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Abstract: Sulfur-resistant Mo-based catalysts have become promising for the one-step synthesis of
methanethiol (CH3SH) from CO/H2/H2S, but the low reactant conversion and poor product selectiv-
ity have constrained its development. Herein, we synthesized K-MoS2/Al2O3 and K-Mo2C/Al2O3

catalysts via the sulfurization and carbonization of K-Mo-based catalysts in the oxidized state, respec-
tively. During the synthesis of CH3SH, both K-Mo2C/Al2O3 and K-MoS2/Al2O3 showed excellent
catalytic performance, and the activity of the former is superior to that of the latter. The effect of
different treatments on the catalytic performance of Mo-based catalysts was investigated by XRD,
BET, Raman spectroscopy, H2-TPR, and reactants-TPD characterization. The results showed that the
sulfide-treated sample showed stronger metal-support interactions and contributed to the formation
of K2S, which exposed more active sites and stabilized the formation of C-S bonds. Carbonized
samples enhanced the activation of H2, which promoted the hydrogenation of the intermediate
species of carbonyl sulfide (COS) and thus improved the selectivity of CH3SH.

Keywords: Mo2C; MoS2; CH3SH synthesis; CO/H2/H2S-TPD

1. Introduction

The extensive use of coal, particularly coal gasification, has caused serious air pol-
lution, such as CO, and reduced sulfur species (e.g., H2S, COS, and CS2), of which H2S
dominates [1]. Excessive emissions of these pollutants may worsen harmful environmental
pollution (haze and acid rain) [2,3]. Due to the significant differences in the physicochemical
properties of H2S and CO, they typically require different removal strategies. Common
methods for removing H2S include catalytic hydrogenation [4], hydrolysis [5], and the
Claus process [6]. However, most of the final products are converted to low-value solid
sulfur or secondary pollutants, and the sulfur-containing species often poison the catalysts.
CO is mainly treated using catalytic oxidation technologies [7,8], which wastes resources
and consumes excessive energy. Therefore, a meaningful strategy would be the synergistic
removal and resource utilization of CO and H2S.

CH3SH is an important precursor of methionine, an essential amino acid for poultry
and animal feed [9]. Methionine also has applications in the fields of medicine, food,
biology, and cosmetics and can be used as a moderator for free-radical polymerization to
produce pesticides [10]. The thiolation of methanol is the main method for synthesizing
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methyl mercaptan in the industry [11,12], in which methanol can be synthesized by syn-
gas (CO + H2). To reduce the costs of synthesizing CH3SH, H2S produced during coal
gasification and syngas (CO + H2) can be directly utilized as a feedstock for the one-step syn-
thesis of CH3SH [13]. Theoretically, the product of the one-step synthesis of CH3SH from
CO/H2/H2S contains only CH3SH and H2O (Equation (1)) and thus provides a clean and
economical synthetic route. However, the conversion of CO and the selectivity of CH3SH
are usually unsatisfactory in practice. Therefore, the development of high-performance
catalysts for the synthesis of CH3SH has received increasing attention.

Molybdenum disulfide (MoS2) is widely used during hydrodesulfurization, low-
carbon mixed-alcohol synthesis, mercaptan synthesis, etc. [10,14], due to its unique two-
dimensional layered structure and semiconducting properties. MoS2 is bonded by strong
S-Mo-S bonds within layers and weak van der Waals forces between layers, and the addi-
tion of alkali metals can modulate the electronic effect on the Mo surface [15,16]. Therefore,
molybdenum sulfide-based catalysts have become the main catalysts used in methanethiol
synthesis due to their high sulfur resistance and stability [17–19]. In the past decades,
the catalytic synthesis of CH3SH in a mixed CO/H2/H2S gas system over K-Mo-based
catalysts has been investigated in terms of gas components, support properties, additive
type, calcination temperature and atmosphere, and preparation method. The nature of the
support greatly influences the metal-support interactions as well as the dispersion of the
active metal [20]. Stronger metal-support interactions can promote interfacial charge trans-
fer, change the metal structure, and modulate molecular adsorption [21,22]. In addition,
the dispersion of active metals can expose more active sites and accelerate the reaction [2].
However, there are still some acute problems limiting the practical applications of MoS2
during the synthesis of CH3SH, such as its low selectivity and poor stability.

