SUPPLEMENTARY MATERIAL

Biocatalytic Oxidations of Substrates through Soluble Methane

Monooxygenase from Methylosinus sporium 5

Yeo Reum Park¹, Hee Seon Yoo¹, Min Young Song¹, Dong-

Heon Lee¹ and Seung Jae Lee^{1,2*}

¹Department of Chemistry and Institute for Molecular Biology and Genetics, Chonbuk National University, Jeonju 54896, Republic of Korea; parkyr@jbnu.ac.kr (Y.R.P.); heeseon0202@jbnu.ac.kr; (H.S.Y.); mysong0823@gmail.com (M.Y.S.); dhl@jbnu.ac.kr (D.-H.L); slee026@jbnu.ac.kr(S.J.L)

²Research Center for Bioactive Materials, Chonbuk National University, Jeonju 54896, Republic of Korea

Keywords: Biocatalysts, Biocatalytic reaction, *Methylosinus sporium* strain 5, Soluble methane monooxygenase, C–H activation, O₂ activation

SUPPLEMENTARY FIGURES

Identity (%) Methylosinus sporium 5 ¹MAISLATKAATDALKVNRAPVGVEPQEVHKWLQSFNWDFKENRTKYATKYHMANQTKEQFKVIAKEYARMEAAKDERQFG ¹MAISLATKAATDALKVNRAPVGVEPQEVHKWLQSFNWDFKENRTKYPTKYHMANETKEQFKVIAKEYARMEAAKDERQFG 97% Methylosinus trichosporium OB3b MAISLATKAATDALKVNRAPVGVEPQEVHKWLQSFNWDFKDNRTKYATKYHMANQTKEQFKVIAKEYARMEAAKDEROFG⁸⁰ 99% Methylocystis species M Methylococcus capsulatus (Bath) $^{1}\text{MALSTATKAATDAL}\overset{}{Aan}\text{Raptsvna}^{Q}\text{evhrwl}^{Q}\text{Sfnwdfknnrtky}^{A}\text{tky}^{K}\text{man}\overset{\tilde{e}}{\text{tke}}^{Q}\text{fkliakey}\text{armeav}^{K}\text{der}^{Q}\text{fg} \overset{\text{80}}{\text{so}}$ 83% ⁸¹TLLDGLTRLGAGNKVHPRWGETMKVISNFLEVGEYNAIAASAMLWDSATAAEQKNGYLAQVLDEIRHTHQCAFINHYYSK¹⁶⁰ ⁸¹TLLDGLTRLGAGNKVHPRWGETMKVISNFLEVGEYNAIAASAMLWDSATAAEQKNGYLAQVLDEIRHTHQCAFINHYYSK¹⁶⁰ ⁸¹TLLDGLTRLGAGNKVHPRWGETMKVISNFLEVGEYNAIAASAMLWDSATAAEQKNGYLAQVLDEIRHTHQCAFINHYYSK¹⁶⁰ ⁸¹SLQDALTRLNAGVRVHPKWNETMKVVSNFLEVGEYNAIAATGMLWDSAQAAEQKNGYLAQVLDEIRHTHQCAYVNYYFAK¹⁶⁰ $^{161}\!HYH \text{DPAGHNDARRTR}^{A} \text{IGPLWKGMKRVF}^{A} \text{DGFISGDAVECSV} \text{NLQLVGEACFTNPLIVAVTEW}^{ASANGDEITPTVFLSVE}^{240}$ ¹⁶¹HYHDPAGHNDARRTR<mark>A</mark>IGPLWKGMKRVF**A**DGFISGDAVECSVNLQLVGEACFTNPLIVAVTEWASANGDEITPTVFLSVE²⁴⁰ ¹⁶³HYHDPAGHNDARRTRAIGPLWKGMKRVFADGFISGDAVECSVNLQLVGEACFTNPLIVAVTEWASANGDEITPTVFLSVE²⁴⁰ ¹⁶¹NGQD PAGHNDARRTRTIGPLWKGMKRVF<mark>S</mark>DGFISGDAVECSLNLQLVGEACFTNPLIVAVTEWAAANGDEITPTVFLSIE²⁴⁰ ²⁴¹TDELRHMANGYQTVVSIANDPAAAKYLNTDLNNAFWTQQKYFTPALGYLFEYGSKFKVEPWVKTWNRWVYEDWGGIWIGR ³²⁰ ²⁴¹TDELRHMANGYQTVVSIANDPASAKFLNTDLNNAFWTQQKYFTPVLGYLFEYGSKFKVEPWVKTWNRWVYEDWGGIWIGR ³²⁰ ²⁴¹TDELRHMANGYQTVVSIANDPAAKYLNTDLNNAFWTQQKYFTPALGYLFEYGSKFKVEPWVKTWNRWVYEDWGGIWIGR ³²⁰ 241 TDELRHMANGYQTVVSIANDPASAKYLNTDLNNAFWTQQKYFTPVLGMLFEYGSKFKVEPWVKTWNRWVYEDWGGIWIGR³²⁰ 321 LGKYGVESP<mark>RSLR</mark>DAKTDAYWAHHDLALAAYALWPLGFARLALPDEEDQEWFEANYPGWADHYGKIYNEWKKLGYEDPKS LIGKI GYESEKSIKDAKI DA I WARHDIALIAA I ALWPIGFAKIALPDEEDQEWFEAN I PGWADHIGKI I NEWKKLGY EDEKS 221. LIGKY GVESPASIRDAKRDA YWAHHDIALAAYAMWPIGFARIALPDEEDQAWFEAN YPGWADHYGKI FNEWKKLGYEDPKS 321 LGKY GVES PRVLRDAKTDA YWAHHDLALAAYALW PLAFARLALPDEEDOEWFEAN Y PGWADHYGK I YNEWKKLGY EDPKS ⁴⁰⁰ 221 LGKYGVESPRSLKDAKQDAYWAHHDLYLLAYALWPTGFFRLALPDQEEMEWFEANYPGWYDHYGKIYEEWRARGCEDPSS⁴⁰⁰ 401 GFIPYAWLLANGHDVYIDRVSQVPFIPSLAKGSGSLRVHEFNGKKHSLTDDWGERMWLSEPERYECHNLFEQYEGRELSE⁴⁸⁰ dol GFIPYQWLLANGHDVYIDRVSQVPFIPSLAKGTGSLRVHEFNGKKHSLTDDWGERQWLIEPERYECHNVFEQYEGRELSE⁴⁸⁰ ⁴⁰¹GFIPYAWLLENGHDVYIDRVSQVPFIPSLAKGSGSLRVHEFNGKKHSLTDDWGERMWLSEPERYECHNLFEQYEGRELSE ⁴⁸⁰ 401 GFIPLMWFIENNHPIYIDRVSQVPFCPSLAKGASTLRVHEYNGQMHTFSDQWGERMWLAEPERYECQNIFEQYEGRELSE ⁴⁸⁰ 481 VIAEGHGVRSDGKTLIAQPHVRGD-NLWTLEDIKRAGCVFPNPLAKF-481 VIAEGHGVRSDGKTLIAQPHTRGD-NLWTLEDIKRAGCVFPDPLAKF-481 VIAE GHGVRSDGKTLIAQPHVRGD-NLWTLEDIKRAGCVFPDPLAKF-481 VIAE LHGLRSDGKTLIAQPHVRGD-KLWTLDDIKRLNCVFKNPVKAFN 527

Figure S1. Multiple sequence amino acid alignment of sMMO from *Methylosinus sporium* 5 (type II), *Methylosinus trichosporium* OB3b (type II), *Methylocystis* species M (type II), and *Methylococcus capsulatus* Bath (type X).

(A) Alignment of amino acids from the α -subunit of MMOH (GenBank accession number: ABD46892). Gray and red colors represent identical and different amino acids, respectively. Blue represents the identical residues among type II methanotrophs.

