

Article

Competition of CO and H₂ for Active Oxygen Species during the Preferential CO Oxidation (PROX) on Au/TiO₂ Catalysts

Yeusy Hartadi, R. Jürgen Behm and Daniel Widmann *

Institute of Surface Chemistry and Catalysis, Ulm University, Albert-Einstein-Allee 47, D-89081 Ulm, Germany; yeusy.hartadi@uni-ulm.de (Y.H.); juergen.behm@uni-ulm.de (R.J.B.)

* Correspondence: daniel.widmann@uni-ulm.de; Tel.: +49-731-502-5445

Academic Editor: Michalis Konsolakis

Received: 14 December 2015; Accepted: 19 January 2016; Published: 27 January 2016

Abstract: Aiming at an improved mechanistic understanding of the preferential oxidation of CO on supported Au catalysts, we have investigated the competition between CO and H₂ for stable, active oxygen (O_{act}) species on a Au/TiO₂ catalyst during the simultaneous exposure to CO and H₂ with various CO/H₂ ratios at 80 °C and 400 °C by quantitative temporal analysis of products (TAP) reactor measurements. It is demonstrated that, at both higher and lower temperature, the maximum amount of active oxygen removal is (i) independent of the CO/H₂ ratio and (ii) identical to the amount of active oxygen removal by CO or H₂ alone. Hence, under preferential CO oxidation (PROX) reaction conditions, in the simultaneous presence of CO and H₂, CO and H₂ compete for the same active oxygen species. In addition, also the dependency of the selectivity towards CO oxidation on the CO/H₂ ratio was evaluated from these measurements. Consequences of these findings on the mechanistic understanding of the PROX reaction on Au/TiO₂ will be discussed.

Keywords: active oxygen; CO oxidation; H₂ oxidation; preferential CO oxidation (PROX); Au catalysis; Au/TiO₂; temporal analysis of products (TAP)

1. Introduction

Gold nanoparticles supported on a variety of metal oxides are well known for their exceptional high activity and selectivity for various oxidation and reduction reactions already at very low temperatures [1-4]. One of the most prominent examples is the CO oxidation reaction on supported Au catalysts, e.g., on Au/TiO₂, since it also serves as a test reaction for gas phase oxidation catalysis in heterogeneous Au catalysis in general [5]. Practical applications of monometallic supported Au catalysts are rare, so far, but they are claimed to be promising candidates for the selective removal of CO from H_2 -rich reformates to values below 10 ppm [6–8] for use in low temperature Polymer Electrolyte Membrane (PEM) fuel cells [6,9]. The ultra-purification of H₂-rich fuels via the selective CO oxidation (or preferential CO oxidation—PROX) reaction requires catalysts that are highly active for the CO oxidation (Equation (1)). At the same time, the catalysts should have a very low activity for the continuous oxidation of H_2 to water (Equation (2)), although H_2 reaches concentrations up to 75% (depending on the process of H₂ generation) and is, hence, present in large excess compared to CO in the reaction gas [6,9-11]. One should note, however, that an oxidation of H₂ to adsorbed hydroperoxy-like species, which have previously been proposed to represent reaction intermediates in the preferential CO oxidation in the presence of H₂, may even be beneficial for the PROX activity of supported Au catalysts [10,12].

$$CO + \frac{1}{2}O_2 \rightarrow CO_2 \tag{1}$$

$$H_2 + \frac{1}{2}O_2 \rightarrow H_2O \tag{2}$$

In previous studies it has been demonstrated that metal oxide-supported Au nanoparticles (NPs) are highly selective for CO oxidation in the presence of hydrogen [9–11,13–15], where the selectivity is defined by the ratio between the oxygen consumption for CO oxidation, which equals half of the CO consumption according to the reaction stoichiometry (Equation (1)), and the overall oxygen consumption (for CO and H₂ oxidation), or the ratio between CO₂ formation and the sum of CO₂ and H₂O formation (Equation (3)):

$$S = \frac{CO \ consumption}{2 \times O_2 \ consumption} = \frac{CO_2}{CO_2 + H_2O}$$
(3)

Despite the large excess of H₂, typically about 1% CO and up to 75% H₂ in previous studies, the selectivity of metal oxide supported Au catalysts towards CO oxidation is considerably higher than 50% under typical reaction conditions, at a reaction temperature of 80 °C [13–15], but decreases with decreasing CO content in the reaction gas atmosphere [10,13]. Considering the very low CO concentrations that can be tolerated in PEM fuel cells (<10 ppm), further improvements of existing catalysts, in particular their selectivity, is still mandatory.

Most crucial in the CO oxidation reaction on supported Au catalysts, and also most controversially debated, is the activation of molecular oxygen, which includes issues such as the active site for oxygen activation and the resulting active oxygen species for the oxidation of adsorbed CO [16]. For reaction in a CO/H₂ mixture as in the PROX reaction, this also includes the question whether CO and H₂ compete for the same adsorption sites and/or the same active oxygen species. These questions are topic of the present work, where we investigated the selective oxidation of CO in CO/H₂ mixtures on a Au/TiO₂ catalyst by quantitative temporal analysis of products (TAP) reactor measurements.

Before presenting the results of the present study, we will briefly summarize previous findings relevant for the present work. It is well known that CO mainly adsorbs on the surface of the Au nanoparticles under relevant reaction conditions, at room temperature and above [17–19], and also dissociatively adsorbed hydrogen is assumed to be located on these sites [20,21] or at Au atoms located at the perimeter of the Au-TiO₂ interface [22,23], resulting in the formation of a highly active, atomically-adsorbed hydrogen species [20,22-24]. Furthermore, there seems to be increasing agreement that CO adsorbed on the Au NPs mainly reacts with active oxygen species located at the perimeter sites of the Au- M_xO_y interface in the dominant reaction pathway for CO oxidation [19,25,26], and that for Au catalysts supported on reducible metal oxides, e.g., for Au/TiO₂, and for reaction temperatures above room temperature, surface lattice oxygen of the support represents the active oxygen species [27–33]. Based on TAP reactor measurements, we recently proposed a Au-assisted Mars-van Krevelen mechanism as the dominant reaction pathway for the CO oxidation at $T \ge 80$ °C on Au/TiO₂, where TiO₂ surface lattice oxygen located at the interface between Au nanoparticles and TiO₂ support represents the active oxygen species for CO oxidation, and is continuously removed and replenished during the reaction [27,31]. At lower temperatures, (below -120 °C), the dominant reaction pathway is expected to change and molecularly adsorbed oxygen is proposed to represent the active oxygen species [19,34]. Furthermore CO adsorption on the TiO₂ support becomes increasingly important for the overall reaction [19,34]. Based on similar type TAP reactor measurements, specifically from the identical amount of active oxygen species for the CO oxidation and the H_2 oxidation, and from their almost identical dependency on the Au particle size, we recently proposed that hydrogen oxidation at 80 °C and higher also proceeds via a Au-assisted Mars-van Krevelen mechanism, identical to CO oxidation, with surface lattice oxygen located at the perimeter of the Au-TiO₂ interface acting as active oxygen species [35]. This conclusion was supported recently by density functional theory (DFT) based calculations, where the lowest H₂ dissociation barrier was obtained for H₂ interacting with O²⁻ surface lattice oxygen species in TiO_2 close to the Au/ TiO_2 perimeter [36]. We had speculated already from those TAP results that CO and H₂ compete for this O_{act} species when present simultaneously, and that this competition is a crucial factor for the catalysts selectivity towards CO oxidation [35]. Experimental proof for this mechanism, in the simultaneous presence of CO and H_2 , is still lacking. Here one has

to consider that under PROX reaction conditions the formation of hydroxyl groups and adsorbed water on the catalysts surface upon interaction with H_2 may significantly influence its CO oxidation activity [14,37–40].

