dual different band energies were observed for
WDM-ZnO in comparison to pure ZnO, which further supports the synthesized material’s
composite origin. In composite material, a ~3.14 eV bandgap energy was attributed to the
ZnO component, whereas ~2.80 eV was due to the presence of WDM. A minor decrease
in the bandgap energy of ZnO is observed due to the existence of WDM entities in the
lower vicinity of the ZnO conduction band. The calculated bandgap energy for the WDM
component in the composite was found to be between the bandgap energies of MoO3
(~2.87 eV) and WO3 (~2.74 eV).
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Figure 4. ZnO and WDM-ZnO composite solid-state absorption spectra are compared, and the inset
shows a direct bandgap analysis of both photocatalysts.

In Figure 5, the photoluminescence (PL) spectra of WDM-modified ZnO and pure ZnO
are contrasted. It is found that the emission intensity of WDM-ZnO is much lower than
that of undoped ZnO. ZnO is a highly luminous substance whose relative greater emission
intensity indicates increased electron–hole pair recombination, reducing its photocatalytic
activity by limiting the production of ROS for the destruction of target pollutants [32].
Whereas, the newly synthesized WDM-ZnO composite showed a lower emission intensity,
as shown in Figure 5, which ultimately led to the suppressing of e−–h+ recombination by
extending their stay-time in respective bands. These excited species react with the O2 and
H2O present in the photocatalytic system to produce a sufficient amount of ROS for further
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degradation. Therefore, WDM-ZnO having a lower photoluminescence intensity shows
greater photocatalytic activity than pure ZnO [33,34].
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Figure 5. PL spectra of WDM-ZnO and ZnO photocatalysts are compared.

Under the irradiation of direct sunlight, ZnO and WDM-ZnO were investigated for
their photocatalytic ability in the elimination of 2-NP. The absorption spectra of 2-NP
samples that were obtained at various times of sunlight exposure were recorded in order
to track the progression of substrate breakdown. Prior to the light exposure, dark testing
was conducted to estimate the adsorption of 2-NP on the surface of both catalysts and the
amounts of adsorption by the ZnO and WDM-ZnO materials were found to be ~2% and
~5%, respectively. The representative absorption spectra, as shown in Figure 6a,b, present a
continuous decrease in 2-NP content with increasing natural sunlight exposure time over
the ZnO and WDM-ZnO photocatalysts, respectively. The photocatalytic removal of 2-NP
over the synthesized photocatalysts was calculated using the following Equation (5) [35].

% removal =
Co − Ct

Co
× 100 (5)

Here, Co is the pollutant’s initial concentration whereas Ct is the concentration of the
pollutant after some light exposure time ‘t’. The comparison of % removal of 2-NP by
the synthesized photocatalysts with increasing exposure of natural sunlight is presented
in Figure 6c. Wherein, a higher removal (~90%) of 2-NP was noticed due to the WDM-
ZnO photocatalyst whereas ZnO was able to remove ~65% of 2-NP during the same
sunlight exposure time. This higher removal of the 2-NP pollutant by WDM-ZnO in
contrast to pure ZnO was attributed to its greater photon harvesting and lower electron–
hole recombination [34–36]. Furthermore, using Equation (6) to assess the kinetics of
the photocatalytic elimination of 2-NP under the exposure to light, the validity of the
Langmuir–Hinshelwood (L-H) kinetic model was also investigated [35].
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Figure 6. Comparison of (a,b) the decrease in absorption of 2-NP over (a) ZnO and (b) WDM-ZnO,
(c) degradation (%), (d) rate of degradation, (e) TOC removal and (f) rate of TOC removal of 30 ppm
2-NP under the exposure of natural sunlight.

ln
Co

Ct
= k× t (6)

When ln Co
Ct

vs. t was plotted, the slope yielded the rate constant, k, which was then
calculated. The kinetic analysis revealed that the photocatalytic removal of 2-NP over the
produced photocatalysts followed the Langmuir–Hinshelwood (L-H) kinetic model, as
illustrated in Figure 6d. Moreover, a higher 2-NP removal rate, i.e., 1.1 × 10−2 min−1, was
noticed for WDM-ZnO in comparison to pure ZnO (k = 6.1 × 10−3 min−1). Monitoring the
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variations in total organic carbon (TOC) throughout the photocatalytic degradation process
is highly recommended for the full removal of contaminants, since merely the degradation
does not ensure the removal of all organic contents from the polluted water [36].