Identity 94% 98% 61%	(%) Methylosinus sporium 5 Methylosinus trichosporium OB3b Methylocystis species M Methylococcus capsulatus (Bath)	¹ MSQPQSSQVTKRGLTDPERAAIIAAAVPDHALDTQRKYHYFIQPRWKRLSEYEQLSCYAQPNPDWIAGGLDWGDWTQKFH ⁸⁰ ¹ MSQPQSSQVTKRGLTDPERAAIIAAAVPDHALDTQRKYHYFIQPRWKPLSEYEQLSCYAQPNPDWIAGGLDWGDWTQKFH ⁸⁰ ¹ MSQPQSSQVTKRGLTDPERAAIIAAAVPDHALDTQRKYHYFIQPRWKRLSEYEQLSCYAQPNPDWIAGGLDWGDWTQKFH ⁸⁰ ¹ MSMLGERRRGLTDPEMAAVILKALPEAPLDGNNKMGYFVTPRWKRLTEYEALTVYAQPNADWIAGGLDWGDWTQKFH ⁷⁷
		<pre>81GGRPSWGRESTELRTTDWYRHRDPARRWHAPYVKDKSEEARYTQRFLAAYSSEGSIRTIDAYWRDEILNKYYGALLYNEY¹⁶⁰ 81GGRPSWGRESTELRTTDWYRHRDPARRWHHPYVKDKSEEARYTQRFLAAYSSEGSIRTIDPYWRDEILNKYFGALLYSEY¹⁶⁰ 81GGRPSWGNESTELRTTDWYRHRDPARRWHAPYVKDKSEEARYTQRFLAAYSSEGSIRTIDPYWRDEILNKYYGALLYNEY¹⁶⁰ 78GGRPSWGNETTELRTVDWFKHRDPLRRWHAPYVKDKAEEWRYTDRFLQGYSADGQIRAMNPTWRDEFINRYWGAFLFNEY¹⁵⁷</pre>
		<pre>161GLFNAHSSVGRDCLSDTIRQSATFAGLDKVDNAQMIQMERLFIAKLVPGFDASTDVPKKIWTTDPIYAGARGAVEEIWQG²⁴⁰ 161GLFNAHSSVGRDCLSDTIRQTAVFAALDKVDNAQMIQMERLFIAKLVPGFDASTDVPKKIWTTDPIYSGARATVQEIWQG²⁴⁰ 161GLFNAHSSVGRDCLSDTIRQSATFAGLDKVDNAQMIQMERLFIAKLVPGFDASTDVPKKIWTSDPIYAGARGAVEEIWQG²⁴⁰ 158GLFNAHSQGAREALSDVTRVSLAFWGFDKIDIAQMIQLERGFLAKIVPGFDESTAVPKAEWTNGEVYKSARLAVEGLWQE²³⁷</pre>
		²⁴¹ IQDWNEILWAGHAVYDATFGQFARREFFQRLATVYGDTLTPFFTAQSQTYFQTTRGAIEDLFVYCLANDPEFGAHNRTFL ³²⁰ ²⁴¹ VQDWNEILWAGHAVMIATFGQFARREFFQRLATVYGDTLTPFFTAQSQTYFQTTRGAIDDLFVYCLANDSEFGAHNRTFL ³²⁰ ²⁴¹ IQDWNEILWAGHAVYDATFGQFARREFFQRLATVYGDTLTPFFTAQSQTYFQTTRGAIDDLFVYCLANDPEFGAHNRTFL ³²⁰ ²³⁸ VFDWNESAFSVHAVYDALFGQFVRREFFQRLAPRFGDNLTPFFINQAQTYFQIAKQGVQDLYYNCLGDDPEFSDYNRTVM ³¹⁷
		³² NAWTEHYLARSVTALKDFVGIYAKVEKVAGATDRAGVSEALQRVFGDWKVDYADKIGFNIDVDQKVDAVLAGFKN ³⁹⁵ ³² NAWTEHYLASSVAALKDFVGIYAKVEKSRADRSRRRLRGAASSAIGRSITP-DKIGFRVDVDQKVDAVLAGYKN ³⁹⁴ ³² NAWTEHYLARSVTALKDFVGIYAKVEKVAGATDRAGVSEALQRVFGDWKVDYADKIGFKIDVDEKVAAVLAGYKN ³⁹⁵ ³¹ RNWTGKWLEPTIAALRDFMGLFAKLPAGTTDKEEITASLYRVVDDWIEDYASRIDFKADRDQIVKAVLAGLK- ³⁸⁹

(B) Alignment of amino acids from the β -subunit of MMOH (GenBank accession number: ABD46893). Gray and red colors represent identical and different amino acids, respectively. Blue represents the identical residues among type II methanotrophs.