In the following we report results of TAP reactor measurements, where the absolute amount of active oxygen removal by CO and H₂ and its replenishment by O₂ was evaluated upon exposure of a Au/TiO₂ catalyst to alternate sequences of CO/H₂/Ar and O₂/Ar pulses, using different CO/H₂ mixtures. From these data we will derive whether CO and H₂ compete for the same active oxygen species also in the simultaneous presence of CO and H₂. Moreover, the selectivity for CO oxidation during mixed CO/H₂ pulses can be determined. Finally we will discuss the consequences of the present finding for the mechanism of the PROX reaction on Au/TiO₂ catalysts.

2. Results and Discussions

2.1. Active Oxygen Removal by CO and H₂

Before focusing on the reaction with mixed CO/H₂/Ar pulses, we determined the removal of stable, active oxygen from the Au/TiO₂ catalyst surface by CO/Ar and H₂/Ar pulses only for calibration. The absolute amounts of active oxygen determined in these measurements will then be used as references for the active oxygen removal in the simultaneous presence of CO and H₂. Similar to our previous study [35], the catalyst was alternately exposed to several sequences of (i) CO/Ar and O₂/Ar or (ii) H₂/Ar and O₂/Ar, respectively, in order to reactively remove and replenish the available active oxygen from the catalyst surface. These measurements were performed after *in situ* calcination (O400) of the Au/TiO₂ catalyst and subsequent saturation of its surface by adsorbed water by exposure to 5000 H₂/Ar pulses at 80 °C. Additional experiments including the exposure of the catalyst to various amounts of H₂/Ar pulses and subsequent temperature programmed desorption (TPD) measurements revealed that (i) there is formation of stable adsorbed water upon exposure to H₂/Ar pulses at 80 °C and (ii) treatment with 5000 H₂/Ar pulses results in a surface saturation and, hence, equal surface concentrations of adsorbed water during all subsequent experiments. Note that, at 400 °C, in contrast, water formed during the H₂ oxidation readily desorbs, and does not need to be considered in the following measurements.

The multi-pulse experiments following this treatment (O400 and H₂ pulses) revealed an oxygen consumption of the fully-reduced catalyst during O₂/Ar pulses at 80 °C of 3.3×10^{18} O atoms· g_{cat}⁻¹. This is almost identical to the CO consumption/CO₂ formation in the subsequent sequence of CO/Ar pulses (3.4×10^{18} molecules· g_{cat}⁻¹), as well as to the oxygen consumption during subsequent O₂/Ar pulses (after 250 CO/Ar pulses). Hence, this (partial) reduction and re-oxidation of the catalyst surface is fully reversible under present conditions. Furthermore, in agreement with previous findings, the amount of CO₂ formation in each CO/Ar sequence always equals the amount of CO consumed, indicating that there is no significant build-up of stable adsorbed, carbon containing surface species (surface carbonates, *etc.*) under present reaction conditions [25,41]. Finally, all CO₂ is formed during CO pulses (and not during O₂ pulses), as expected for CO weakly adsorbed on the Au NPs at 80 °C, and completely desorbed before O₂ is introduced [31].

The oxygen storage capacity (OSC) at 80 °C is slightly lower in the present study $(3.3 \times 10^{18} \text{ O} \text{ atoms} \cdot \text{g}_{\text{cat}}^{-1})$ than determined previously for a comparable Au/TiO₂ catalyst, which was also saturated with adsorbed water by H₂ pulses prior to the pulse experiments $(4.6 \times 10^{18} \text{ O} \text{ atoms} \cdot \text{g}_{\text{cat}}^{-1})$ [35], but of a similar order of magnitude. More important for the present study, however, is the comparison between the absolute amounts of active oxygen on (fully oxidized) Au/TiO₂ for the CO oxidation and the H₂ oxidation. From the oxygen uptake during O₂/Ar pulses after 1500 H₂/Ar pulses on the Au/TiO₂ catalyst at 80 °C we obtained a value of 3.3×10^{18} O atoms $\cdot \text{g}_{\text{cat}}^{-1}$ for the total amount of stable oxygen which is active for the H₂ oxidation (see Table 1). Note that compared to CO/Ar a significantly higher number of H₂/Ar pulses is necessary to completely remove the active surface oxygen. While for a complete removal of all availabe O_{act}

species via the CO oxidation about 200 CO/Ar pulses were needed, almost 1500 H_2 /Ar pulses are necessary for its removal via the H_2 oxidation. This reflects the much lower efficiency of hydrogen for active oxygen removal compared to CO, as was already demonstrated previously [31]. The total amounts of active oxygen for CO and H_2 oxidation, however, are almost identical also for the present Au/TiO₂ catalyst [31].

Table 1. Absolute amounts of active stable oxygen (O_{act}) removal and CO_2 formation during CO, H_2 , and CO/ H_2 pulses with different CO/ H_2 ratios on the fully oxidized Au/TiO₂ catalyst at 80 °C, and corresponding selectivities for CO oxidation.

Ratio CO/H ₂	$H_2/(CO + H_2)/\%$	O _{act} Removal */ 10 ¹⁸ O atoms· g _{cat} ⁻¹	CO ₂ Formation */ 10 ¹⁸ molecules g _{cat} ⁻¹	Selectivity/%
CO only	0	3.3 ± 0.2	3.4 ± 0.2	100
1/0.5	33	2.9 ± 0.2	2.6 ± 0.2	92
1/1	50	2.6 ± 0.2	2.3 ± 0.2	90
1/2	67	3.1 ± 0.2	2.2 ± 0.1	71
1/4	80	3.3 ± 0.2	2.0 ± 0.1	60
1/8	89	3.1 ± 0.2	1.5 ± 0.1	49
H ₂ only	100	3.3 ± 0.2	0	0

* Error estimations are based on the repeated reproduction of individual pulse sequences.

