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Abstract: Conversion of carbon dioxide into useful chemicals is a valuable task. One way to
perform it is to transform CO2 into dimethyl carbonate (DMC) by a reaction with methanol.
Catalyst exerts significant impact on this process. During this work, Cu-Ni@VSiO bimetallic catalysts
were successfully synthesized by traditional solution and novel sulfuration methods. The catalytic
materials were characterized by several analytical techniques and were tested in a continuous
fixed-bed reactor under different reaction conditions to promote DMC synthesis from CO2 and
methanol in the absence of dehydrating agents. The effects of reaction temperature, pressure, space
velocity, metal loading, and bulk density on the catalytic performance were investigated in detail.
It was found that the activity of Cu-Ni@VSiO catalyst with the support obtained by the novel
sulfuration method is about three times higher when compared to that of the catalyst with the
support that is synthesized by the traditional solution method. This result may stem from the
difference in microstructure of the studied catalytic materials.

Keywords: copper-nickel catalysts; dimethyl carbonate; carbon dioxide; fixed bed reactor

1. Introduction

Dimethyl carbonate is one of the promising chemicals for the chemical industry. For example, it can
be used for polymer synthesis, as a solvent, and a fuel additive. A number of publications about dimethyl
carbonate (DMC) synthesis appeared recently [1–5]. Several synthetic routes affording DMC were reported;
for example, methanolysis of phosgene [6], oxidative carbonylation of methanol [7], transesterification of
ethylene carbonate [8] or urea [9], electrochemical synthesis [10], direct DMC synthesis from carbon dioxide
and methanol [11]. Full accounts of the advantages and disadvantages of different synthesis methods can
be found in [12–15]. The reaction of CO2 and methanol to produce DMC deserves attention as it is one of
promising routes that are based on green chemistry and sustainable development.

A difficulty of the direct DMC synthesis from CO2 and methanol is the activation of highly stable
CO2 molecules. Various approaches were employed to increase DMC yield (methanol conversion
times selectivity toward DMC), such as the application of supercritical CO2, dehydrating agents,
developing efficient catalysts [13–23]. Improved yield of DMC was continuously reported in many
publications [24–27].
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A fundamental way to increase DMC yield is to develop efficient catalysts to activate CO2.
A large number of catalysts were investigated for the conversion of CO2 and methanol into DMC.
Ikeda [28] reported that commercially available ZrO2 modified with H3PO4 afforded a DMC yield
of 0.42%. Tomishige [29] used a CeO2-ZrO2 catalyst, and the DMC yield reached 0.76%. Aresta [30]
reported an Al2O3/CeO2 catalyst with 0.45% DMC yield. Lee [31] synthesized a 5Ga2O3/Ce0.6Zr0.4O2

catalyst which afforded 0.47% yield of DMC. High DMC yields (>95%) can be achieved via the use
of dehydrating agents [11,13,15,32]. Dehydrating agents are generally expensive and are difficult to
recycle though. A relatively high yield (16%) was reported recently for the process in the presence of
a titanium-based zeolitic thiophenebenzimidazolate framework only [33].

We had been studying the direct DMC synthesis by heterogeneous Cu-Ni catalysts in the absence
of dehydrating compounds [34–42]. One catalyst type is Cu-Ni@VSiO (copper and nickel supported
on V2O5/SiO2 carrier). Copper and nickel are active components of the catalysts. The presence of
“VOn” species in catalyst may provide additional sites for reactant activation [34,43]. In the present
study, a novel sulfuration method was employed to synthesize Cu-Ni@VSiO catalyst. When compared
with a catalyst that was obtained by a traditional solution method, the structure and properties of the
catalyst changed significantly. The activities of supported metal catalysts are usually determined by many
factors, including metal dispersion, morphology of metal clusters, metal particle size, and metal-support
interaction. The synthesized catalysts consisted of uniform particles without any agglomeration
phenomenon. Accordingly, the novel sulfuration method solved many inevitable defects of the traditional
synthetic method.