Figure 6e compares the removal of TOC from 2-NP by pure ZnO and WDM-ZnO.
In contrast to ZnO, the synthesized WDM-ZnO photocatalyst removed more TOC from
the 2-NP substrate. In the initial 30 min of sunlight exposure, ~27% of the TOC was
removed by WDM-ZnO, whereas unmodified ZnO removed only ~7% of the TOC. The
WDM-ZnO photocatalyst was able to remove ~80% of the TOC of 30 ppm 2-NP, whereas
~38% of the TOC was removed by pure ZnO in 180 min of sunlight exposure, as shown
in Figure 6e. Moreover, the rate of TOC removal was also evaluated and is presented in
Figure 6f. Wherein, a substantially higher TOC removal rate for WDM-ZnO than for pure
ZnO was seen, which may be due to the successful usage of free-charge carriers (e− and h+

produced as a result of light illumination of WDM-ZnO) for the generation of ROS due to
decreased e−–h+ recombination and the higher charge-transfer ability offered by WDM-
ZnO (Figure 5). The estimation of the charge-transfer ability of the materials was assessed
through a Nyquist plot using electrochemical impedance spectroscopy (EIS), as shown
in Figure 7. The EIS spectra show a decrease in the semi-circle radius for WDM-ZnO as
compared to unmodified ZnO, which implies that WDM-ZnO posed lower charge-transfer
resistance than ZnO, which further verifies the increase in charge separation, and thus easy
charge transfer, in WDM-ZnO [37].
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It is reported that during photocatalysis, charge carriers such as electrons (e−) and
holes (h+) are produced in the conduction band (CB) and valence band (VB), respectively, in
a photocatalyst upon light irradiation. The photogenerated holes (h+) oxidize water present
in the photocatalytic system or hydroxyl ions adsorbed on the surface of the catalyst to
generate hydroxyl free radicals (•OH), whereas the photogenerated electrons interact with
adsorbed oxygen molecules to produce superoxide anion radicals (O2

•−) [38,39]. These
ROS, i.e., O2

•− and •OH, remove organic toxins. As the generation of ROS and their role in
the oxidation of 2-NP is mainly based on the suitable potential of band-edges present in a
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photocatalyst, therefore, the following equations have been used to calculate the band-edge
potentials [40,41]:

ECB = χ− Ee − 1
2

Eg (7)

EVB = ECB + Eg (8)

where χ is the geometric mean of the absolute electronegativity of the constituent atoms,
Ee is the energy of free electrons on the hydrogen scale (~4.5 eV), Eg is the photocatalyst’s
bandgap, ECB is the conduction band potential, and EVB is the valence band potential.
Moreover, the Pearson absolute electronegativity values for Zn, Mo, W, and O were 4.45 eV,
3.90 eV, 4.40 eV, and 7.54 eV, respectively. The Eg values of ZnO and WDM estimated using
a Tauc plot are 3.17 eV and 2.88 eV, respectively. As a result, the calculated conduction band
energy (ECB) values of ZnO and WDM are −0.30 eV and +0.51 eV, respectively, whereas the
valence band energy (EVB) values of ZnO and WDM are +2.88 eV and +3.31 eV, respectively.

As the photocatalytic process initiates upon the illumination of the WDM-ZnO com-
posite with natural sunlight, both components of the photocatalyst generate electrons and
holes, in their respective conduction and valence bands, of distinct band potentials. In
addition, the potentials of these bands decide the fate of the photogenerated free-charge
carriers. The calculated energy values of the respective bands indicate that the ECB of ZnO
is more negative than the reduction potential of O2 to O2

•− (−0.28 eV) [41]. Therefore,
electrons in the CB of ZnO are capable of producing superoxide anion radicals, whereas
the electrons in the CB of WDM cannot produce O2

•− due to having a more positive CB
potential than −0.28 eV. Moreover, the electrons in the CB of WDM transfer to the VB of
ZnO while following the S-scheme of charge transfer and combine with holes residing there,
as shown in Scheme 1. Finally, the system is left with electrons in the CB (−0.30 eV) of ZnO
for O2

•− generation and holes in the VB (+3.31 eV) of WDM for •OH generation. These
ROS have a very short life and immediately react with the pollutant 2-NP, whose oxidation
potential is ~1.11 eV against the standard hydrogen electrode (SHE) [42]. Furthermore,
the valence band maximal positions of ZnO and WO3-doped MoO3 were 2.88 and 3.31 eV,
respectively, as shown by the VB XPS investigation (Figure 8).
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Scheme 1. The plausible mechanism for the removal of 30 ppm 2-NP over WDM-ZnO photocatalyst
under natural sunlight exposure.
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These ROS such as O2
•− and •OH play a significant role in the removal of organic con-

taminants from polluted water; however, identifying the major contributor between these
two ROS is very critical, which further helps in establishing the mechanism of degradation.
In this context, two experiments related to the trapping of O2

•− and •OH according to the
reported method were conducted, wherein p-benzoquinone and isopropyl alcohol were
added separately to the photocatalytic reaction containing WDM-ZnO and an aqueous
solution of 30 ppm 2-NP to scavenge O2