Identity	(%)	
91% 94% 54%	Methylosinus sporium 5 Methylosinus trichosporium OB3b Methylocystis species M Methylococcus capsulatus (Bath)	¹ MAKREPIHENSTRTEWEGKIAKLNSVDQATKFIQDFRVAYSSPFRKSYDLDVDYQYIERKIEERLSVLKTEKLSVADLVT ¹ MAKREPIHDNSIRTEWEAKIAKLTSVDQATKFIQDFRLAYTSPFRKSYDIDVDYQYIERKIEEKLSVLKTEKLPVADLIT ¹ MAKREPIHENSTRTEWEGKIAKLNSVEQATKFIQDFRVAYSSPFRKSYDLDVDYQYIERKIEERLSVLKTEKLSVADLIT ¹⁰ MAKLG-IHSNDTRDAWVNKIAQLNTLEKAAEMLKQFRMDHTTPFRNSYELDNDYLWIEAKLEEKVAVLKARAFNEVDFRH
		⁸¹ KATT GEDAAAVEAAWIAKMKAAESKYAAERIHIE FRQLYKPPVLPVNVFLRTDAALGTILMELRNTDYYATPLEGLRKER ¹⁶⁰ ⁸¹ KATT GEDRAAVEATWIAKI KAAKSKYEADGIHIE FRQLYKPPVLPVNVFLRTDAALGTVLMEIRNTDYYGTPLEGLRKEP ¹⁶⁰ ⁸³ KATT GEDPAAVEATWVAKMKSAASKYEAERIHIE FRQLYKPPVLPVNVFLRTDAALGTILMGVRNTDYYATPLEGLRKER ¹⁶⁰ ⁸⁶ KTAF GEDAK SVLDGTVAKMNAAKDKWEAEKIHIG FRQAYKPPIMPVNYFLDGERQLGTRLMELRNLNYYDTPLEELRKQR ¹⁵⁹ ¹⁶¹ GVKVLHLQA ¹⁶⁹ ¹⁶¹ CVKVLHLQA ¹⁶⁹
		GVKVLHLQA200 160GVRVVHLQSPH170

(C) Alignment of amino acids from the γ -subunit of MMOH (GenBank accession number: ABD46895). Gray and red colors represent identical and different amino acids, respectively. Blue represents the identical sequences among type II methanotrophs.

Identity (%) 96% 99% 67%) Methylosinus sporium 5 Methylosinus trichosporium OB3b Methylocystis species M Methylococcus capsulatus (Bath)	¹ MSSAHNAYNAGIMQKTGKA FADEF FAEENQVVHESNAVVLVLMKSDEIDAIIEDMVLKGGKAK-NPSIVVEDKAGFWWIK ¹ MSSAHNAYNAGIMQKTGKA FADEF FAEENQVVHESNAVVLVLMKSDEIDAIIEDIVLKGGKAK-NPSIVVEDKAGFWWIK ¹ MSSAHNAYNAGIMQKTGKA FADEF FAEENQVVHESNAVVLVLMKSDEIDAIIEEMVLKGGKAK-NPSIVVEDKAGFWWIK ¹ MSVNSNAYDAGIMGLKGKD FADQF FADENQVVHESDTVVLVLKKSDEINTFIEEILLTDYKKNVNPTVNVEDRAGYWWIK ⁸⁰	
		<pre>⁸⁰ADGAIEIDAAEASDLLGKPFSVYDLLVNVSSTVGRAYTLGTKFTITSELMGLDRALTDI¹³⁸ ⁸⁰ADGAIEIDAAEAGELLGKPFSVYDLLINVSSTVGRAYTLGTKFTITSELMGLDRALTDI¹³⁸ ⁸⁰ADGAIEIDAAEAADLLGKPFSVYDLLVNVSSTVGRAYTLGTKFTITSELMGLDRALTDI¹³⁸ ⁸¹ANGKIEVDCDEISELLGRQFNVYDFLVDVSSTIGRAYTLGNKFTITSELMGLDRKLED-YHA¹⁴¹</pre>	

Figure S2. Multiple amino acid alignment of MMOB (GenBank accession: ABD46894) from *Methylosinus sporium* 5 (type II), *Methylosinus trichosporium* OB3b (type II), *Methylocystis species* M (type II), and *Methylococcus capsulatus* Bath (type X).