2. Results and Discussion

2.1. Chemical Structure and Morphology of Synthesized Catalysts

2.1.1. Characterization of Catalyst Support VSiO Microstructure

VSiO supports with close contents of vanadium and silicon were synthesized by the traditional
solution and sulfuration methods, and their chemical structures were characterized by several
techniques. Fourier transform infrared spectrum (FTIR) spectra of the supports are shown in Figure 1.
Both the positions and relative intensities of peaks are obviously different. The following peak position
shifts were observed: 3466 cm−1 moved to 3428 cm−1, 1679 cm−1 moved to 1624 cm−1, 1146 cm−1

moved to 1101 cm−1, 867 cm−1 moved to 806 cm−1. Signals from SiO2 dominate in the IR spectra of
the obtained materials [34,44–46].
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The X-ray diffraction (XRD) spectra in Figure 2 demonstrate the peaks of amorphous SiO2 and
the absence of peaks corresponding to crystalline phases, which may indicate that vanadium oxide
species were well distributed over silica surface.
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Figure 2. XRD profiles of the VSiO supports.

Temperature programmed reduction (TPR) technique was able to analyze the interaction between
components of the supports. The reduction peak of VSiO obtained by the sulfuration method was
observed at about 541 ◦C (Figure 3). In the case of VSiO synthesized by the solution method, two peaks
appeared at about 554 ◦C and 605 ◦C. Therefore interaction mode between V2O5 and SiO2 in the VSiO
supports was significantly different, which led to different catalytic properties.
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In order to further analyze specific differences, the particle size and morphology for the different
supports were estimated by Scanning electron microscopy (SEM) (Figure 4). VSiO obtained by the solution
method consisted of larger particles and agglomeration phenomenon was obvious. In contrast, VSiO
synthesized by the sulfuration method was composed of uniform small particles and agglomeration
phenomenon was not observed. So, if the particle size and the morphology are considered, the sulfuration
method is better than the solution method. Energy dispersive X-ray spectrometers (EDS) analysis was
employed to make sure whether the proportion of elements in support was equal to the proportion used
for synthesis (Figures 5 and 6). According to the experimental results, these two were nearly the same.
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Consequently, the VSiO supports synthesized by the different synthetic methods with same
synthetic ratio are very different according to FTIR, XRD, TPR, and SEM measuring techniques.
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2.1.2. CuO-NiO@VSiO and Cu-Ni@VSiO Microstructure Characterization

CuO-NiO@VSiO (intermediate product of catalyst synthesis before reduction with H2) and
Cu-Ni@VSiO were synthesized by the traditional solution and novel sulfuration routes using the same
synthetic ratio of reagents. Their microstructures were characterized by several techniques.

The following peaks were observed in XRD spectra (Figure 7): one peak of CuO(110) and one peak
of CuNi alloy phase (111) in CuO-NiO@VSiO and Cu-Ni@VSiO that were obtained by the solution
method, respectively; two peaks of CuO(110) and NiO(101), two peaks of CuNi alloy phase (111), (200)
in CuO-NiO@VSiO and Cu-Ni@VSiO that were produced by the sulfuration method, respectively.

DMC synthesis from methanol and CO2 is a heterogeneous catalytic reaction that is promoted by
a catalyst crystalline phase. Therefore, more CuNi alloy phase is beneficial to improve catalytic efficiency.

TPR technique was employed to analyze the interaction between components of the catalysts (Figure 8).
CuO reduction peak was at 263 ◦C and NiO reduction peak was at 418 ◦C for CuO-NiO@VSiO that was
obtained by the sulfuration method [35]. In the case of CuO-NiO@VSiO synthesized by the solution
method, these values were 302 ◦C and 424 ◦C, respectively. The lower reduction temperature for the CuO
component in the first case (263 ◦C vs. 302 ◦C) is probably the consequence of weaker interaction of CuO
with the support.
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Temperature programmed desorption (CO2-TPD) spectra revealed the characteristics of basic sites
on the catalyst surface and the absorption capacity of CO2 (Figure 9). The number of peaks represents
the number of types of active centers and the area of a peak indicates the amount of active sites of
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the catalyst. There was only one peak around 328 ◦C and 265 ◦C for Cu-Ni@VSiO obtained by the
sulfuration and solution methods, respectively. Therefore, it was shown that only one type of active
centers bonding CO2 exists in each case. According to peak area values, the number of active centers
for the catalyst that are produced by the sulfuration method is much higher than that for the catalyst
produced by the solution method. Therefore, the adsorption strength of CO2 and the activation extent
of CO2 for Cu-Ni@VSiO produced by the sulfuration method are higher when compared to those of
Cu-Ni@VSiO synthesized by the solution method.
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The NH3-TPD (Figure 10) spectra revealed the characteristics of acid sites on catalyst surface and
allowed to investigate the activation of methanol on catalyst. There is only one broad peak of NH3