Additionally, for reaction at 400 °C, the total amounts of active oxygen for CO oxidation and for H₂ oxidation are also almost identical (12.7×10^{18} O atoms· g_{cat}^{-1} and 12.6×10^{18} O atoms· g_{cat}^{-1} , respectively; see Table 2). The higher amount of O_{act} species available and, accordingly, a higher amount of TiO₂ surface lattice oxygen removal at 400 °C is in agreement with findings in previous studies, where this was explained by the migration of TiO₂ surface lattice oxygen to Au-TiO₂ perimeter sites at elevated temperatures [27]. This enables the removal also of O_{act} species which were originally located further away from the Au-TiO₂ interface perimeter. At 80 °C, in contrast, the mobility of surface lattice oxygen is negligible, and only surface lattice oxygen species located directly at Au-TiO₂ interface perimeter sites can be removed by reaction with CO_{ad} or H_{ad} [25,35]. Considering the Au loading and the Au particle size distribution (from TEM imaging), and assuming hemispherical Au nanoparticles, the total amount of these species can be estimated to be 6.2×10^{18} O atoms· g_{cat}^{-1} .

Hence, the data are in full agreement with our previous proposal that CO and hydrogen are both oxidized by the same active oxygen species at both 80 $^{\circ}$ C and 400 $^{\circ}$ C, by TiO₂ surface lattice oxygen close to Au-TiO₂ perimeter sites [27]. For more details see Ref. [35].

Ratio CO/H ₂	H ₂ /(CO+H ₂)/%	O_{act} Removal */ 10 ¹⁸ O atoms g _{cat} ⁻¹	CO₂ Formation */ 10 ¹⁸ molecules · g _{cat} ⁻¹
CO only	0	12.7 ± 0.6	10.0 ± 0.5
1/0.5	33	11.5 ± 0.6	9.3 ± 0.5
1/1	50	11.5 ± 0.6	8.8 ± 0.4
1/2	67	12.9 ± 0.6	8.7 ± 0.4
1/4	80	12.9 ± 0.6	7.7 ± 0.3
1/8	89	11.8 ± 0.6	6.1 ± 0.3
H ₂ only	100	12.6 ± 0.6	0

Table 2. Absolute amounts of active stable oxygen (O_{act}) removal and CO_2 formation during CO, H_2 , and CO/ H_2 pulses with different CO/ H_2 ratios on the fully oxidized Au/TiO₂ catalyst at 400 °C.

* Error estimations are based on the repeated reproduction of individual pulse sequences.

2.2. Active Oxygen Removal by CO/H₂ Mixtures

Similar multi-pulse experiments were performed with alternate sequences of O_2/Ar and $CO/H_2/Ar$ pulses with various CO/H_2 ratios. At both temperatures (80 °C and 400 °C) five different

CO/H₂ mixtures were investigated, with CO/H₂ ratios ranging from 1/0.5 to 1/8 (see also Tables 1 and 2). The trends in the pulse signals of CO, CO₂, H₂, H₂O, and O₂ during reduction and re-oxidation with CO/H₂/Ar pulses (CO/H₂ = 1/2) and subsequent O₂/Ar pulses, respectively, are illustrated in Figure 1 for reaction at 80 °C on Au/TiO₂. Only the first 50 pulses of each sequence are shown, where differences in the measured intensities due to consumption of educts (CO, H₂, and O₂)/formation of products (CO₂, H₂O) are visible in the raw data, while the actual number of pulses per sequence are significantly higher (see Section 3.2). For CO/H₂/Ar and O₂/Ar at 80 °C the number of pulses in each sequence was 250 and 150, respectively.

Figure 1. Mass spectrometer signals of CO, CO₂, H₂, and H₂O measured during a sequence of CO/H₂/Ar pulses (CO/H₂ ratio = 1/2) on Au/TiO₂ at 80 °C after oxidation by O₂/Ar pulses, as well as the O₂ signal measured during subsequent O₂/Ar pulses at 80 °C.

During the first 10 CO/H₂/Ar pulses on the fully oxidized Au/TiO₂ catalyst there is a significant consumption of CO, indicated by the much lower CO intensity compared to that after about 50 or more pulses, and in parallel the formation of CO₂ (Figure 1). Hence, also under these conditions CO oxidation proceeds by reaction with stable surface oxygen of the catalyst. With increasing number of pulses the CO consumption/CO₂ formation during each pulse decreases, until there is no visible discrepancy to the steady-state situation after about 10 pulses. The absolute amount of CO consumed/CO₂ formed during the 250 CO/H₂/Ar pulses in this sequence at 80 °C was 2.2 × 10¹⁸ molecules· g_{cat}⁻¹. The significantly lower amount of CO₂ formation during the exposure of the fully oxidized Au/TiO₂ catalyst to CO/H₂ pulses as compared to CO pulsing (3.3 × 10¹⁸ molecules· g_{cat}⁻¹, see above) indicates already that stable adsorbed active oxygen is not only consumed by reaction with CO, but also by

reaction with hydrogen. From the H₂ signal shown in Figure 1, however, no (or only very little) H₂ consumption can be detected, in contrast to the CO signal. A somewhat lower H₂ signal is observed only during the first 1–2 pulses, with the lower intensity measured during the first pulse originating from a generally lower overall pulse size for the first pulse in every sequence (an artifact of our TAP reactor system). Hence, from the raw data there is no indication for reduction of Au/TiO₂ by H₂ during these pulses, and also the quantitative evaluation of all CO/H₂/Ar pulses could not resolve significant H₂ consumption. From previous TAP reactor studies on Au/TiO₂ as well as on Au/CeO₂ it is already known that the efficiency of H₂ for active oxygen removal is considerably lower compared to CO [35,42]. The H₂ consumption during a single pulse is, accordingly, too low to be resolved in these measurements, and the same is true for the formation of water during exposure to H₂ or CO/H₂ pulses at 80 °C [35]. As described in Section 3.2 (see below), the consumption of active oxygen by H₂ can, nevertheless, be calculated from the total oxygen uptake during subsequent O₂/Ar pulses, from the more than stoichiometric consumption of O₂ compared to the preceding CO₂ formation during two consecutive runs at 80 °C.

The O₂ signal measured during re-oxidation of Au/TiO₂ by O₂/Ar pulses, after reduction of the catalyst by CO and H₂, is also shown in Figure 1 (lower panel). Similar to CO consumption during CO/H₂/Ar pulses, O₂ consumption during the first 10–15 O₂/Ar pulses is obvious already from the raw data by the lower intensity compared to that after saturation. Quantitative evaluation of the O₂ consumption during the whole sequence (150 O₂/Ar pulses) revealed that 3.1×10^{18} O atoms g_{cat}^{-1} are needed to fully re-oxidize the catalyst at 80 °C (see also Table 1). This value is almost identical to the one determined after reduction by CO or H₂ only (3.3 × 10¹⁸ O atoms g_{cat}^{-1} in both cases), but significantly higher than the CO₂ formation during the preceding CO/H₂/Ar pulses (2.2 × 10¹⁸ molecules g_{cat}^{-1}). Accordingly, the amount of active oxygen removed by reaction with hydrogen amounts to 0.9 × 10¹⁸ O atoms g_{cat}^{-1} . These results clearly demonstrate that under present reaction conditions, with CO and hydrogen being simultaneously present on the surface, these species compete for the same active oxygen species. The higher amount of active oxygen removal by CO, in spite of the considerable excess of H₂ during the CO/H₂/Ar pulses (CO/H₂ ratio of 1/2) illustrates the high selectivity of Au/TiO₂ for the CO oxidation (71% in this case) under present reaction conditions.