Figure S3. Multiple amino acid alignment of MMOR (GenBank accession: ABD46897)

from Methylosinus sporium 5 (type II), Methylosinus trichosporium OB3b (type II),

Methylocystis species M (type II), and *Methylococcus capsulatus* Bath (type X).

Figure S4. Growth and pigmentation profile of sMMO from *M. sporium* 5 based on optical density at 600 nm (OD₆₀₀). (A) Cell growth at OD₆₀₀ of 3.0 with one-time methane feeding (once/day). (B) Cell growth at OD₆₀₀ of 8.2 with two-time methane supply (twice/day). Cultures A and B were proliferated for a week in media with the same iron concentration (20.4 mg/mL).

Figure S5. Ferrozine assay of MMOH showed iron contents in MMOH (3.8–4.1 Fe/MMOH). The maximum wavelength was monitored at 562 nm from the iron–ferrozine complex. Heavy and light lines represent denatured MMOH and standard solutions, respectively. All experiments were performed in triplicate with R² values > 0.999.

•

Figure S6. Constructed pET30a-*mmoB* plasmids and UV-visible spectrum of MMOB after purification. (A) Lane 1 represents the control ladder, lane 2 represents the pET30a-*mmoB* construct, and lane 3 represents nucleotides after *Nde*I and *Hind*III double digestion. (B) UV-vis spectrum of MMOB after construction.

Figure S7. Constructed *pET30a-mmoC* plasmid and ferrozine assays from MMOR.

(A) Lane 1 represents the control ladder, lane 2 represents the *pET30a-mmoC* construct, and lane 3 represents the *pET30a-mmoC* after *NdeI* and *Hind*III double digestion. (B) Ferrozine assay of MMOR for demonstrating the iron content in MMOR (2.03–2.14 Fe/MMOR). The maximum wavelength was monitored at 562 nm from the iron-ferrozine complex. Heavy and light lines represent iron solutions from denatured MMOR and standard solutions, respectively. All experiments were performed in triplicate with R² values > 0.998.

•

Figure S8. Specific enzyme activity based on the ratio of MMOR to MMOH in 2 mol equivalents of MMOB at pH 7.5.

Figure S9. Constructed *pET30a-mmoC-FAD* plasmids. Lane 1 represents the control ladder, lane 2 represents the *pET30a-mmoC* construct, and lane 3 represents nucleotides after *Nde*I and *Hind*III double digestion.

Figure S10. Measurement of crossreactivity in MMOB and MMOR. System I consists of MMOH (*M. sporium* 5), MMOB (*M. species* M), and MMOR (*M. sporium* 5). System II consists of MMOH (*M. sporium* 5), MMOB (*M. sporium* 5), and MMOR (*M. species* M). Specific enzymatic activities were measured at 30°C and pH 7.5.

SUPPLEMENTARY TABLE

Primer name	Sequence (5'-3')	Enzymes (strains)
mmoB-M-Fd	aacatatgtctagcgcgc	MMOB (M. sporium 5)
mmoB-M-Rv	aagcttcaaatatcggtcaggg	MMOB (M. sporium 5)
mmoB-MM-Fd	aacatatgtctagcgcgc	MMOB (M. species M)
mmoB-MM-Rv	gctcagctcaaatgtcggtcag	MMOB (M. species M)
mmoC-M-Fd	gcgcatatgtaccagatcgt	MMOR (M. sporium 5)
mmoC-M-Rv	ataagcttcagccgctcgc	MMOR (M. sporium 5)
mmoC-MM-Fc	gcggcatatgtatcagatcgtc	MMOR (M. species M)
mmoC-MM-Rv	atatagctcagccgctcgccag	MMOR (M. species M)
mmoC-FAD-M-Fd	agaccatatgcgcatctccttcga	FAD domain (M. sporium 5)
mmoC-FAD-M-Rv	tataagcttcagccgctcgcca	FAD domain (M. sporium 5)

Table S1. Primers used in this study.	
---------------------------------------	--