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Abstract: A concise method for the preparation of new 3,4,5,6-tetrahydropyrimidinium salts was
presented in this paper. Further application of these salts in asymmetric diethylzinc addition of
arylaldehydes was explored, giving the corresponding chiral second alcohols in good yields and
moderate enantioselectivities.
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1. Introduction

Since Arduengo et al. reported the first isolation of stable N-heterocyclic carbene (NHCs) [1],
this kind of ligand has attracted great interest, and tremendous success has been achieved in carbene
chemistry [2-12]. Not surprisingly, great effort has been devoted to the design and development of
efficient NHC ligands in past decades. These ligands, initially considered as mimics of phosphine [13],
are now ubiquitous in organic chemistry because of their outstanding properties such as stronger
o-donor and weaker m-acceptor compared to the corresponding phosphane ligand, and the metal
complexes of these ligands usually show better stability to moisture, air, and heat as well [14,15].
Naturally, the development of chiral NHCs and the application of these ligands in stereoselective
catalysis are receiving considerable attention as a next step [16-21]. To date, most of the research has
employed five-membered NHCs based on imidazole or imidazoline. The so-called “expanded-ring”
NHCs with six- [22-37] and seven- [38—49] heterocyclic rings have recently attracted attention, as these
“non-standard” NHCs show quite different properties, such as stronger basicity (nucleophilicity) and
greater steric demand [50]. Structurally, the larger ring sizes of these unusual NHCs will lead to a
comparatively large N-CNHC-N angle and consequential smaller Cnpyc—IN-CR angle, which in turn
results in better protection of metal centers and subsequently better performance in catalysis. As part
of our ongoing interest in ring-expanded NHC chemistry [51,52], we here present the synthesis of
Cy-symmetric six-membered NHCs precursors by a smooth three-step method. After deprotonation
of the precursor salts in situ, the new six-membered NHCs were tested as catalysts in asymmetric
diethylzinc addition of arylaldehydes, giving the corresponding secondary alcohol with good yields
and moderate enantioselectivities.

2. Results

Using commercial available amino alcohols as a starting material, we synthesized a series of
enantiopure 3,4,5,6-tetrahydropyrimidinium salts (1a-1f) incorporating two hydroxyl groups and
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evaluated their efficiency as ligands in palladium-catalyzed deprotonative-cross-coupling processes
(DCCP) [52]. However, these salts showed poor enantioselectivities when tested as catalysts in an
asymmetric diethylzinc addition to aldehydes (Table 1, entries 1-6). Since a steric functional group
around the carbene center may be beneficial for asymmetric catalysis, we were interested in preparing
the derivatives of salts (1) by modification of the OH group with bulky silyl groups. As presented in
Scheme 1, simple treatment of 1a—1f with tert-butyldimethylsilyl chloride (TBSCI) gave silicification
products 2a-2f in good yields (76-94% yield, see Figure S1 in Supplementary Materials for NMR data
of 2a-2f).
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Scheme 1. Synthesis of NHC precursors 2a—2f.

The new precursor salts were then tested in enantioselective asymmetric diethylzinc addition
to 1-naphthaldehyde (3a). As shown in Table 1, derivatives 2b, 2e, and 2f, as catalysts in this
transformation, showed better enantioselectivity than their parent compounds, and 2b gave the
best result (92% yield, 45% ee). Three new tetrahydropyrimidinium salts (Figure 1, 2g-2i) were further
prepared by the same method as shown in Scheme 1, with 1b as a starting material. These salts replaced
the OH group with different substituents. However, no improvement of ee values was observed when
they were tested in this reaction (Table 1, entries 13-15). Next, we tried a variety of conditions with
different solvents and bases. Unfortunately, no combination improved the enantioselectivity either
(see Table S1 in Supplementary Materials for details).

Table 1. Comparison of NHC precursors.

O H HO,
1 0r2 (10 mol%)

KHMDS (30 mol %)
+ EtyZn
xylene, rt, 24 h

3a 4a
Entry 2 Salts  Yield (%) P  ee(%)¢
1 1a 97 4
2 1b 86 13
3 1c 95 21
4 1d 90 5
5 1le 91 9
6 1f 77 1
7 2a 95 2
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Table 1. Cont.