•− and •OH, respectively, produced because of
the light illumination of WDM-ZnO [22,23]. The 2-NP removal (%) was calculated after
180 min of sunlight exposure as shown in Figure 9. The removal efficiency was reduced
to ~22% and ~60% upon the addition of p-benzoquinone and isopropyl alcohol, respec-
tively. This ROS-trapping investigation suggests that O2

• is mainly responsible for the
photocatalytic removal of 2-NP over the WDM-ZnO photocatalyst when exposed to natural
sunlight, however, the contribution of •OH cannot be totally discounted. Moreover, the
following equations can also explain the mechanism for the photocatalytic removal of 2-NP
by WDM-ZnO under the illumination of natural sunlight:

WDM − ZnO + Sunlight (800 × 102 ± 100 lx)→WDM − ZnO (e−(CB) + h+
(VB)) (9)

WDM − ZnO (h+
(VB)) + H2O→WDM − ZnO + •OH (10)

WDM − ZnO (e−(CB)) + O2→WDM − ZnO + O2
•- (11)

ROS (•OH and O2
•−) + 2-NP→Benign products (12)
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Figure 9. The effect of scavengers on the photocatalytic removal of 30 ppm 2-NP over WDM-ZnO
photocatalyst under the illumination of natural sunlight.

The reusability of the WDM-ZnO photocatalyst was assessed in three different cycles
with an interval of 24 h by estimating the degradation (%) of the fresh substrate (30 ppm
2-NP) under similar conditions to the photocatalytic experiment. The results revealed a
~7% lower efficiency of WDM-ZnO after the third cycle in comparison to the use of the
fresh photocatalyst, as shown in Figure 10.
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Figure 10. Comparison of reusability of WDM-ZnO for the photocatalytic removal of 30 ppm 2-NP
under the illumination of natural sunlight.
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3. Experimental
3.1. Surfactant-Assisted Synthesis of WO3, MoO3, and ZnO

In a typical WO3 synthesis, 100 mL of distilled water were used to dissolve 5.00 g of
Na2WO4·2H2O (VWR, Radnor, PA, USA). A clear solution was produced by continuous
stirring, and 3 mL of TX-100 (surfactant) was then added to the solution while it was still
being swirled. HNO3 was gradually added to the solution containing W6+ until a yellow
precipitate was produced. The precipitate was cleaned using distilled water, a solution
of ethanol, and acetone, and Whatman filter paper. The precipitate underwent further
drying for 10 h at 100 ◦C in a hot air oven. In a Vulcan D-550 muffle furnace at 500 ◦C for
four hours, the dry product was ground up and calcined. The calcined yellow powder
was then placed in a glass vial and labeled “WO3”. For the synthesis of MoO3, 30.00 g
of (NH4)6Mo7O244H2O was dissolved in 100 mL of distilled water at 50 ◦C while being
continuously stirred until fully dissolved. This was performed before adding 3 mL of
TX-100 as a surfactant. The combination of surfactant and Mo6+ was hydrolyzed by adding
HNO3 gradually until a precipitate that was grey and white formed. After using Whatman
filter paper to separate the precipitate, it was cleaned with distilled water and an ethanol
and acetone solution before being dried for 10 h in a 100 ◦C oven. The dried precipitate
was crushed and calcined for four hours at 500 ◦C in a Vulcan D-550 muffle furnace. In a
glass vial, the resulting powder was kept as MoO3.

Zn(NO3)2·6H2O (Sigma-Aldrich, Taufkirchen, Germany) was fully dissolved in
100 mL of distilled water at 50 ◦C with constant stirring to produce ZnO. After the precursor
had completely dissolved, 3 mL of the surfactant TX-100 was inserted, and the mixture was
rapidly agitated at 50 ◦C. KOH was slowly added to the mixture that included surfactants,
hydrolyzing it until an off-white precipitate formed. The precipitate was then filtered using
Whatman filter paper and rinsed with distilled water, ethanol, and acetone to remove the
surfactant and alkali components. Before being ground into powder, the precipitate was
dried for 8 h at 100 ◦C in an oven. The powder was calcined in a Vulcan D-550 muffle
furnace for four hours at 500 ◦C to produce white-colored calcined ZnO, which was then
kept as ZnO in a glass vial.