The results of additional measurements with different CO/H₂ ratios during the CO/H₂/Ar pulses, where the amount of CO molecules per pulse was kept constant at 3×10^{15} molecules CO per pulse, while the amount of H₂ was varied between 1.5×10^{15} and 24×10^{15} molecules H₂ per pulse, are plotted in Figure 2a and listed in Table 1, together with the absolute amounts of active oxygen consumption/replenishment for CO only (0% H₂) and H₂ only (100% H₂).

Figure 2. (a) Absolute amounts of active oxygen (O_{act}) removal from a fully oxidized Au/TiO₂ catalyst (after O₂/Ar pulses) by CO and/or H₂ during CO, H₂, and CO/H₂ pulses with varying ratios of H₂ (33%–89% H₂) at 80 °C, and (b) corresponding selectivities for CO oxidation/CO₂ formation during the CO/H₂/Ar pulses at 80 °C.

These data clearly demonstrate that the total amount of oxygen that can be removed by CO/H_2 is almost identical for all mixtures and, moreover, also for "CO only" and "H₂ only" experiments. Obviously, under present reaction conditions, in the simultaneous presence of CO and H₂, these reactants are oxidized by the same active oxygen species as we have already concluded for the individual reactants before (see Section 2.1 and [35]). The existence of other active oxygen species, which may be active only for H₂ oxidation when CO and H₂ are present simultaneously, can be ruled out, since this would result in a higher amount of active oxygen species for the simultaneous CO and H₂ oxidation as compared to the CO oxidation only.

On a first glance these findings seem to contradict recent conclusions from Saavedra et al., who studied, in detail, the role of water in the catalytic CO oxidation on Au/TiO₂ [40]. Based on experimental results and DFT calculations they concluded (i) that weakly adsorbed water on TiO_2 determines the catalysts activity at room temperature by changing the effective number of active sites; and (ii) that O₂ activation in the dominant reaction pathway under these conditions requires the presence of both water and CO [40]. Considering that our experiments were performed at 80 °C and under vacuum conditions (not during pulses, but between individual pulses and pulse sequences), the presence of weakly-adsorbed water on the catalyst surface can be excluded. Temperature programmed desorption (TPD) measurements performed after saturation of the catalyst with water by $1500 H_2/Ar$ pulses had shown that stable adsorbed water is formed upon H_2 pulsing, which desorbs with a maximum in the TPD spectra at about 230 °C. This is the only water species present during O2 pulsing at 80 °C. Hence, our results clearly demonstrate that as long as only stable adsorbed water is present on the catalyst surface, coexisting adsorbed CO and hydrogen both are oxidized by TiO₂ surface lattice oxygen and compete for this Oact species. Weakly-adsorbed water species, whose presence during continuous PROX reaction cannot be ruled out from our data, may also enable another oxygen activation mechanism as described in the recent study by Saavedra et al. [40]. In that case, however, the dominant reaction mechanisms of CO and H₂ oxidation under PROX reaction conditions are expected to sensitively depend on the reaction temperature, due to the facile desorption of these species at higher temperatures. Similar kinds of temperature effects have been proposed earlier for the CO oxidation reaction under dry reaction conditions [31]. Another possibility that has to be considered under continuous PROX conditions, in the simultaneous presence of CO, O_2 , and H_2 in the catalyst bed, is the H-assisted O₂ activation. Rousset and coworkers previously demonstrated that the presence of H₂ promotes the CO oxidation activity over various Au catalysts supported on different (reducible and non-reducible) metal oxides [10,12]. According to them, this beneficial effect of H₂ results most probably from the reaction of adsorbed hydrogen atoms with molecular oxygen to active hydroperoxy-like species that represent additional reaction intermediates in the CO oxidation. In the present approach there is an inherent difficulty in studying this effect, since CO/H_2 and O_2 are never present simultaneously in the catalyst bed during the alternate pulse sequences. Here, further work is planned to more closely investigate the influence of H_2 on the O_2 activation in pulse experiments, in particular by exposing the catalyst to mixed $CO/H_2/O_2/Ar$ pulses. In that approach it will also be highly interesting to compare the oxygen activation in the presence of H_2 on different Au catalysts supported on reducible and non-reducible metal oxides (Au/TiO₂, Au/ZnO, Au/Al₂O₃, and Au/SiO₂, for example). Numerous previous studies have demonstrated that the activity for CO oxidation largely depends on the reducibility of the metal oxide support, with Au catalysts supported on reducible oxides being much more active [43,44]. Applying TAP reactor pulse experiments we could even demonstrate a quantitative relation between the catalysts reducibility (measured by its oxygen storage capacity) and its activity for CO oxidation [41]. In the presence of H₂, however, the activity of Au catalysts supported on reducible and non-reducible metal oxides becomes very similar [10,12], reflecting a more pronounced promotional effect of H_2 on the CO oxidation activity (see above) for non-reducible than for reducible metal oxide supports.

In addition to the absolute amount of active oxygen on Au/TiO_2 we also calculated the selectivity for active oxygen removal by CO at 80 °C for different CO/H₂ ratios, where the selectivity was given by the ratio between the absolute amount of CO_2 formation and the overall oxygen removal during $CO/H_2/Ar$ pulses (see Section 3.2). Figure 2a illustrates already that the amount of CO consumption/CO₂ formation continuously decreases with increasing H_2 content in the CO/H₂ pulses at 80 °C, despite the almost constant amount of Oact removal (for combined CO and hydrogen oxidation). This results in a decrease of the selectivity for CO₂ formation from 92% in the presence of 33% H₂ to slightly below 50% in the presence of 89% H₂ (see Figure 2b and Table 1). A similar trend of a decreasing selectivity with decreasing CO/H_2 ratio was also observed in kinetic measurements of the PROX reaction on a Au/TiO_2 catalyst under continuous flow, but otherwise similar reaction conditions (80 °C) [14,45]. The high selectivities fully agree with the much lower efficiency for O_{act} removal by H₂ (including H₂ adsorption, dissociation, and reaction with O_{act}) compared to reaction with CO. This was already demonstrated by the much higher number of H₂ pulses needed for the complete removal of the available active oxygen species compared to reaction with CO in multi-pulse TAP reactor experiments (see Section 2.1 and Refs. [35,42]). Considering the selectivity of about 50% in the presence of 89% H₂ (CO/H₂ ratio of 1/8), this difference in the efficiency for O_{act} removal can be estimated to be about 8. This value is also in close agreement to the approximately eight times higher amount of H_2 molecules compared to CO molecules that are needed for a complete removal of all available O_{act} species (see Section 2.1). One has to keep in mind, however, that the latter averages over the entire pulse sequence, and does not necessarily reflect the difference in efficiency of a single CO or H₂ molecule. The selectivity largely originates from the competition between adsorbed CO and hydrogen for the same active oxygen species when simultaneously present on the catalyst surface. Additional effects arising, e.g., from the competition of the two adsorbing species (CO, H₂) for adsorption sites and from (de-)stabilizing interaction between the coadsorbed species, which had been suggested previously [13,14], can neither be excluded nor supported from our TAP reactor experiments measurements. It should be noted, however, that the steady-state coverages under typical reaction conditions ($\leq 0.5\%$ CO, 60%–70% H₂, 80 °C, atmospheric pressure) are well below saturation. Accordingly, such effects are expected to be small, and similar conclusions were put forward also in the above studies [13,14].