In recent years, molybdenum carbide (Mo2C) has received attention as a catalyst
due to its high melting point, high hardness, high tensile strength, and high electrical
and thermal conductivity, which are similar to ceramics [23–25]. Mo2C is an intercalation
compound formed by the entry of carbon atoms into the interstices of molybdenum atoms.
The structure of molybdenum carbide is determined by a combination of geometrical and
electronic factors. Carbon atoms that enter between molybdenum atoms occupy metal
sites in the precursor, which changes the structure. Typically, crystals have face-centered
cubic (fcc), hexagonal closed-packed (hcp), and simple hexagonal (hex) structures. Scholars
believe that three types of bonding between atoms exist in Mo2C: (i) metallic bonding
(rearrangement of metal–metal bonds); (ii) covalent bonding (formation of bonds between
metals and carbon); (iii) ionic bonding (charge transfer between metals and carbon) [26].
Mo2C also possesses strong sulfur resistance and hydrogen evolution capacity, allowing it to
be applied during CH3SH synthesis. However, there have been no reports on the utilization
of Mo2C-based catalysts for synthesizing CH3SH in CO/H2/H2S mixtures. Therefore,
there is a need to compare the catalytic performance and physicochemical properties of
K-Mo-based catalysts treated via sulfidation and carbonization to help guide the design of
efficient Mo-based catalysts.

In this work, we first modulated the support and reaction pressure to determine the
optimal reaction conditions to synthesize CH3SH from CO/H2/H2S. Then, K-MoS2/Al2O3
and K-Mo2C/Al2O3 catalysts were synthesized by sulfidation and carbonization treatments,
respectively. This was performed to understand the effects of different treatments on
their physicochemical properties and catalytic behaviors. Both catalysts showed excellent
catalytic activity. BET, XRD, Raman spectroscopy, H2-TPR, and reactants-TPD were used
to characterize K-MoS2/Al2O3 and K-Mo2C/Al2O3 catalysts. The results revealed that
the key reason for the high performance of K-MoS2/Al2O3 was its strong metal-support
interactions, while the performance of K-Mo2C/Al2O3 was attributed to its ability to
activate H2. This work provides new ideas for the modification of Mo-based catalysts
applied to CH3SH synthesis.
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2. Results and Discussion
2.1. Effect of Reaction Pressure and Support

Figure 1 shows the CO conversion and product selectivity over K-MoS2/SiO2 and
K-MoS2/Al2O3 catalysts during the synthesis of CH3SH from CO/H2/H2S. The effect of
reaction pressure on the synthesis of CH3SH was investigated in terms of the catalysts’
activity. As shown in Figure 1a, the CO conversion remained at about 5% and hardly
changed upon increasing the temperature at a reaction pressure of 0 MPa. When the
reaction pressure was increased to 0.2 MPa, the CO conversion significantly increased and
further increased with the temperature, indicating that pressure directly affected the CO
conversion. Figure 1b,c show the selectivity of the products under different pressures.
When the reaction system was unpressurized, the main products were COS, CS2, and
CH3SH, among which COS was the main product and showed the highest selectivity
(~60%). The selectivity of CH3SH was unsatisfactory. When the reaction system was
pressurized to 0.2 MPa, CH3SH was the main product, which had a maximum selectivity
of 62.5% at 325 ◦C, accompanied by the generation of some COS and CO2. When the
pressure in the system increased, the hydrogenation of the intermediate product COS to
generate CH3SH was accelerated, while the hydrolysis of COS to CO2 was promoted, and
the decomposition of CH3SH into CS2 was inhibited. It can be seen that the synthesis of
CH3SH from CO/H2/H2S was greatly promoted by pressurizing the reaction system, and
side reactions were also inhibited, which promoted the generation of CH3SH.
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Figure 1. (a) CO conversion over K-MoS2/Al2O3 at 0 MPa and 0.2 MPa. Product selectivity over
K-MoS2/Al2O3 catalyst at 0 MPa (b) and 0.2 MPa (c); (d) consumption rate of CO at 0.2 MPa over
K-MoS2/Al2O3 and K-MoS2/SiO2. Product selectivity over K-MoS2/Al2O3 (e); K-MoS2/SiO2 (f).

