Supplementary Materials: In Situ FTIR Analysis of CO-Tolerance of a Pt-Fe Alloy with Stabilized Pt Skin Layers as a Hydrogen Anode Catalyst for Polymer Electrolyte Fuel Cells

Yoshiyuki Ogihara, Hiroshi Yano, Takahiro Matsumoto, Donald A. Tryk, Akihiro Iiyama and Hiroyuki Uchida

Table S1. Values of peak wavenumber and the full width at half maximum (FWHM) used for the deconvolution of FTIR spectra on Pt_{2AL}—PtFe/C and c-Pt₂Ru₃/C shown in Figure 5. The integrated intensities of each peak after 2 h of CO adsorption are also shown.

Peak Wavenumber (cm ⁻¹)		FWHM	Assignment	Peak Area (after 2 h)	
Pt2AL-PtFe/C c-Pt2Ru3/C		(cm-1)		Pt2AL-PtFe/C	c-Pt2Ru3/C
2030	2031	20	COL, Pt terrace	0.120	0.070
2009	2011	25	COL, Pt step/edge-1	0.120	0.124
1985	1993	30	COL, Pt step/edge-2	0.039	0.075
-	1967	55	CO-Ru	-	0.057
1856	1850	35	CO _B , Pt terrace	0.103	0.044
1822	1821	55	COв, Pt step/edge	0.023	0.041

Figure S1. Changes in FTIR spectra observed on Nafion-coated (**A**) Pt_{2AL} –PtFe/C and (**B**) c- Pt_2Ru_3/C electrodes at 0.02 V and 60 °C during CO adsorption in 0.1 M HClO₄ with bubbling 1% CO (H₂ balance) for 30 min in the experiment shown in Figure 7.

Figure S2. Deconvolution of FTIR spectra observed on (A) Pt_{2AL}–PtFe/C and (B) c-Pt₂Ru₃/C at 0.02 V and 60 °C after 1 h of 1% CO/H₂ gas bubbling in 0.1 M HClO₄. The experimental spectra in (A) and (B) were normalized to the total intensities of peaks assigned to CO_L, *I*[CO_L]; (------) experimental spectrum, (-----) sum of all peaks, (-----) CO_L peaks, (------) CO₋Ru peaks, and (------) CO_B peaks.

Figure S3. Schematic illustration of spectro-electrochemical cell for ATR-FTIR. Practical electrocatalysts such as Pt or Pt-alloy nanoparticles supported on carbon black (c-Pt₂Ru₃/C or Pt₂AL-PtFe/C in the present work) were dispersed on a gold film (ca. 100 nm thick) on the reflecting plane of a Si-ATR, followed by Nafion coating (0.013 μ m). Finally, it was heat treated at 130 °C for 30 min.

S1. Calculation of the Number of Atoms at Terraces and Step/Edges of a Cubo-octohedral Pt_{2AL}-PtFe and Pt₂Ru₃ fcc Particle with Particle Size *d*, According to a Method Described Previously [17,18]

First, we calculated the number of total atoms N_{total} included in the particle with the number of atomic layers *m*.

$$N_{\text{total}} = (10/3)m^3 - 5m^2 + (11/3)m - 1 \tag{S1}$$

As a measure of the particle size, we calculated d for a sphere having N_{total} atoms,

$$d = a \, (3N_{\text{total}}/2\pi)^{1/3} \tag{S2}$$

where *a* is the lattice constant of the Pt₂Ru₃ or Pt_{2AL}–PtFe alloy.

Next, the number of surface atoms was calculated by the following equation [17].

$$N_{\text{surface}} = 10m^2 - 20m + 12 \tag{S3}$$

$$N_{\text{step/edge}} = 12 \text{ (atoms at vertex)} + 24(m-2)$$
 (S4)

$$N_{\text{terrace}} = N_{\text{surface}} - N_{\text{step/edge}}$$
 (S5)

By using an average particle size d = 2.9 nm for Pt_{2AL}–PtFe and d = 3.5 nm for Pt₂Ru₃ based on the TEM observation, we obtained the values shown below.

Table S2. Number of atoms at step/edges and terraces calculated based on a cuboctohedral shape of Pt_{2AL} —PtFe and Pt_2Ru_3 fcc nanoparticles.

Catalysts	<i>d</i> [nm]	Number of Layers, m	Number of Total Surface Atoms, Nsurface	Number of Atoms at Step/Edges, N _{step/edge}	Number of Atoms at Terraces, N _{terrace}	Nstep/edge/Nterrace
Pt2AL-PtFe/C	2.9	7	362	132	230	57%
c-Pt ₂ Ru ₃ /C	3.5	8	492	156	336	45%