Entry 2 Salts  Yield (%)?  ee(%)°

8 2b 92 45
9 2¢ 96 0
10 2d 95 1
1 2e 70 24
12 2f 89 1
13 2g 95 0
14 2h 97 6
15 2i 78 16

@ Reaction condition: salt (10 mol %), KN(SiMe3), (30 mol %), Et;Zn (2 equiv.), Ny, xylene, rt, 24 h. b Isolated yield.
¢ Determined by chiral HPLC (CHIRALCEL OD Column) analysis.
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Figure 1. The structures of 2g-2i.

BF,

With 2b as a catalyst precursor, different arylaldehydes were next applied in this transformation.
As indicated in Table 2, the reaction proceeded well in most cases (67-95% yield). Arylaldehydes
bearing electron-withdrawing (entries 3-9) and electron-donating (entries 10-13) groups, as well as
heterocyclic substrates (entries 15-17), were all well-tolerated, giving product 4b—4r in good yields
and moderate enantiomeric excesses. The best enantioselectivity was obtained with nicotinaldehyde
(3p) as a starting material, giving the product in 54% ee.

Table 2. Scope of methodology.

2b (10 mol %)
0 KN(SiMes), (30 mol %) ~ ©OH

Et,Zn
Ar)J\H TR xylene, rt, 24 h Ar)*\/

3 4
Entry ? Ar Product Yield (%) P ee (%) €
1 2-Naphthyl 3b 4b 82 40
2 Ph 3c 4c 74 33
3 2-MePh 3d 4d 89 26
4 3,4-diMePh 3e 4e 78 40
5 2,4,6-triMePh 3f af 69 28
6 4-EtPh 3g 4g 86 37
7 2-MeOPh 3h 4h 92 35
8 3-MeOPh 3i 4i 81 38
9 4-MeOPh 3j 4j 73 28
10 2-FPh 3k 4k 88 14
11 4-FPh 31 41 79 28
12 4-CF3Ph 3m 4m 95 48
13 3,5-diFPh 3n 4n 84 44
14 Cinnamyl 30 40 81 36
15 3-Pyridine 3p 4p 67 54
16 2-Thienyl 3q 4q 75 33
17 2-Quinolyl 3r 4r 87 29

@ Reaction condition: 2b (10 mol %), KN(SiMej3); (30 mol %), Et,Zn (2 equiv.), N, xylene, rt, 24 h. b Isolated yield.
¢ Determined by chiral HPLC (CHIRALCEL OD Column) analysis.
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3. Materials and Methods

3.1. General

H- and '>*C-NMR spectra were obtained on Bruker AVANCE III 500 MHz and 600 MHz
spectrometers (Bruker Co., Billerica, MA, USA) with TMS as the internal standard; MS spectra were
measured on a Finnigan LCQDECA XP instrument and a Agilent Q-TOF 1290 LC /6224 MS system
(Santa Clara, CA, USA); silica gel GF54 and H (10—40 mm, Qingdao Marine Chemical Factory,
Qingdao, China) were used for TLC and CC. Unless otherwise noted, all reactions were carried out
under an atmosphere of argon or nitrogen.

3.2. Preparation of Benzimidazolium Salt (2)

A mixture of 1la (824 mg, 2 mmol), tert-butyldimethylsilyl chloride (1.2 g, 8 mmol)
(Energy Chemical, Shanghai, China), and imidazole (1.09 g, 8 mmol) was dissolved in dry THF
(10 mL). After stirring at room temperature for 12 h, the mixture was poured into water (50 mL) and
extracted with dichloromethane (3 x 20 mL). The organic fractions were combined, washed with brine,
and dried over NaySO;4 (Energy Chemical, Shanghai, China). The solvent was removed under reduced
pressure, and the crude material purified by column chromatography (CH,Cl,/MeOH = 50/1) to
give 2a (1.06 g, 83%). 'H-NMR (500 MHz, CDCl3) & 8.66 (s, 1H), 7.44-7.35 (m, 10H), 4.97 (dd, ] = 7.1,
3.9 Hz, 2H), 4.25-4.18 (m, 4H), 3.44-3.36 (m, 2H), 3.31-3.24 (m, 2H), 2.02-1.96 (m, 2H), 0.87 (s, 18H),
0.08 (s, 12H); 13C-NMR (125 MHz, CDCl3) 6 153.6, 133.7, 129.3, 129.2, 127.9, 68.6, 62.2, 41.3,29.7, 25.8,
19.2,18.1.