The sulfided K-Mo catalysts with different supports were compared during the synthe-
sis of CH3SH from CO/H2/H2S at 0.2MPa. As shown in Figure 1d, the CO consumption
rate was higher over the K-MoS2/Al2O3 catalyst, which was almost three times that of
K-MoS2/SiO2. K-MoS2/Al2O3 showed the highest consumption rate of CO at 350 ◦C, ex-
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ceeding 0.23 g(CO)·g−1(cat)·h−1. In Figure 1e,f, the products obtained over K-MoS2/SiO2
and K-MoS2/Al2O3 catalysts both mainly consisted of CH3SH, COS, CO2, CH4, and
CS2, among which there was no significant difference in the selectivity of CH3SH. How-
ever, K-MoS2/Al2O3 possessed a higher CH4 selectivity at high temperatures due to the
over-hydrogenation of CH3SH, while K-MoS2/SiO2 had a weaker hydrogenation ability,
resulting in a higher COS selectivity. In summary, K-MoS2/Al2O3 using Al2O3 as the
support under pressurized conditions was more favorable for the synthesis of CH3SH from
CO/H2/H2S.

2.2. Performance of the Sulfided and Carbonized Catalysts
2.2.1. Characterization of the Phase Structure

The N2 adsorption–desorption of K-MoS2/Al2O3 and K-Mo2C/Al2O3 catalysts was
characterized to further elucidate the differences in their physical properties. The corre-
sponding isotherms are shown in Figure 2a, and the detailed information is shown in
Table 1. The isotherms of K-MoS2/Al2O3 and K-Mo2C/Al2O3 were assigned as type-IV
with H-1type hysteresis loops, indicating mesoporous structures [27–29]. In contrast, the
BET surface area of K-Mo2C/Al2O3 was larger than that of K-MoS2/Al2O3, possibly due to
the accumulation of sulfur on the surface of K-MoS2/Al2O3 due to vulcanization, whereas
the carbonization treatment avoided this.
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Figure 2. N2 adsorption–desorption isotherms (a), XRD patterns (b), and Raman spectra (c) of
K-MoS2/Al2O3 and K-Mo2C/Al2O3 samples.

Table 1. Physical properties of K-Mo2C/Al2O3 and K-MoS2/Al2O3.

Sample Surface Area (m2/g) Pore Volume (cc/g) Pore Diameter Dv
(d) (nm)

K-Mo2C/Al2O3 103.9 0.321 9.618
K-MoS2/Al2O3 82.2 0.326 8.615

X-ray diffraction (XRD) was used to reveal the crystalline phases of K-MoS2/Al2O3
and K-Mo2C/Al2O3 catalysts, and the corresponding XRD patterns are shown in Figure 2b.
Diffraction peaks (2θ = 38.1, 39.4, 61.7, and 75.7◦) corresponding to the (002), (101), (110), and
(201) planes of β-Mo2C (JCPDS#65-8766) were observed in the pattern of K-Mo2C/Al2O3.
Moreover, K-Mo2C/Al2O3 also displayed weak characteristic diffraction peaks attributed
to MoC (JCPDS#08-0384). For K-MoS2/Al2O3, the diffraction peaks (2θ = 14, 33.2, and
58.7◦) corresponding to the (002), (100), and (110) planes of MoS2 (JCPDS#75-1539) were
observed. In addition, the same diffraction peaks (30.7, 32.6, and 50.2◦) in the patterns of
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both K-MoS2/Al2O3 and K-Mo2C/Al2O3 were assigned to K2MoO4 (JCPDS- ICDD#29-
1021), indicating interactions between K and Mo.