desorption, corresponding to one type of acid site, at around 294 ◦C and 140 ◦C, for Cu-Ni@VSiO
that is produced by the sulfuration and solution methods, respectively. According to peak areas,
much more acid sites were produced when catalyst support was synthesized via the sulfuration
method. Consequently, the activation of methanol for this catalyst is expected to be stronger than for
Cu-Ni@VSiO with support obtained by the solution method. The observed differences between the
two catalysts in CO2-TPD and NH3-TPD profiles could be attributed to well-dispersed and smaller
granular Cu-Ni particles on VSiO support in the case of Cu-Ni@VSiO with support that is synthesized
by the sulfuration method, which provided extra acid and base sites.
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In order to analyze the catalyst surface morphology, particle size, and composition, SEM and EDS
analyses were employed. According to experimental results, Cu-Ni@VSiO surfaces were extremely
different for the two synthesis methods (Figure 11). Cu-Ni@VSiO that was synthesized by the solution
method consisted of larger particles and agglomeration phenomenon was observed in contrast to
Cu-Ni@VSiO produced by the sulfuration method that was composed of uniform small particles
without agglomeration. Based on the observation of the morphology, sulfuration synthesis method
seems to be better when compared to the solution method. Additionally, EDS was measured to make
sure whether actual element proportion in catalysts was the same as that used during catalyst synthesis
(Figures 12 and 13). The experimental results proved that these two were close in values.

Consequently, CuO-NiO@VSiO and Cu-Ni@VSiO synthesized by the different synthetic methods
with same synthetic ratio were extremely distinct according to XRD, TPR, CO2-TPD, NH3-TPD, SEM,
and EDS measuring techniques.
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2.2. Catalytic Performance Characterization

The Cu-Ni@VSiO catalysts produced by the two different synthetic methods were evaluated in the
reaction between methanol and CO2 in a continuous tubular fixed-bed reactor. Different parameters
(reaction temperature (T) and pressure (P), space velocity (SV), catalyst bulk density (DB), CuO-NiO
loading, and methanol bubbler temperature (TMB)) were varied in order to achieve optimal performance.

With the increase of reaction temperature, methanol conversion showed an increasing trend
(Figure 14a). When the reaction temperature was increased beyond 140 ◦C, the methanol conversion
decreased slightly. Generally, DMC selectivity decreased with the increase of reaction temperature.
The kinetic energy of CO2 and methanol molecules goes up with temperature and the probability of
their interaction and of side reactions becomes higher, which could induce the increase of conversion and
the decline of DMC selectivity. Elevated temperature also leads to lower concentration of the reactants in
the reaction vessel. This may explain the reduction of methanol conversion at 160 ◦C.
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Figure 14. Effect of reaction temperature (a) and reaction pressure (b) on the performance of
Cu-Ni@VSiO catalyst obtained by the sulfuration method.

The elevation of the reaction pressure favored higher methanol conversion, and the DMC selectivity
went through a maximum (Figure 14b). For the reaction of DMC synthesis from CO2 and methanol,
the increased pressure is beneficial to shift the reaction equilibrium toward the products. Thus, the
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equilibrium concentration of the target product increased correspondingly. A downward trend of DMC
selectivity at P > 0.8 MPa could be a consequence of the increased rate of by-product formation.

With the increase of the space velocity, methanol conversion decreased, and DMC selectivity passed
through a minimum (Figure 15a). As the space velocity increases, so does the amount of the reaction
materials to be processed per unit time. If the catalyst does not have ability to process so many reactants,
methanol conversion decreases. The trend of the DMC selectivity change is difficult to explain.
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obtained by the sulfuration method.

Temperature, pressure, and space velocity exerted significant influence on catalyst performance.
However, another important factor—catalyst bulk density—was found from a large number of
experiments. Increasing the bulk density of the catalyst was helpful to improve methanol conversion,
as follows from Figure 15b. If the bulk density of catalyst layer was too small, the reaction materials
might pass through the catalyst where resistance was the least. Then, the catalyst layer could form
an empty material inertia channel. As a result, the reaction materials could not contact well with the
catalyst layer and then left it off. Increasing catalyst layer bulk density extended contact time between
the reaction materials and the catalyst layer, which improved methanol conversion. Reasons for the
drop of DMC selectivity upon raising the bulk density are not obvious.

