

SUPPLEMENTARY MATERIAL

Investigation of Iron vanadates for simultaneous carbon soot abatement and NH₃-SCR

Marzia Casanova*, Sara Colussi and Alessandro Trovarelli

Dipartimento Politecnico di Ingegneria e Architettura, Università degli Studi di Udine, via Cotonificio 108, 33100 Udine, Italy; marzia.casanova@uniud.it (M.C.), sara.colussi@uniud.it (S.C.), trovarelli@uniud.it (A.T.)

* Correspondence: marzia.casanova@uniud.it; Tel.: +39-0432-558-755

Academic Editor: Oliver Kröcher

Catalyst	B.E.T. (m²/g)
$Fe_{0.5}Er_{0.5}VO_4$	13
8.4% Fe0.5Er0.5VO4/TWS	81
50% Fe0.5Er0.5VO4/TWS	22
8.4% Fe0.5Er0.5VO4/CeO2	21
50% Fe0.5Er0.5VO4/CeO2	12
8.4% Fe0.5Er0.5VO4/CZ	40
50% Fe0.5Er0.5VO4/CZ	17
8.4% Fe0.5Er0.5VO4/Al2O3	166
50% Fe0.5Er0.5VO4/Al2O3	99

a.u.)	where the second and
Intensity (200 400 600 800 1000 1200 1400
	Raman shift (cm)

Figure S1. Raman spectra of 8.4wt.%FeVO₄/Al₂O₃. In the blue line (grating 1800 l/mm with 5s per accumulation) only Fe₂O₃ and Al₂O₃ Raman shifts are visible. Surface VOx could not be detected. In the red line Raman shifts mainly attributable to FeVO₄ and Fe₂O₃ are shown.

Table S1. B.E.T. surface areas of Fe_{0.5}Er_{0.5}VO₄ catalysts.

Figure S2. XRD patterns of (A) 50wt.%FeVO₄ and (B) 50wt.%FeErVO₄ on different supports. \forall TiO₂-anatase, \forall Fe₂O₃, \forall CeO₂ or CeZrO₂, \forall FeVO₄, \forall CeVO₄, \forall ErVO₄, \bullet Al₂O₃.

Figure S3. Raman spectra of 50wt.%FeVO₄/TWS. The optical image of the sample shows that the dark spots of FeVO₄ and Fe₂O₃ are uniformely distributed and all Raman spectra show the Raman shifts of FeVO₄. In the blue line (grating 1800 l/mm with 5s per accumulation) anatase Raman shifts are present together with FeVO₄ shifts. Surface VOx are highlighted in the red line at around 1000 cm⁻¹ taken with higher scan time (20 s for each accumulation) and with a 2400 l/mm grating to increase resolution and intensity.

Figure S4. Effect of FeErVO4 loading on soot oxidation activity.

Figure S5. Comparison of SCR catalytic activity of 20 mg catalytic beds of bare catalysts and with soot oxidation conducted simultaneously. Blue lines represent SCR activity of the bare catalysts, red lines represent SCR activity when soot combustion is conducted simultaneously, black lines show CO₂ production during runs. (A) 8.4wt.%FeVO₄/CeO₂, (B) 8.4wt.% FeErVO₄/CeO₂.

Figure S6. Comparison between theoretical heating ramp and temperature measured in the catalyst bed during soot oxidation reaction on CeO₂ sample (tight contact, soot/catalyst weight ratio of 1:20).

Figure S7. NH₃ oxidation carried out on single catalyst components under the following conditions: catalyst 20 mg, NH₃ 500ppm, O₂ 10%, N₂ balance, GHSV 900000 h⁻¹. Magenta line: NH₃ conversion curve over empty reactor; green line: NH₃ conversion curve of bare soot; blue lines: NH₃ conversion curve over FeVO₄, yellow line: NH₃ conversion over CeVO₄.