Raman spectroscopy was used to determine the molecular structure of the samples by
analyzing the vibrational and rotational modes of their chemical bonds. Figure 2c shows
the Raman spectra of the K-MoS2/Al2O3 and K-Mo2C/Al2O3 to provide further evidence
of the effects of vulcanization and carbonization treatments. K-Mo2C/Al2O3 displayed
an intense band near 215 cm−1, which corresponded to the well-dispersed AlMo6O24H6

3+

heteropolyacid anion (AlMo6) formed by mixing an alumina support with a molybdenum-
based aqueous solution [30]. The bands at 325 cm−1, 896 cm−1, and 917 cm−1 were
attributed to K2MoO4 and K2Mo2O7, which is consistent with the XRD patterns [31,32].
K-Mo2C/Al2O3 catalyst also showed distinct characteristic peaks at 661 cm−1, 818 cm−1,
and 990 cm−1, which corresponded to the stretching vibrations of Mo-C-Mo and Mo-C,
respectively, indicating the presence of Mo2C [33]. For K-MoS2/Al2O3, the main bands
at 378 cm−1 and 404 cm−1 were assigned to the in-plane E1

2g mode resulting from the
opposite vibrations of two S atoms with respect to the Mo atom. The A1g mode was
related to the out-of-plane vibrations of S atoms in opposite directions, respectively, further
demonstrating the existence of MoS2.

2.2.2. Redox Properties of K-Mo Catalysts

H2-temperature programmed reduction (H2-TPR) experiments are commonly used to
investigate the properties and amounts of active sulfur species over MoS2-based catalysts.
The H2-TPR curves of K-MoS2/SiO2 and K-MoS2/Al2O3 catalysts are shown in Figure S1.
Two reduction peaks were observed over K-MoS2/SiO2 and K-MoS2/Al2O3 catalysts at
300–400 ◦C and 500–600 ◦C. Typically, the reduction peaks located in the low-temperature
region (300–400 ◦C) are attributed to surface-active sulfur species on the exposed coordina-
tively unsaturated sites (CUS) of MoS2 [34]. The reduction peaks in the mid-temperature
region (500–600 ◦C) are assigned to the consumption of hydrogen during K-S bond break-
age in K-containing crystalline phases [34]. As reported in the literature, the consumption
of hydrogen in the low-temperature region of H2-TPR determines the strength of the Mo-S
bonds, which reflects the number of surface-active sulfur species. The H2 consumption
over K-MoS2/Al2O3 was much larger than that over K-MoS2/SiO2, indicating that more
reactive sulfur species were present on the surface of K-Mo/Al2O3. Furthermore, the reduc-
tion temperature over K-MoS2/Al2O3 was higher than that over K-MoS2/SiO2, indicating
stronger metal-support interactions over the K-MoS2/Al2O3 catalyst [35], which promoted
the dispersion of active species on the support [36]. Active sulfur species exhibit high per-
formance during the synthesis of CH3SH from CO/H2/H2S; therefore, K-MoS2/Al2O3 is a
more suitable choice, which is consistent with the activity tests in Figure 1. Notably, three
distinct hydrogen consumption peaks were observed over the K-Mo2C/Al2O3 catalyst at
200–350 ◦C, 400–600 ◦C, and >600 ◦C, respectively (Figure 3). Typically, the hydrogen
consumption peaks in the low-temperature region are assigned to the reduction of the
passivation layer on the surface of molybdenum carbide [37]. The reduction peak in the mid-
temperature region is attributed to the reduction of Mo6+ to Mo4+ [38], and the reduction
peak in the high-temperature region is attributed to the reduction of Mo4+ to Mo [39]. How-
ever, the sample was not passivated, so it can be assumed that there was no passivation layer
on its surface. According to the previous literature, the hydrogen consumption peak at low
temperatures (200–400 ◦C) was also attributed to the reduction of high-valent molybdenum
oxides on the surface. Combined with the H2-TPR results for K-containing molybdenum
sulfide catalysts, the three hydrogen consumption peaks (200–350 ◦C, 400–600 ◦C, and
>600 ◦C) were attributed to the reduction of Mo4+, the breakage of K-C bonds in the K
crystalline phase, and the reduction of Mo2+ (Mo2C) to elemental Mo, respectively. Com-
pared with the H2-TPR curves of K-MoS2/Al2O3 and K-Mo2C/Al2O3, the K-MoS2/Al2O3
catalyst exhibited a higher reduction temperature and greater hydrogen consumption. This
indicates that K-MoS2/Al2O3 displayed stronger metal-support interactions and more
coordinatively unsaturated molybdenum sites (Mo-CUS) than K-Mo2C/Al2O3.