The agglomeration of active components is one of problems for supported catalysts. Generally,
the larger the load, the higher the extent of the agglomeration. Different amounts of active components
are necessary for different supports to provide the best dispersion, least agglomeration, and,
consequently, optimum catalytic performance. Within the limits that were studied by us, the higher
was the active component load the lower was methanol conversion, and DMC selectivity went through
a maximum (Figure 16a).
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We also investigated the effect of methanol bubbler temperature on the reaction outcome.
Methanol bubbler temperature can change the feed ratio of the reactants, that is, the molar ratio
of CO2 to methanol. Methanol conversion and DMC yield can be greatly improved by changing
methanol bubbler temperature (Figure 16b). When the latter was 60 ◦C, optimum catalyst performance
was observed.

The influence of temperature on the reaction was also studied for Cu-Ni@VSiO obtained by
the solution method (Table 1). With the increase of reaction temperature, methanol conversion
increased continuously and dimethyl carbonate (DMC) selectivity decreased. Table 2 lists data from
the present work and other publications for different Cu-Ni catalysts tested in the direct DMC synthesis.
Methanol conversion obtained in the presence of Cu-Ni@VSiO synthesized by the sulfuration method
was 2.7 times higher than that of Cu-Ni@VSiO resulted from the solution method when they were
tested under the same conditions. According to microstructure analysis, the novel catalytic material
contained more Cu-Ni alloy phase and consisted of smaller particles. The TPD data showed the
presence of higher amounts of centers interacting with CO2 and methanol and higher strength of the
interactions in this case. These differences in microstructure might be the reason of the more efficient
catalytic performance.

Table 1. Effect of reaction temperature on the performance of Cu-Ni@VSiO catalyst obtained by the
solution method.

Temperature, ◦C Methanol Conversion, % DMC Selectivity, %

100 0.47 96.3
120 0.84 91.5
140 1.69 86.3
160 1.73 80.6

Table 2. Comparison of the performance of different Cu-Ni catalysts.

Catalyst T, ◦C P, MPa Reactor Type MeOH
Conversion, %

DMC
Selectivity Ref.

Cu-Ni@VSiO (sulfuration) 140 1.2 C 1 4.2 93.1 present work
Cu-Ni@VSiO (solution) 140 1.2 C 1.7 86.3 present work

Cu-Ni@VSiO 140 0.1 C 14.5 87.8 [43]
Cu–Ni@ZIF-8 2 110 2 batch 12.8 50.0 [47]
Cu-Ni@VSiO 3 120 0.1 C 4.0 85 [35]
Cu-Ni@VSiO 140 0.9 C n.a. 87.1 [34]

Cu-Ni@SBA-15 110 1.2 continuous fixed-bed ca 21 ca 20 [48]
Cu-Ni@TEG 2 100 1.4 C 5.0 91.0 [36]

Cu-Ni@ KHNTs 2 130 1.2 C 7.8 89.0 [37]
Cu-Ni@MS 2 120 1.1 C 7.1 87 [38]

Cu-Ni@graphite 100 1.2 C 10.1 90.2 [40]
Cu-Ni-V@AC 2 110 1.2 C 7.8 89.9 [41]

Cu-Ni@MWCNTs 2 120 1.2 C 4.4 90.5 [42]
1 Continuous tubular fixed bed reactor; 2 ZIF-8, TEG, KHNTs, MS, AC, MWCNTs are zeolitic imidazolate
framework-8, thermally expanded graphite, K treated halloystite nanotubes, molecular sieves, activated carbon,
multi-walled carbon nanotubes; 3 The reaction mixture was exposed to ultra violent (UV) radiation.