Finally, we performed similar multi-pulse experiments with alternate sequences of O_2/Ar pulses and $CO/H_2/Ar$ pulses at 400 °C, using the same reaction gas mixtures for O_{act} removal from Au/TiO₂ as described above (CO, H₂, and CO/H₂ = 1/0.5 – CO/H₂ = 1/8). The main characteristics during reduction and re-oxidation were identical to those obtained in the experiments at 80 °C: For all measurements, CO₂ and H₂O are only formed during CO and/or H₂ pulses, respectively, and the processes of catalyst reduction and re-oxidation are fully reversible, as evidenced by at least three cycles of reduction and re-oxidation with identical absolute amounts of O_{act} removal/replenishment for each gas mixture. The absolute amounts of active oxygen removal upon exposure to CO only, H₂ only, and CO/H₂ mixtures are presented in Figure 3 and listed in Table 2.

Similar to the results at 80 °C also in this case the absolute amount of active oxygen $(12 \times 10^{18} \text{ O} \text{ atoms} \cdot \text{g}_{\text{cat}}^{-1})$ is essentially independent of the composition of the reaction gas pulses used for reduction. Hence, also at 400 °C CO and H₂ seem to compete for TiO₂ surface lattice oxygen close to the Au nanoparticles when present simultaneously. The only difference to the measurements at lower reaction temperature is that at 400 °C the increasing thermal mobility of surface lattice oxygen and surface oxygen vacancies enables the migration and, therefore, the removal and replenishment of oxygen and oxygen vacancies which were originally located further away from the perimeter sites. At 80 °C, in contrast, only oxygen species directly adjacent to the Au nanoparticles participate in the oxidation reactions [27]. Nevertheless, also at 400 °C removal of O_{act} species upon reaction with CO or H₂ is expected to occur only at Au-TiO₂ interface perimeter sites.

Figure 3. Absolute amounts of active oxygen (O_{act}) removal from a fully oxidized Au/TiO₂ catalyst (after O₂/Ar pulses) by CO and/or H₂ during CO, H₂, and CO/H₂ pulses with varying ratios of H₂ (33%–89% H₂) at 400 °C.

As described below (Section 3.3) it is not possible to calculate the selectivity for reaction at 400 °C, since even in the absence of H₂ there is no stoichiometric consumption of O₂ and CO (with respect to the CO oxidation). Hence, the differences between O₂ consumption and CO consumption in consecutive sequences of O₂/Ar and CO/H₂/Ar pulses cannot be assigned to active oxygen removal via the H₂ oxidation only. Nevertheless, from the continuously-decreasing amount of CO₂ formation with increasing H₂ ratio in CO/H₂/Ar pulses, from 9.3 × 10¹⁸ CO₂ molecules· g_{cat}⁻¹ to 6.1×10^{18} CO₂ molecules· g_{cat}⁻¹ at CO/H₂ = 1/0.5 and CO/H₂ = 1/8 (see Table 2), it is evident that also at 400 °C the reaction is dominated by the same trend of decreasing selectivity towards CO₂ formation with increasing H₂ content. Moreover, considering that even for the highest amount of H₂ during CO/H₂ pulses (CO/H₂ = 1/8) and, hence, in an eight-fold excess of H₂ compared to CO, still 6.1×10^{18} CO₂ molecules· g_{cat}⁻¹ are formed, which is about 60% of the amount of CO₂ formed upon reduction by CO only (see Table 2), it can be concluded that also at 400 °C the catalyst still selectively catalyses the CO oxidation under present reaction conditions.

In total, these results, obtained at different temperatures as well as for reaction in different atmospheres, point to a competition of CO and H₂ for the same active oxygen species when present simultaneously and, hence, under PROX reaction conditions. This competition will mainly determine the catalyst selectivity towards CO oxidation, and strategies for even more selective Au catalysts under these conditions (80 °C and higher) should accordingly focus on the efficiency of H₂ and CO for active oxygen removal, which may be achieved by a systematic modification of the support material and/or the Au-support interface perimeter sites, which both significantly influence the activity for CO and H₂ oxidation via a Au-assisted Mars-van Krevelen mechanism [31,41].

3. Materials and Methods

3.1. Preparation and Characterization of Au/TiO₂

For all measurements we used a home-made Au/TiO₂ catalyst with a Au loading of 2.2 wt. %, which was prepared via a deposition-precipitation method using commercial, non-porous TiO₂ as support material (P5, surface area 56 m² · g⁻¹). Prior to all measurements the catalyst was pre-treated *in situ* by calcination at 400 °C in a continuous flow of 10% O₂/N₂ (20 Nml·min⁻¹) at atmospheric pressure for 30 min (hereafter denoted as O400), resulting in a surface-volume mean diameter of 2.4 ± 0.5 nm. The mean Au particle size was determined by transmission electron microscopy (TEM), evaluating the diameter of more than 500 Au nanoparticles after pre-treatment (O400).

3.2. TAP Reactor Measurements

Pulse experiments were performed in a TAP reactor system, which was built in our laboratory and which is described in detail in Ref. [46]. This system consists of a gas mixing unit, two piezo-electrically driven pulse valves, and a quartz glass micro-reactor (length: 90 mm, inner diameter: 4 mm), which is connected to an analysis chamber (under ultrahigh vacuum conditions), which houses the mass spectrometer for gas phase analysis. For *in situ* catalyst pre-treatment at atmospheric pressure, the micro-reactor with the catalyst inside can be separated from the analysis chamber via a differentially-pumped gate valve. This latter gate valve enables fast transitions from vacuum to ambient conditions in the micro-reactor and *vice versa* [46].