Catalysts 2024, 14, 190 6 of 12

Catalysts 2024, 14, x FOR PEER REVIEW 6 of 13 
 

 

Mo2C/Al2O3, the K-MoS2/Al2O3 catalyst exhibited a higher reduction temperature and 
greater hydrogen consumption. This indicates that K-MoS2/Al2O3 displayed stronger 
metal-support interactions and more coordinatively unsaturated molybdenum sites (Mo-

CUS) than K-Mo2C/Al2O3. 

 
Figure 3. H2-TPR curves of K-MoS2/Al2O3 and K-Mo2C/Al2O3. 

2.2.3. Temperature-Programmed Desorption of Reactants (CO/H2/H2S-TPD) 

Adsorption is an important stage during any catalytic reaction; thus, it is necessary 
to further consider the adsorption properties over catalysts for the reactants. As shown in 
Figure 4, CO/H2/H2S-TPD was carried out to test the chemisorption and activation of 
CO/H2/H2S over K-MoS2/Al2O3 and K-Mo2C/Al2O3 catalysts. In Figure 4a, both K-

MoS2/Al2O3 and K-Mo2C/Al2O3 displayed three desorption peaks of CO at 100–200 °C, 
400–500 °C, and 500–700 °C. In the low-temperature region, the desorption peak of CO 
over K-Mo2C/Al2O3 was due to the physical adsorption of CO on Mo2C, whereas the de-
sorption peak of CO over K-MoS2/Al2O3 was attributed to the non-dissociative adsorption 
of CO over Mo-CUS. The peak area of K-Mo2C/Al2O3 was much higher than that of K-

MoS2/Al2O3, indicating the larger surface area of the former. In the mid-temperature re-
gions, the CO desorption peaks for K-Mo2C/Al2O3 and K-MoS2/Al2O3 were attributed to 
the weak chemisorption on Mo2C and the desorption of CO from –SH groups [40], respec-
tively. In the high-temperature region, the desorption peak of CO for K-Mo2C/Al2O3 was 
attributed to strong chemisorption on Mo2C, while the desorption peaks of CO for K-
MoS2/Al2O3 were related to the dissociative adsorption of CO with kinetic control or sul-
fur-containing compounds. Generally, dissociatively adsorbed CO tends to form hydro-
carbon products. During the hydrogenation reaction, the adsorption and activation of H2 
molecules are important. H2 molecules that are readily activated to adsorbed H* facilitate 
the formation of CH3S* species with C-S intermediates, while the presence of gaseous H2 
facilitates the hydrolysis of C-S intermediates to form CHx* and SH*. The latter of these is 
detrimental to the synthesis of CH3SH. The H2-TPD curves in Figure 4b show that K-

Mo2C/Al2O3 produced a large amount of desorbed H in the mid-temperature region, with 

Figure 3. H2-TPR curves of K-MoS2/Al2O3 and K-Mo2C/Al2O3.