Analogous compounds 2b-2i were prepared according to a procedure similar to that of 2a.
2b: 92% yield; "H-NMR (500 MHz, CDCl3) 6 8.13 (s, 1H), 7.32 (t, ] = 7.4 Hz, 4H), 7.26 (d, ] = 7.3 Hz, 2H),
7.18 (d, ] = 7.2 Hz, 4H), 4.00 (s, 2H), 3.81-3.78 (m, 4H), 3.29 (m, 4H), 2.96 (dd, ] = 7.8, 4.7 Hz, 4H),
1.77-1.70 (m, 2H), 0.90 (d, ] = 4.9 Hz, 18H), 0.08 (s, 12H); '*C-NMR (125 MHz, CDCl3) § 153.1, 136.1,
129.0, 127.2, 67.4, 64.0, 42.2, 34.7, 25.8, 18.9, 18.1. 2¢: 76% yield; 'H-NMR (500 MHz, CDCl3) &
8.20 (s, 1H), 3.87 (m, | = 11.6, 4.8 Hz, 4H), 3.58-3.51 (m, 2H), 3.44-3.35 (m, 4H), 2.13-2.01 (m, 4H),
1.02 (d, ] = 6.6 Hz, 6H), 0.96 (d, ] = 6.7 Hz, 6H), 0.88 (s, 18H), 0.08 (s, 12H); 1*C-NMR (125 MHz, CDCl3)
5 154.0,72.6,62.3,41.0, 26.4, 25.8,19.8, 19.2, 19.1, 18.2. 2d: 91% yield; 'H-NMR (500 MHz, CDCl3) &
8.15 (s, 1H), 3.85-3.78 (m, 4H), 3.71 (dd, ] = 12.0, 7.5 Hz, 2H), 3.49 (m, 2H), 3.42 (m, 2H), 2.18 (s, 2H),
2.12-2.07 (m, 2H), 1.54-1.45 (m, 4H), 0.98 (dd, ] = 6.3, 3.7 Hz, 12H), 0.89 (d, | = 6.8 Hz, 18H), 0.08 (s, 12H);
13C-NMR (125 MHz, CDCl3) 6 153.4, 64.8, 63.5, 41.6, 36.5, 25.8, 24.8, 22.7,22.4,19.1, 18.1. 2e: 86% yield;
'H-NMR (500 MHz, CDCl3) § 8.17 (s, 1H), 3.92-3.84 (m, 4H), 3.59-3.45 (m, 4H), 3.40-3.33 (m, 2H),
2.10(dd, J =11.6,5.7 Hz, 2H), 1.82 (dt, ] = 10.0, 6.6 Hz, 2H), 1.38-1.33 (m, 2H), 1.20-1.17 (m, 2H), 0.97
(d, ] = 6.6 Hz, 6H), 0.93 (t, ] = 7.4 Hz, 6H), 0.90 (s, 18H), 0.08 (s, 12H); 13C-NMR (125 MHz, CDCl3) 6