Gas pulses containing between 8×10^{15} and 3×10^{16} molecules per pulse were generated by the piezo-electrically driven pulse valves and directed to the micro-reactor. At the centre of this reactor the catalyst bed was fixed by stainless steel sieves. For all measurements the catalyst bed consisted of two outer layers of SiO₂ powder (inert under present reaction conditions) and a central catalyst zone with 10 mg of the Au/TiO₂ catalyst diluted with 10 mg SiO₂ (dilution 1:1) in between the SiO₂ layers.

Multi-pulse experiments were performed with a separation time of 5 s between two consecutive pulses. During these measurements the catalyst was alternately exposed to sequences of (i) CO/Ar; (ii) H_2/Ar ; or (iii) CO/ H_2/Ar and O_2/Ar pulses for removal and replenishment of stable, active oxygen species. The number of pulses in each sequence was chosen such that there is no measurable reactive removal or oxygen uptake at the end of each sequence, *i.e.*, at the end of CO/Ar, H_2 /Ar, and $CO/H_2/Ar$ pulse sequences or after the O_2/Ar pulse sequences. The exact numbers of pulses in each sequence are stated together with the results obtained (see Sections 2.1 and 2.2). Moreover, these cycles with alternate reduction and re-oxidation of the catalyst surface were always repeated at least three times in order to demonstrate the reversibility of the observed processes and, hence, to exclude permanent changes of the catalysts state during pulse experiments. The absolute amount of reversible oxygen removal and replenishment is defined as the catalysts oxygen storage capacity (OSC). Note that in each pulse Ar was included in order to enable the quantitative evaluation of the amount of CO, H₂, or O₂ consumed during every single pulse on an absolute scale. This is based on the comparison of the ratio of the intensities of the respective species and Ar during reaction (uptake/consumption of CO_1 , H_2 and O_2) to that after saturation, where no more consumption of the corresponding species was detected. CO/Ar and O₂/Ar pulses always consisted of 50% CO or 50% O₂ and 50% Ar at a pulse size of 8 \times 10¹⁵ molecules per pulse. Hence, the catalyst was exposed to about 4 \times 10¹⁵ molecules CO or O_2 during each of the pulses. For pulses with a $CO/H_2/Ar$ mixture, in contrast, the overall pulse size was between 1.2×10^{16} and 3.0×10^{16} molecules per pulse. Here we kept the amount of CO constant at 3×10^{15} molecules CO per pulse, while varying the amount of H₂ between 1.5×10^{15} and 24×10^{15} molecules H₂ per pulse. This way, CO/H₂ ratios between 1/0.5 and 1/8 were realized for the CO/H₂/Ar pulses. Note that in the discussions the H₂ ratio during CO/H₂/Ar pulses is always stated with respect to CO and H_2 only (not considering Ar), which are accordingly between 33% H_2 $(CO/H_2 = 1/0.5)$ and 89% H_2 $(CO/H_2 = 1/8)$.

In order to avoid complications in the direct comparison of active oxygen removal by CO and H₂ at 80 °C due to adsorption of water, which is always formed on the catalyst surface during H₂ oxidation and has a distinct impact on the CO oxidation activity (see above), we saturated the Au/TiO₂ catalyst surface with adsorbed water by exposing it to 5000 H₂/Ar pulses before starting the measurements. Note that this treatment additionally resulted in a complete removal of stable reactive oxygen (O_{act}) species for H₂ oxidation. The starting point of subsequent measurements is, hence, a fully reduced Au/TiO₂ catalyst.

3.3. Calculation of the Selectivity

Usually the selectivity for CO oxidation in CO/H_2 mixtures is defined by the ratio between the CO_2 formation rate and the overall oxygen consumption rate (for CO oxidation and H_2 oxidation, see also Equation (3)), which are determined in kinetic measurements. This is not possible in the

present study, where we focused on the absolute amounts of oxygen removal and replenishment during alternate sequences of CO/H₂/Ar and O₂/Ar pulses rather than on their kinetics. In this case we calculated the selectivity for CO oxidation at 80 °C by the ratio between the absolute amount of CO consumption/CO₂ formation (N_{CO} during a sequence of CO/H₂/Ar pulses) and the absolute amount of atomic oxygen consumption ($2 \cdot N_{O2}$) during a subsequent sequence of O₂/Ar pulses (Equation (4)). Note that it was not possible to determine the absolute amount of H₂O formation during CO/H₂/Ar pulses at 80°C, since water desorption is too slow to be resolved.

$$S = \frac{N_{CO}}{2 \cdot N_{O_2}} \tag{4}$$

For reaction at 400 °C it was not possible to calculate the selectivity in that way. From previous studies it is known that at this temperature, even in the absence of H₂, the O₂ uptake is always slightly higher than the oxygen consumption during subsequent exposure to CO during alternate sequences of O₂/Ar and CO/Ar pulses [27,35]. Therefore, the difference between CO consumption/CO₂ formation during exposure to CO/H₂/Ar pulses to that of O₂ consumption during subsequent exposure to O₂/Ar pulses is not solely due to active oxygen consumption by H₂ oxidation/H₂O formation, and can not be used for determination of the selectivity. For this reason we can only provide values for O_{act} removal and CO₂ formation at 400 °C.

4. Conclusions

From the comparison of the active oxygen removal from a Au/TiO₂ catalyst by CO, H₂, and CO/H₂ pulses with varying CO/H₂ ratios in quantitative temporal analysis of products (TAP) reactor measurements at 80 °C and 400 °C, we arrived at the following conclusions on the PROX reaction mechanism:

- (1) CO and hydrogen are oxidized by the same stable active oxygen species under present reaction conditions, also in the simultaneous presence of CO and H₂ in the reaction atmosphere, as evidenced by the similar amounts of active oxygen removal from a O₂/Ar pulse oxidized Au/TiO₂ catalyst upon exposure to multi-pulse sequences of CO, H₂, and CO/H₂ mixtures. This is independent of the CO/H₂ ratio. Hence, also under PROX reaction conditions CO and H₂ compete for TiO₂ surface lattice oxygen close to the Au nanoparticles/at the perimeter of the Au-TiO₂ interface as active oxygen species.
- (2) The selectivity of Au/TiO₂ catalysts for CO oxidation in CO/H₂ containing gas mixtures observed in kinetic measurements is proposed to mainly result from the much higher efficiency of CO for active oxygen removal compared to hydrogen under present reaction conditions, in the simultaneous presence of H₂ and CO in the reaction atmosphere. The latter is illustrated also by the much higher amount of H₂ pulses required for complete removal of active oxygen from the catalyst compared to CO pulsing.
- (3) Since we can rule out the presence of weakly-bound adsorbed water under present reaction conditions, in multi-pulse sequences, the much higher efficiency of CO for reaction with active oxygen species or the preference for this reaction pathway cannot result from effects caused by weakly-bound water species. On the other hand, stable adsorbed (strongly bound) water species, which are known to be present on the surface upon H₂ pulsing, leave the dominant reaction pathway for CO oxidation under present reaction conditions, namely reaction of CO_{ad} with surface lattice oxygen at the perimeter of the Au NP-support interface, unchanged, although the reaction rate may change.