2.2.3. Temperature-Programmed Desorption of Reactants (CO/H2/H2S-TPD)

Adsorption is an important stage during any catalytic reaction; thus, it is necessary
to further consider the adsorption properties over catalysts for the reactants. As shown
in Figure 4, CO/H2/H2S-TPD was carried out to test the chemisorption and activation
of CO/H2/H2S over K-MoS2/Al2O3 and K-Mo2C/Al2O3 catalysts. In Figure 4a, both
K-MoS2/Al2O3 and K-Mo2C/Al2O3 displayed three desorption peaks of CO at 100–200 ◦C,
400–500 ◦C, and 500–700 ◦C. In the low-temperature region, the desorption peak of CO over
K-Mo2C/Al2O3 was due to the physical adsorption of CO on Mo2C, whereas the desorption
peak of CO over K-MoS2/Al2O3 was attributed to the non-dissociative adsorption of
CO over Mo-CUS. The peak area of K-Mo2C/Al2O3 was much higher than that of K-
MoS2/Al2O3, indicating the larger surface area of the former. In the mid-temperature
regions, the CO desorption peaks for K-Mo2C/Al2O3 and K-MoS2/Al2O3 were attributed
to the weak chemisorption on Mo2C and the desorption of CO from –SH groups [40],
respectively. In the high-temperature region, the desorption peak of CO for K-Mo2C/Al2O3
was attributed to strong chemisorption on Mo2C, while the desorption peaks of CO for
K-MoS2/Al2O3 were related to the dissociative adsorption of CO with kinetic control
or sulfur-containing compounds. Generally, dissociatively adsorbed CO tends to form
hydrocarbon products. During the hydrogenation reaction, the adsorption and activation
of H2 molecules are important. H2 molecules that are readily activated to adsorbed H*
facilitate the formation of CH3S* species with C-S intermediates, while the presence of
gaseous H2 facilitates the hydrolysis of C-S intermediates to form CHx* and SH*. The
latter of these is detrimental to the synthesis of CH3SH. The H2-TPD curves in Figure 4b
show that K-Mo2C/Al2O3 produced a large amount of desorbed H in the mid-temperature
region, with a clear H2 inversion peak at 700 ◦C, indicating that hydrogen may have
dissociated into adsorbed H*. However, there was no obvious H2 desorption peak over
the K-Mo2S/Al2O3 catalyst. In summary, the K-Mo2C/Al2O3 catalyst showed better
adsorption and activation ability for CO and H2, and the formed H* stabilized the C-S bond
and hydrogenated CH3SH. As for H2S-TPD in Figure 4c, almost no difference was observed
between K-Mo2C/Al2O3 and K-MoS2/Al2O3 in the low- and high-temperature regions. A
weak desorption peak of H2S appeared over the K-Mo2C/Al2O3 catalyst near 400 ◦C, while
almost no desorption peak appeared for K-MoS2/Al2O3, indicating that Mo2C adsorbed
H2S at moderate temperatures. According to Figure 1, the optimal reaction temperature for
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the synthesis of CH3SH was in the range of about 300–400 ◦C, so the appropriate desorption
temperature of H2S for the K-Mo2C/Al2O3 catalyst promoted the synthesis of CH3SH.
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2.2.4. Catalytic Performance of Sulfided and Carbonized Catalysts

The consumption rate of CO, the formation rate of CH3SH, and the selectivity of
products over K-Mo2C/Al2O3 and K-MoS2/Al2O3 catalysts during the synthesis of CH3SH
from COS/H2/H2S are presented in Figure 5. K-Mo2C/Al2O3 exhibited better excellent
catalytic activity in Figure 5a,b, and the rates of CO consumption and CH3SH formation
with temperature followed similar trends over both K-Mo2C/Al2O3 and K-MoS2/Al2O3
catalysts. The highest catalytic activity over the K-Mo2C/Al2O3 catalyst was achieved
at 325 ◦C when the consumption rate of CO reached 0.2660 g·gcat

−1·h−1, and the for-
mation rate of CH3SH reached 0.2990 g·gcat

−1·h−1. The consumption rate of CO over
the K-MoS2/Al2O3 catalyst reached a maximum of only 0.2257 g·gcat

−1·h−1 at 350 ◦C,
and the formation rate of CH3SH reached a maximum of only 0.1795 g·gcat

−1·h−1 at
325 ◦C. As shown in Figure 5c,d, there was no significant difference in the variety of prod-
ucts (CH3SH, COS, CO2, CH4, and CS2), and CH3SH was the main product. K-Mo2C/Al2O3
exhibited higher CH3SH selectivity and lower COS selectivity, and no significant difference
was found in the selectivity of the remaining products. These results indicate that the
carbonized catalyst possessed a higher COS hydrogenation capacity.