After comparison with the best data obtained previously, it can be concluded that Cu-Ni@VSiO
catalyst synthesized by the sulfuration method affords the highest DMC selectivity coupled with
a reasonable methanol conversion.
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3. Materials and Methods

3.1. Catalyst Synthesis

3.1.1. Traditional Solution Synthetic Method of Cu-Ni@VSiO

Firstly, V2O5 was treated with excess hydrochloric acid at 90 ◦C, and the remaining hydrochloric
acid was removed after reaction. Then nano-SiO2 aqueous solution was added and the mixture was
mechanically stirred for 30 min. After 12 h of aging, the liquid part was removed by decompressive
rotary evaporation. The residue was dried at 120 ◦C for 24 h. The completely dried solid was
ground with an agate mortar and passed through a 200 mesh sieve. Subsequently, the product was
calcined in air at 450 ◦C for 5 h using a muffle furnace to get the VSiO support. Then, the product
was mixed with ammonium solutions of metal nitrates (Cu:Ni mole ratio is 2:1) by equal volume
impregnation. The resulting bimetallic/VSiO slurry was dried under reduced pressure in a rotary
evaporator, and the obtained solid was further dried at 120 ◦C and calcined at 550 ◦C for 6 h to get
a catalyst precursor. Subsequently, the latter was reduced in a stream of H2 at 500 ◦C for 6 h to get the
final Cu-Ni@VSiO catalyst.

3.1.2. Novel Sulfuration Method to Synthesize Cu-Ni@VSiO

Sulfur powder was reacted with VOCl3 at 130 ◦C for 2 h in a round bottom flask to get VOCl2.
Then, VOCl2 was dissolved in dimethylacetamide and nano-SiO2 was added. The slurry was stirred
at 90 ◦C for 12 h and was evaporated under reduced pressure in a rotary evaporator. The obtained
solid was further dried under vacuum. The resulting substance was ground with an agate mortar and
passed through a 200 mesh sieve. Subsequently, the product was calcined in air at 450 ◦C for 6 h to
get the VSiO support. The same method, as described above, was used to load the Cu Ni bimetallic
components to produce the final Cu-Ni@VSiO catalyst.

3.2. Catalysts Characterization

The X-ray powder diffraction was performed on Rigaku Dmax 2200 diffractometer (Rigaku Company,
Tokyo, Japan) with graphite monochromatized Cu Kα radiation (λ = 0.154178 nm) at 40 kV and 30 mA.
The sample was scanned from 10◦ to 80◦, at a rate of 4◦/min.

FTIR spectra were acquired on an Analect RFX-65A instrument (Analect Company, New York,
NY, USA). TPD and TPR were implemented on a Quantachrom Chem-BET 3000 apparatus (Quantachrome
Company, Boynton Beach, FL, USA) to determine the surface acid-base properties of catalysts.

SEM was performed on a Hitachi S-4800 system (Hitachi Company, Tokyo, Japan) that was equipped
with an energy dispersive X-ray detector at 10.0 kV under high vacuum. The energy dispersion spectra
were also recorded.

3.3. Evaluation of Catalytic Performance

The synthesis of DMC from methanol and CO2 was carried out in a continuous tubular fixed-bed
micro-reactor (Golden Eagle Technology Ltd., Tianjin, China). A detailed description of the reactor
setup and data treatment was published previously [35,36,40]. CO2 was purged into methanol
container to get CO2/methanol mixed gas. The mixed gas was then charged into the reactor (reactor
internal diameter D = 10 mm, catalyst filling length L = 50 mm). Unless otherwise stated, the following
parameters were used to carry out the reaction: T = 140 ◦C, P = 1.2 MPa, SV = 460 h−1, DB = 0.308 g/mL,
TMB = 25 ◦C, CuO-NiO loading 10 wt. %). The resulting products of the reaction were analyzed by
a GC-7890F chromatograph (Techcomp Ltd., Shanghai, China) equipped with a flame ionization
detector. Samples were introduced through a six-way valve that was connected to the reactor.
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4. Conclusions

In summary, the use of the VSiO support synthesized by the novel sulfuration method afforded
a more efficient Cu-Ni catalyst compared to the catalyst with the support that was obtained by the solution
method. The former one contained more Cu-Ni phase and interacted with CO2 and methanol stronger
that the latter. The novel synthetic method extremely changed catalyst microstructure and the catalytic
performance was greatly improved. Catalytic activity of Cu-Ni@VSiO that was obtained by the sulfuration
method was about three times higher than that of Cu-Ni@VSiO produced by the solution method. For the
studied direct DMC synthesis from methanol and CO2, the optimal reaction conditions were found to have
the following values: T = 140 ◦C, P = 1.2 MPa, SV = 460 h−1, DB = 0.308 g/mL, TMB = 60 ◦C, and metal
oxides loading 10 wt. %.
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