

Supporting Information

Synthesis of Diesel and Jet Fuel Range Cycloalkanes with Cyclopentanone and Furfural

Wei Wang ¹, Shaoying Sun ¹, Fengan Han ², Guangyi Li ², Xianzhao Shao ¹ and Ning Li ^{2,3,*}

- ¹ Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, No. 1 Dong yi huan Road, Hanzhong 723001, China; wangwei@snut.edu.cn (W.W.); sunshaoying1221@163.com (S.S.); xianzhaoshao@snut.eud.cn (X.S.)
- ² CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, No. 457 Zhongshan Road, Dalian 116023, China; hanfengan@dicp.ac.cn (F.H.); lgy2010@dicp.ac.cn (G.L.)
- ³ Dalian National Laboratory for Clean Energy, No. 457 Zhongshan Road, Dalian 116023, China
- * Correspondence: lining@dicp.ac.cn; Tel.: +86-411-84379738

Figure S1 GC chromatogram of the aldol condensation product of cyclopentanone and furfural.

S 2 ¹H and ¹³C NMR spectra of 2,5-bis (2-furylmethylidene) cyclopentanone

Figure S2 ¹H and ¹³C NMR spectra of 2,5-bis(2-fury lmethylidene)cyclopentanone from the aldol condensation of cyclopentanone and furfural.

S3 The influences of catalyst dosage and temperature on cyclopentanone conversion, and 2,5-bis(2furylmethylidene)cyclopentanone conversion carbon yield over CaO catalyst.

Figure S3. Cyclopentanone conversion and carbon yield of 2,5-bis(2-furylmethylidene)-cyclopentanone over the CaO catalyst. Experim-ental conditions: 10 h, 423 K; 0.84 g (10 mmol) cyclopentanone and 1.92 g (20 mmol) furfural were used in the tests.

S4 GC chromatogram of the 2,5-bis(furan-2-ylmethyl)cyclopentanone from the one-pot aldol condensation/hydrogenation reaction.

Figure S4 GC chromatogram of the 2,5-bis(furan-2-ylmethyl)cyclopentanone from the one-pot aldol condensation/hydrogenation reaction of cyclopentanone, furfural and hydrogen.

S5 ¹H and ¹³C NMR spectra of 2,5-bis(furan-2-ylmethyl)cyclopentanone

Figure S5 ¹H and ¹³C NMR spectra of 2,5-bis(furan-2-ylmethyl)cyclopentanone from the one-pot aldol condensation/hydrogenation reaction of cyclopentanone, furfural and hydrogen.

S6 Mass spectrogram of the 2,5-bis(furan-2-ylmethyl)cyclopentanone from the one-pot reaction of cyclopentanone, furfural and hydrogen.

Figure S6 Mass spectrogram of the 2,5-bis(furan-2-ylmethyl)cyclopentanone from the one-pot reaction of cyclopentanone, furfural and hydrogen.

Figure S7 GC chromatogram of the products from the solvent-free HDO of 2,5-bis(furan-2ylmethyl)cyclopentanone over the Pd/H-ZSM-5 catalyst. Reaction conditions: 573 K, 6.0 MPa; 1.80 g catalyst, liquid feedstock flow rate 0.04 mL min⁻¹, hydrogen flow rate: 120 mL min⁻¹.

S8 Mass spectrogram of the 1,3-dipentylcyclopentane from the solvent-free HDO of 2,5-bis(furan-2ylmethyl)cyclopentanone.

Figure S8. Mass spectrogram of the 1,3-dipentylcyclopentane from the solvent-free HDO of 2,5-bis(furan-2-ylmethyl)cyclopentanone.