154.1,71.2,62.3,41.0,32.5,25.8,25.5,19.1, 18.2, 15.0, 10.8. 2f: 94% yield; 'H-NMR (500 MHz, CDCl3)
6 8.13 (s, 1H), 3.92 (d, ] = 6.8 Hz, 4H), 3.55-3.46 (m, 6H), 2.13 (dd, ] = 11.1, 5.5 Hz, 2H), 1.03 (s, 18H),
0.87 (s, 18H), 0.10 (s, 6H), 0.90 (s, 6H). 2g: 73% yield; 'H-NMR (500 MHz, CDCl3) & 8.19 (s, 1H),
7.32(t,] =7.4Hz, 4H),7.25(d, ] = 7.0 Hz, 2H), 7.15 (d, ] = 7.3 Hz, 4H), 3.97-3.79 (m, 4H), 3.45-3.23
(m, 4H), 3.07-2.85 (m, 4H), 1.79-1.74 (m, 2H), 1.03 (d, ] = 6.5 Hz, 36H), 1.00 (m, 6H), 0.64 (m, 2H);
I3C-NMR (125 MHz, CDCl3) 6 153.1, 136.0, 129.1, 129.0, 127.3, 67.6, 64.9, 42.2, 34.7, 29.7, 18.0, 11.8.
2h: 84% yield; 'H-NMR (500 MHz, CDCl3) & 8.10 (s, 1H), 7.32 (t, ] = 7.4 Hz, 4H), 7.24 (t, ] = 7.1 Hz, 2H),
719 (d, ] =7.1 Hz, 4H), 3.98 (it, | = 8.3, 4.2 Hz, 2H), 3.85-3.73 (m, 4H), 3.37-3.22 (m, 4H), 3.03-2.90
(m, 4H), 1.73 (p, ] = 5.7 Hz, 2H), 0.98-0.91 (m, 18H), 0.60 (q, ] = 8.0 Hz, 12H); 3C-NMR (125 MHz,
CDCl3) 4 153.0,136.1, 129.1, 129.0, 128.8, 127.2, 67.5, 63.6, 42.3, 34.8, 29.7, 18.9, 6.8, 4.2. 2i: 69% yield;
'H-NMR (500 MHz, CDCl3) & 8.07 (s, 1H), 7.61-7.56 (m, 8H), 7.47 (m, 4H), 7.41 (td, ] = 7.2, 5.0 Hz, 8H),
7.24(t,]=7.4Hz 4H),7.16 (t,] =7.3 Hz, 2H),7.10 (d, ] = 7.1 Hz, 4H), 3.97 (d, ] = 11.0 Hz, 2H), 3.88-3.79
(m, 4H), 3.29-3.13 (m, 4H), 2.95-2.83 (m, 4H), 1.70-1.64 (m, 2H), 1.07 (s, 18H); 3C-NMR (125 MHz,
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CDCls) 6 153.2,135.7, 135.6, 135.5, 132.3, 130.2, 129.0, 128.9, 128.1, 128.0, 127.2, 67.3, 64.3, 41.6, 34.8, 29.7,
27.0,19.2.