3.2. Synthesis of WO3 Doped MoO3 and WDM-ZnO Composite

In this typical synthesis, 32.20 g (NH4)6Mo7O24·4H2O (Sigma-Aldrich, Taufkirchen,
Germany) and 0.50 g Na2WO4·2H2O (VWR, Radnor, PA, USA) were dissolved completely
in distilled water in two separate beakers A and B, respectively. Triton X-100 (3 mL) was
added as a surfactant after the solutions (A and B) had been well mixed while being con-
tinuously stirred at 50 ◦C. The combination of surfactant, W6+, and Mo6+ was hydrolyzed
by adding HNO3 slowly until a yellowish-white precipitate at pH 2 was formed. The
precipitate was then cleaned with an ethanol and acetone mixture, filtered using Whatman
filter paper, and then washed first with distilled water. The precipitate was ground into a
powder, dried for 10 h at 100 ◦C in an oven, and then calcined for 4 h at 500 ◦C in a Vulcan
D-550 muffle furnace. After being calcined, the powder was placed in a glass vial and
labeled WDM. Moreover, WDM-ZnO composite was prepared by mixing equal amounts of
pre-synthesized WDM and ZnO using a mortar and pestle. The mixed sample was stored
in a glass vial and marked WDM-ZnO composite.

3.3. Characterization of Materials

The preferred plane orientation found in each XRD pattern recorded from 2 (5–90◦)
using a Cu K radiation-source-equipped X’pert X-ray powder diffractometer (Philips PW
1398, Philips, The Netherlands) was used to determine the microstructural properties such
as crystallite size (D), interplanar distance (d), micro-strain (ε), dislocation density, and
stacking fault (SF) of the synthesized materials. SEM (Hitachi SU8010, Tokyo, Japan) was
used to assess the morphology of the produced materials. Pure ZnO and WDM-ZnO
composite solid-state absorption spectra were captured using a Perkin Elmer UV–visible
DRS (Lambda 650, Waltham, MA, USA). Additionally, the Kubelka–Munk transformation
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F(R) was used to evaluate the direct bandgap energy on percent R data by showing (F(R)
hv)2 vs. hv (eV). A fluorescence spectrometer at 200 nm excitation wavelength was used to
acquire the photoluminescence emission spectra of pure ZnO and the WDM-ZnO composite
(RF-5301 PC, Shimadzu, Kyoto, Japan). Electrochemical impedance spectroscopy was
employed using a multi-channel potentiostat (Bio-logic Science Instrument, Knoxville, TN,
USA) with an EC lab (EIS).

3.4. Photocatalytic Study

For a predetermined period of daylight, from 10:00 a.m. to 13:00 p.m., without stirring,
the photocatalytic removal of 30 ppm 2-nitrophenol (Sigma-Aldrich, Taufkirchen, Germany)
was investigated. The ideal concentration of pure ZnO (150 mg) was suspended in 150 mL
of an aqueous solution containing 30 ppm of 2-NP, and the mixture was stirred for 10 min.
The suspension was placed into a 14 cm (diameter) by 2 cm (height) glass reactor, which was
kept in the dark for 30 min, to establish the adsorption–desorption equilibrium between
the catalysts and pollutant. After that, the glass reactor was kept in direct sunlight for an
additional 30 min. After that, 30 min intervals of light exposure were used to collect the
samples, which were subsequently filtered via a 0.20 m syringe filter. The filtered samples
were then run through a UV–visible spectrophotometer (UV-1800, Shimadzu, Kyoto, Japan)
to track the elimination of 2-NP while focusing on its absorbance at a certain wavelength, in
this case 278 nm (λmax). Also measured using a total carbon (TOC-VCPH, Shimadzu, Kyoto,
Japan) analyzer was total organic carbon (TOC). The elimination of 30 ppm 2-NP over
the produced WDM-ZnO composite was seen using the same process under comparable
circumstances. For comparison, the removal of 2-NP without a photocatalyst (photolysis)
on exposure to sunlight was also monitored. Moreover, the trapping of ROS, i.e., O2

•− and
•OH was also investigated according to the reported method under similar conditions to
that of the photocatalysis in this study [43,44].

4. Conclusions

This study revealed the effectiveness of WO3-doped MoO3 (WDM) in suppressing
the electron (e−) and hole (h+) recombination, lowering the charge-transfer resistance, and
improving the spectral response of pristine ZnO. The photocatalytic efficiency of ZnO was
significantly enhanced because of its integration with WDM. WDM played an efficient
role in the separation of photogenerated charge carriers such as electrons (e–) and holes
(h+) in ZnO, which ultimately had sufficient time to react with H2O and O2 to produce
ROS. The composite nature of WDM-ZnO was confirmed due to the presence of hexagonal
ZnO and orthorhombic phases of WO3-doped MoO3 in the XRD patterns and SEM images.
According to the photocatalytic investigations, WDM-ZnO removed more 2-NP during
natural sunlight exposure than pure ZnO. Additionally, ROS scavenging showed that O2

•−

species contributed much more than •OH to the photocatalytic elimination of 2-NP when
exposed to natural sunlight.
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