Since the selectivity of pure Au/TiO_2 catalysts originates mainly from the intrinsic difference in the reactivity of TiO_2 surface lattice oxygen located at Au-TiO_2 perimeter sites for CO oxidation and H₂ oxidation under present reaction conditions, further improvements in the selectivity of TiO_2 -based

12 of 14

Au catalysts should include a modification of these perimeter sites, for example by doping of the TiO_2 support.

We cannot rule out from the present data, however, that other reaction pathways contribute as well at lower reaction temperature and/or during reaction under continuous flow conditions at atmospheric pressure. Under those conditions, weakly-adsorbed water, as well as adsorbed H_{ad} , are present and may also be involved in the reaction, as recently proposed by Saavedra *et al.* [40] and Rousset *et al.* [12].

Overall, the present findings confirm previous ideas on the CO oxidation mechanism and the physical origin of the high selectivity for CO oxidation in the PROX reaction on supported Au catalysts, specifically on Au/TiO₂ catalysts, which were based on plausibility arguments extending mechanistic insights from CO oxidation and H₂ oxidation to the present case of reaction in CO/H₂ mixtures.

Acknowledgments: We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) and Ulm University for covering the costs to publish in open access.

Author Contributions: Daniel Widmann conceived and designed the experiments; Yeusy Hartadi performed the experiments; Yeusy Hartadi, R. Jürgen Behm, and Daniel Widmann wrote the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

O _{act}	Active Oxygen
PROX	Preferential CO Oxidation
TAP	Temporal Analysis of Products
PEM	Polymer Electrolyte Membrane
TEM	Transmission Electron Microscopy
TPD	Temperature Programmed Desorption

References

- 1. Hashmi, A.S.K.; Hutchings, G.J. Gold Catalysis. *Angew. Chem. Int. Ed.* **2006**, 45, 7896–7936. [CrossRef] [PubMed]
- 2. Min, B.K.; Friend, C.M. Heterogeneous Gold-Based Catalysis for Green Chemistry: Low-Temperature CO Oxidation and Propene Oxidation. *Chem. Rev.* 2007, *107*, 2709–2724. [CrossRef] [PubMed]
- 3. Freakley, S.J.; He, Q.; Kiely, C.J.; Hutchings, G.J. Gold Catalysis: A Reflection on Where We are Now. *Catal. Lett.* **2015**, *1*45, 71–79. [CrossRef]
- 4. Haruta, M. Role of perimeter interfaces in catalysis by gold nanoparticles. *Faraday Discuss.* **2011**, 152, 11–32. [CrossRef] [PubMed]
- 5. Freund, H.J.; Meijer, G.; Scheffler, M.; Schlögl, R.; Wolf, M. CO Oxidation as a Prototypical Reaction for Heterogeneous Processes. *Angew. Chem. Int. Ed.* **2011**, *50*, 10064–10094. [CrossRef] [PubMed]
- Trimm, D.L.; Önsan, Z.I. On-board fuel conversion for hydrogen-fuel-cell-driven vehicles. *Catal. Rev.* 2001, 43, 31–84. [CrossRef]
- 7. Ghenciu, A.F. Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems. *Curr. Opin. Solid State Mater. Sci.* 2002, *6*, 389–399. [CrossRef]
- 8. Corti, C.W.; Holliday, R.J.; Thompson, D.T. Progress towards the commercial application of gold catalysts. *Top. Catal.* **2007**, *44*, 331–343. [CrossRef]
- 9. Park, E.D.; Lee, D.; Lee, H.C. Recent progress in selective CO removal in a H₂-rich stream. *Catal. Today* **2009**, 139, 280–290. [CrossRef]
- 10. Rossignol, C.; Arrii, S.; Morfin, F.; Piccolo, L.; Caps, V.; Rousset, J.-L. Selective oxidation of CO over model gold-based catalysts in the presence of H₂. *J. Catal.* **2005**, *230*, 476–483. [CrossRef]