3.3. Representative Procedure for the Asymmetric Addition of Diethylzinc to Aldehyde

Under an argon atmosphere, a mixture of salt (2b) (0.01 mmol) and KN (S5iMe3); (0.03 mmol) in
xylene (1 mL) was stirred for 5 min at room temperature. Then diethylzinc (0.2 mmol) was added
dropwise, followed by an addition of 1-naphthaldehdye (3a; 14 uL, 0.1 mmol). Upon stirring for
24 h at room temperature, the reaction was quenched by HCl1 (1 M, 1.0 mL) and extracted with Et,O
(3 x 2 mL). The combined organic phases were washed with water and dried over Nay;SO, and
concentrated under vacuum. The residue was further purified by column chromatography (silica gel,
hexane/AcOEt) to yield product 4a as a colorless oil (92% yield, 45% ee). The spectral data were
comparable to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel
OD-H (hexane/'PrOH = 90/10, flow rate = 0.5 mL/min, t, (minor) = 15.7 min, t, (major) = 28.6 min).

Analogous compounds 4b-4r were prepared according to a procedure similar to that of 4a.
4b: 82% yield, 40% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/'PrOH = 90/10, flow rate = 0.5 mL/min,
tr (minor) = 19.1 min, t, (major) = 22.4 min). 4c: 74% yield, 33% ee; the spectral data were comparable
to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/ PrOH = 90/10, flow rate = 0.5 mL/min, t, (minor) = 11.3 min, t; (major) = 12.2 min).
4d: 89% yield, 26% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/'PrOH = 90/10, flow rate = 0.5 mL/min,
tr (minor) = 11.3 min, t, (major) = 12.7 min). 4e: 78% yield, 40% ee; the spectral data were comparable
to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/'PrOH = 90/10, flow rate = 0.4 mL/min, t; (major) = 14.5 min, t, (minor) = 16.6 min).
4f: 69% yield, 28% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 90/ 10, flow rate = 0.5 mL/min,
t; (minor) = 12.2 min, t, (major) = 13.1 min). 4g: 86% yield, 37% ee; the spectral data were
comparable to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel
OD-H (hexane/PrOH = 90/10, flow rate = 0.4 mL/min, t, (major) = 8.6 min, t; (minor) = 9.2 min).
4h: 92% yield, 35% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/'PrOH = 90/10, flow rate = 0.5 mL/min,
tr (major) = 13.6 min, t, (minor) = 15.4 min). 4i: 81% yield, 38% ee; the spectral data were comparable
to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/'PrOH = 90/10, flow rate = 0.5 mL/min, t; (minor) = 18.9 min, t, (major) = 21.5 min).
4j: 73% yield, 28% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 90/ 10, flow rate = 0.5 mL/min,
t; (minor) = 10.6 min, t, (major) = 12.4 min). 4k: 88% yield, 14% ee; the spectral data were comparable
to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/'PrOH = 90/10, flow rate = 0.5 mL/min, t; (major) = 11.7 min, t, (minor) = 15.0 min).
41: 79% yield, 28% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 93/7, flow rate = 0.5 mL/min,
tr (major) = 11.1 min, t; (minor) = 12.3 min). 4m: 95% yield, 48% ee; the spectral data were
comparable to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel
OD-H (hexane/'PrOH = 90/10, flow rate = 0.5 mL/min, t, (major) = 7.7 min, t, (minor) = 8.6 min).
4n: 84% yield, 44% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 93/7, flow rate = 0.5 mL/min,
t; (major) = 11.6 min, t; (minor) = 14.8 min). 40: 81% yield, 36% ee; the spectral data were comparable
to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel OD-H
(hexane/'PrOH = 93/7, flow rate = 0.5 mL/min, t, (major) = 12.8 min, t; (minor) = 15.6 min).
4p: 67% yield, 54% ee; the spectral data were comparable to those reported [53]. The ee was determined
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by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 93/ 7, flow rate = 0.5 mL/min,
t; (minor) = 12.9 min, t; (major) = 14.1 min). 4q: 75% yield, 33% ee; the spectral data were
comparable to those reported [53]. The ee was determined by HPLC analysis with Daicel Chiralcel
OD-H (hexane/'PrOH = 93/7, flow rate = 0.5 mL/min, t, (minor) = 9.4 min, t, (major) = 10.7 min).
4r: 87% yield, 29% ee; the spectral data were comparable to those reported [53]. The ee was determined
by HPLC analysis with Daicel Chiralcel OD-H (hexane/ PrOH = 90/10, flow rate = 0.5 mL/min,
tr (minor) = 15.6 min, t; (major) = 29.1 min).

4. Conclusions

The chiral 3,4,5,6-tetrahydropyrimidinium salts with bulky silyl groups were readily synthesized
by a three-step method starting with commercial amino alcohols. In situ prepared corresponding
carbenes, along with their parent carbenes, were then tested in an asymmetric diethylzinc addition
of arylaldehydes, producing the product in good yield and better enantioselectivities. In brief,
an example of improvement in performance of catalysts by modification of their OH group with
a steric functional group has been shown. Further study of these tetrahydropyrimidinium salts as
ligands for metal-mediated asymmetric catalysis are currently underway [54,55].

Supplementary Materials: The following are available online at http:/ /www.mdpi.com/xxx/s1, Figure S1: 'H
and 13C NMR Spectra of Compounds 2a-2i, Table S1: Optimization of the reaction conditions.
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