2.3. Discussion

First, the reaction conditions for CH3SH synthesis were optimized by regulating the
pressure during the reaction and trying different supports. The pressurized conditions
improved the CO conversion efficiency and CH3SH selectivity, which was attributed to
the presence of more active sulfur species on the surface of K-MoS2/Al2O3 catalysts and
the favorable dispersion of the active species when using Al2O3 as the support. In ad-
dition, the ex situ characterization of sulfided K-MoS2/Al2O3 catalyst and carbonized
K-Mo2C/Al2O3 catalyst were combined with their activity tests during CH3SH synthesis
from COS/H2/H2S. The carbonized K-Mo2C/Al2O3 catalyst exhibited higher catalytic
performance than the sulfided K-MoS2/Al2O3 catalyst. The XRD and Raman spectra
show that the molybdenum sulfide and molybdenum carbide phases were formed in the
oxidized K-Mo/Al2O3 samples, which differed depending on sulfurization and carboniza-
tion treatment, respectively. K-Mo oxides remained in the catalysts after pretreatment,
indicating interactions between the molybdate and K. H2-TPR showed that the sulfided K-
MoS2/Al2O3 catalyst exhibited higher hydrogen reduction peaks, but this was not directly
related to the catalytic activity. According to CO/H2/H2S-TPD, K-Mo2C/Al2O3 showed a
greater activation capacity for CO and H2 than the sulfided K-MoS2/Al2O3 catalyst. The
activity tests showed that the K-Mo2C/Al2O3 catalysts exhibited a higher CO consumption
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rate. Analysis of the product selectivity showed that the K-Mo2C/Al2O3 catalyst showed
superior hydrogenation capacity for COS and CS2, which may be related to its excellent
hydrogen activation capacity.
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Finally, we elucidated the corresponding catalytic reaction mechanisms for the con-
version of CO/H2/H2S to CH3SH over carbonization-treated and sulfidation-treated K-
Mo-based catalysts. The similarity was that COS was first generated by the reaction of
CO and H2S, and then CH3CH was synthesized by direct or indirect hydrogenation of
COS. Over the K-MoS2/Al2O3 catalyst, the stronger metal-support interactions and the
greater number of exposed unsaturated molybdenum sites favored the adsorption and
activation of CO and H2S. The production of K2S was key to the synthesis of CH3SH and
also stabilized the C-S bonds, thus avoiding the conversion of COS to side products in the
gas phase. For the K-Mo2C/Al2O3 catalyst, MoxC facilitated the adsorption and activation
of H2, and active H atoms accelerated the hydrogenation of COS to SH3CH, which explains
why K-Mo2C/Al2O3 exhibited a higher SH3CH selectivity.
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3. Experimental Section
3.1. Catalyst Preparation

γ-Al2O3 (purity > 99.98%) and SiO2 (purity > 99.99%) were purchased from Chongqing
Chuandong Chemical Co., Ltd., Chongqing, China; (NH4)6Mo7O24·4H2O (purity > 98%)
was purchased from Tianjin No. 4 Chemical Reagent Factory, China; K2CO3
(purity > 99.99%) was purchased from Lianyungang Xinfu Rare Earth Co., Ltd., Lianyun-
gang, China. All medicines were not further purified.

3.1.1. Preparation of K-MoO3/Al2O3 and K-MoO3/SiO2

K-MoO3/Al2O3 and K-MoO3/SiO2 catalysts were prepared by using the incipient-
wetness co-impregnation method with γ-Al2O3 and SiO2 as supports, respectively, K2CO3
as the K precursor, and (NH4)6Mo7O24·4H2O as the molybdenum precursor. Before
γ-Al2O3 (noted as “Al2O3” hereafter) was used, it was calcined in a muffle furnace at
550 ◦C for 6 h. The loading of Mo (based on MoO3) and the molar ratios of K:Mo were
10 wt% and 2:1, respectively. After impregnation, the samples were dried at 110 ◦C for
12 h and then calcined at 550 ◦C for 5 h in muffle furnace under still air. After cooling, the
tablets were pressed and sieved through 40–60 mesh to obtain oxidized samples, noted as
K-MoO3/Al2O3 and K-MoO3/SiO2.

3.1.2. Preparation of K-MoS2/Al2O3 and K-MoS2/SiO2

K-MoO3/Al2O3 or K-MoO3/SiO2 samples (0.8 g; 40–60 mesh) were fixed at the cen-
ter of the tube furnace reactor, and then a mixture of H2/H2S with a total flow rate of
40 mL/min was introduced, and the temperature of the reactor was increased to 400 ◦C
and held for 4 h. The volume ratio of H2: H2S was 9:1, and the heating rate was 5 ◦C/min.
The sulfated samples were noted as K-MoS2/Al2O3 and K-MoS2/SiO2, respectively.