- Bion, N.; Epron, F.; Moreno, M.; Marino, F.; Duprez, D. Preferential Oxidation of Carbon Monoxide in the Presence of Hydrogen (PROX) over Noble Metals and Transition Metal Oxides: Advantages and Drawbacks. *Top. Catal.* 2008, 51, 76–88. [CrossRef]
- 12. Quinet, E.; Piccolo, L.; Morfin, F.; Avenier, P.; Diehl, F.; Caps, V.; Rousset, J.L. On the mechanism of hydrogen-promoted gold-catalyzed CO oxidation. *J. Catal.* **2009**, *268*, 384–389. [CrossRef]
- 13. Kahlich, M.J.; Gasteiger, H.A.; Behm, R.J. Kinetics of the Selective Low-Temperature Oxidation of CO in H₂-rich Gas over Au/Fe₂O₃. *J. Catal.* **1999**, *182*, 430–440. [CrossRef]
- 14. Schumacher, B.; Denkwitz, Y.; Plzak, V.; Kinne, M.; Behm, R.J. Kinetics, mechanism and the influence of H₂ on the CO oxidation reaction on a Au/TiO₂ catalyst. *J. Catal.* **2004**, 224, 449–462. [CrossRef]
- Denkwitz, Y.; Schumacher, B.; Kucèrová, G.; Behm, R.J. Activity, stability and deactivation behavior of supported Au/TiO₂ catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures. J. Catal. 2009, 267, 78–88. [CrossRef]
- 16. Grzybowska, B. Nano-Au/oxide support catalysts in oxidation reactions: Provenance of active oxygen species. *Catal. Today* **2006**, *112*, 3–7. [CrossRef]
- 17. Bollinger, M.A.; Vannice, M.A. A kinetic and DRIFTS study of low-temperature carbon monoxide oxidation over Au-TiO₂ catalysts. *Appl. Catal. B* **1996**, *8*, 417–443. [CrossRef]
- 18. Boccuzzi, F.; Chiorino, A. FTIR study on Au/TiO₂ at 90K and room temperature. An insight into the nature of the reaction centers. *J. Phys. Chem. B* **2000**, *104*, 5414–5416. [CrossRef]
- 19. Green, I.X.; Tang, W.; Neurock, M.; Yates, J.T. Spectroscopic Observation of Dual Catalytic Sites During Oxidation of CO on a Au/TiO₂ Catalyst. *Science* **2011**, *333*, 736–739. [CrossRef] [PubMed]
- 20. Boronat, M.; Francesc, I.; Corma, A. Active Sites for H₂ Adsorption and Activation in Au/TiO₂ and the Role of the Support. *J. Phys. Chem. A* **2009**, *113*, 3750–3757. [CrossRef] [PubMed]
- 21. Panayotov, D.A.; Burrows, V.A.; Yates, J.T., Jr.; Morris, L. Mechanistic Studies of Hydrogen Dissociation and Spillover on Au/TiO₂: IR Spectroscopy of Coadsorbed CO and H-Donated Electrons. *J. Phys. Chem. C* 2011, *115*, 22400–22408. [CrossRef]
- 22. Fujitani, T.; Nakamura, I.; Akita, T.; Okumura, M.; Haruta, M. Hydrogen Dissociation by Gold Clusters. *Angew. Chem.* **2009**, *121*, 9679–9682. [CrossRef]
- 23. Nakamura, I.; Mantoku, H.; Furukawa, T.; Fujitani, T. Active Sites for Hydrogen Dissociation over TiO_x/Au(111) Surfaces. *J. Phys. Chem. C* **2011**, *115*, 16074–16080. [CrossRef]
- 24. Bus, E.; Miller, J.T.; van Bokhoven, J.A. Hydrogen Chemisorption on Al₂O₃-Supported Gold Catalysts. *J. Phys. Chem. B* **2005**, *109*, 14581–14587. [CrossRef] [PubMed]
- 25. Kotobuki, M.; Leppelt, R.; Hansgen, D.; Widmann, D.; Behm, R.J. Reactive oxygen on a Au/TiO₂ supported catalyst. *J. Catal.* **2009**, *264*, 67–76. [CrossRef]
- 26. Vilhelmsen, L.B.; Hammer, B. Indentification of the Catalytic Site at the Interface Perimeter of Au clusters on Rutile TiO₂(110). *ACS Catal.* **2014**, *4*, 1626–1631. [CrossRef]
- 27. Widmann, D.; Behm, R.J. Active oxygen on a Au/TiO₂ catalyst: Formation, stability and CO oxidation activity. *Angew. Chem. Int. Ed.* 2011, 50, 10241–10245. [CrossRef] [PubMed]
- Maeda, Y.; Iizuka, Y.; Kohyama, M. Generation of Oxygen Vacancies at a Au/TiO₂ Perimeter Interface during CO Oxidation Detected by *in Situ* Electrical Conductance Measurement. *J. Am. Chem. Soc.* 2013, 135, 906–909. [CrossRef] [PubMed]
- Li, L.; Wang, A.; Qiao, B.; Lin, J.; Huang, Y.; Wang, X.; Zhang, T. Origin of the high activity of Au/FeO_x for low-temperature CO oxidation: Direct evidence for a redox mechanism. *J. Catal.* 2013, 299, 90–100. [CrossRef]
- 30. Kim, H.Y.; Henkelman, G. CO Oxidation at the Interface of Au Nanoclusters and the Stepped-CeO₂(111) Surface by the Mars-van Krevelen Mechanism. *J. Phys. Chem. Lett.* **2013**, *4*, 216–221. [CrossRef] [PubMed]
- 31. Widmann, D.; Behm, R.J. Activation of Molecular Oxygen and the Nature of the Active Oxygen Species for CO Oxidation on Oxide Supported Au Catalysts. *Acc. Chem. Res.* **2014**, *47*, 740–749. [CrossRef] [PubMed]
- Duan, Z.; Henkelman, G. CO Oxidation at the Au/TiO₂ Boundary: The Role of the Au/Ti5c Site. ACS Catal. 2015, 5, 1589–1595. [CrossRef]
- Saqlain, M.A.; Hussain, A.; Siddiq, M.; Ferreira, A.R.; Leitao, A.A. Thermally activated surface oxygen defects at the perimeter of Au/TiO₂: A DFT + U study. *Phys. Chem. Chem. Phys.* 2015, 17, 25403–25410. [CrossRef] [PubMed]

- Green, I.X.; Tang, W.; Neurock, M.; Yates, J.T. Insights into Catalytic Oxidation at the Au/TiO₂ Dual Perimeter Sites. Acc. Chem. Res. 2013, 47, 805–815. [CrossRef] [PubMed]
- 35. Widmann, D.; Hocking, E.; Behm, R.J. On the origin of the selectivity in the preferential CO oxidation on Au/TiO₂—Nature of the active oxygen species for H₂ oxidation. *J. Catal.* **2014**, *317*, 272–276. [CrossRef]
- Sun, K.; Kohyama, M.; Tanaka, S.; Takeda, S. A Study on the Mechanism for H₂ Dissociation on Au/TiO₂ Catalysts. J. Phys. Chem. C 2014, 118, 1611–1617. [CrossRef]
- Daté, M.; Haruta, M. Moisture effect on CO oxidation over Au/TiO₂ catalyst. J. Catal. 2001, 201, 221–224. [CrossRef]
- 38. Diemant, T.; Bansmann, J.; Behm, R.J. CO oxidation on planar Au/TiO₂ model catalysts: Deactivation and the influence of water. *Vacuum* **2009**, *84*, 193–196. [CrossRef]
- 39. Gao, F.; Wood, T.E.; Goodman, D.W. The Effects of Water on CO Oxidation over TiO₂ Supported Au Catalysts. *Catal. Lett.* **2010**, *134*, 9–12. [CrossRef]
- 40. Saavedra, J.; Doan, H.A.; Pursell, C.J.; Grabow, L.C.; Chandler, B.D. The critical role of water at the gold-titania interface in catalytic CO oxidation. *Science* **2014**, *345*, 1599–1602. [CrossRef] [PubMed]
- 41. Widmann, D.; Liu, Y.; Schüth, F.; Behm, R.J. Support effects in the Au catalyzed CO oxidation—Correlation between activity, oxygen storage capacity and support reducibility. *J. Catal.* **2010**, *276*, 292–305. [CrossRef]
- 42. Wang, L.-C.; Widmann, D.; Behm, R.J. Reactive removal of surface oxygen by H₂, CO and CO/H₂ on a Au/CeO₂ catalyst and its relevance to the preferential CO oxidation (PROX) and reverse water gas shift (RWGS) reaction. *Catal. Sci. Technol.* **2015**, *5*, 925–941. [CrossRef]
- Schubert, M.M.; Plzak, V.; Garche, J.; Behm, R.J. Activity, Selectivity, and Long-Term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H₂-rich Gas. *Catal. Lett.* 2001, 76, 143. [CrossRef]
- Arrii, S.; Morfin, F.; Renouprez, A.J.; Rousset, J.L. Oxidation of CO on Gold Supported Catalysts Prepared by Laser Vaporization: Direct Evidence of Support Contribution. *J. Am. Chem. Soc.* 2004, 126, 1199–1205. [CrossRef] [PubMed]
- 45. Lakshmanan, P.; Park, J.E.; Park, E.D. Recent Advances in Preferential Oxidation of CO in H₂ over Gold Catalysts. *Catal. Surv. Asia* **2014**, *18*, 75–88. [CrossRef]
- 46. Leppelt, R.; Hansgen, D.; Widmann, D.; Häring, T.; Bräth, G.; Behm, R.J. Design and characterization of a temporal analysis of products reactor. *Rev. Sci. Instrum.* **2007**, *78*, 104103. [CrossRef] [PubMed]

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).