3.1.3. Preparation of K-Mo2C/Al2O3

K-MoO3/Al2O3 samples (0.8 g; 40–60 mesh) were fixed in the center of the tube
furnace reactor. Then, a mixture of H2/CH4 with a total flow rate of 40 mL/min was
introduced, and the temperature of the reactor was increased to 300 ◦C and maintained
for 2 h. Then, it was increased to 500 ◦C for 2 h (1 ◦C/min), where the volume ratio of
H2:CH4 was 9:1, and the heating rate was 5 ◦C/min. The carbonized sample was noted as
K-Mo2C/Al2O3.

3.2. Catalyst Characterization

The details of catalyst characterizations are listed in the Supplementary Materials.

3.3. Catalytic Performance Evaluation

The catalyst activity was evaluated over a 6 mm i.d. quartz fixed-bed using 0.4 g of
catalyst (40–60 mesh). A gas mixture of CO/H2/H2S = 1/4/5 at a pressure of 0.2 MPa
and a flow rate of 40 mL/min was used. WHSV used for tests was 6000 mL·g−1·h−1. The
catalytic activity was measured in the range of 275–400 ◦C at 25 ◦C intervals. Samples were
collected after the target temperature was reached and stabilized for 30 min, 60 min, and
90 min followed by taking the average value. The reaction products were detected online
using three GC fitted with one thermal conductivity detector (TCD), one flame ionization
detector (FID), and two flame photometric detectors (FPD). The CO conversion and CH3SH
selectivity were calculated by the following equations:

X(CO)(%) =
CCO,in − CCO,out

CCO,in
× 100%

SCH3SH(%) =
CCH3SH

CCH3SH + CCOS+CCO2+CCH4+CCS2

× 100%
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where CCO,in denotes the concentration of CO in the feed gas; CCO,out denotes the con-
centration of CO in the product; and CCH3SH, CCOS, CCO2 , CCH4 , and CCS2 represent the
concentration of CH3SH, COS, CO2, CH4, and CS2 in the product, respectively.

The consumption rate of CO and the formation rate of CH3SH were calculated by the
following equation:

r(CO) =
Mco × Cco,in × X(CO) × Q

Vm×mcat
= g × gcat

−1 × s−1

r(CH3SH) =
MCH3SH × Q

Vm×Mcat
= mol × molcat

−1 × s−1

where MCO is the CO molar mass (g/mol), MCH3SH is the CH3SH molar of the product
(mol), Q is the flow rate, Vm is the molar volume of gas at standard conditions (L/mol),
and Mcat is the molar of catalyst used (mol).

4. Conclusions

In this work, we compared the catalytic performance of K-Mo2S catalysts with dif-
ferent supports. Based on the H2-TPR results, the metal-support interactions over the
K-MoS2/Al2O3 catalyst were much stronger than those over the K-MoS2/SiO2 catalyst,
which improved the dispersion of active species on the support surface. The exposure of
more Mo-CUS over the K-MoS2/Al2O3 catalyst accelerated the reaction. Moreover, the
K-Mo2C/Al2O3 catalyst obtained by the carbonization of oxidized K-Mo-based catalysts
also showed excellent catalytic performance for the conversion of CO/H2/H2S to CH3SH.
K-Mo2C/Al2O3 exhibited a higher CO consumption rate and CH3SH selectivity than K-
MoS2/Al2O3. More importantly, the CO/H2/H2S-TPD experiments and characterization
results confirmed that the strong metal-support interactions and the formation of K2S
over the K-MoS2/Al2O3 catalyst favored the adsorption and activation of CO/H2S. The
K-Mo2C/Al2O3 catalyst showed a superior ability to activate H2. In contrast, the activation
of hydrogen was more favorable for the hydrogenation of the intermediate species COS to
CH3SH, thus improving the selectivity of CH3SH in the products.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/catal14030190/s1, Figure S1: H2-TPR curves of K-MoS2/
SiO2 and K-MoS2/Al2O3.
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