SUPPLEMENTARY MATERIALS

Photoelectrochemical Behavior of the Ternary Heterostructured Systems CdS/WO₃/TiO₂

A.A. Murashkina,^a T.V. Bakiev,^a Yu.M. Artemiev,^a A.V. Rudakova,^a A.V. Emeline,^a and D.W. Bahnemann^{a, b, *}

^{a)} Laboratory "Photoactive Nanocomposite Materials", Saint-Petersburg State University, Ulyanovskaya Str. 1, Peterhof, Saint-Petersburg, 198504 Russia

^{b)} Leibniz University of Hannover, Callinstrasse 3, Hannover 30167, Germany

*) e-mail: <u>bahnemann@iftc.uni-hannover.de</u>

XRD data

Figure S1. XRD patterns of planar samples: $1 - TiO_2$, $2 - CdS/TiO_2$, $3 - WO_3/TiO_2$, $4 - WO_3/CdS/TiO_2$ (left); nanotubes: $1 - TiO_2$, $2 - CdS/TiO_2$, $3 - WO_3/TiO_2$, $4 - WO_3/CdS/TiO_2$, Black lines show the replicas of CdS, red lines $- WO_3$

Electron microscopy

Figure S2. SEM images of the titania nanotube (TNT) based systems: 1, 2 – TNTs (side and top view), 3 – tungsten metal particles deposited on Ti foil (before anodizing), 4 – TNTs/WO₃, 5 – CdS/TNTs, 6 – CdS/TNTs/WO₃.

Figure S3. SEM images of planar systems on FTO glass substrates: $1 - \text{TiO}_2$ (top view), $2 - \text{TiO}_2/\text{WO}_3/\text{CdS}$ (side view), 3 - CdS (top view), $4 - \text{TiO}_2/\text{CdS}$ (top view), $5 - \text{WO}_3$ (top view), $5 - \text{TiO}_2/\text{WO}_3$ (top view).

Figure S4. XPS spectra: TNT (black), CdS/WO₃ TNT (red).

Figure S5. Linear sweep voltammetry (LSV) curves recorded under the dark conditions. Potential scan rate: 20 mV/s. Planar electrodes: 1 - TiO_2 , 2 - CdS/TiO_2 , 3 - WO_3/TiO_2 , 4 - $WO_3/CdS/TiO_2$; (left); nanotube-based electrodes: 1 - TiO_2 , 2 - CdS/TiO_2 , 3 - WO_3/TiO_2 , 4 - $WO_3/CdS/TiO_2$; (right).

Figure S6. 3D EIS plots recorded in the dark. a) nanotube-based electrodes: $1 - TiO_2$, $2 - CdS/TiO_2$, $3 - WO_3/TiO_2$, $4 - WO_3/CdS/TiO_2$; b) planar electrodes: $1 - TiO_2$, $2 - CdS/TiO_2$, $3 - WO_3/TiO_2$, $4 - CdS/WO_3/TiO_2$.

Table S1. Parameters of equivalent circuit scheme for nanotube-based systems in the dark.

Sample	R1, Ohm	R2, Ohm	P1	n1
TiO ₂	~0	700000 ± 100000	$0,0027 \pm 0,0003$	$0,97 \pm 0,01$
CdS/TiO ₂	~0	80000 ± 5000	$0,00135 \pm 0,00006$	$0,97 \pm 0,01$
WO ₃ /TiO ₂	~0	80000 ± 5000	$0,000714 \pm 0,000004$	$0,75 \pm 0,02$
CdS/WO ₃ /TiO ₂	~0	100000 ± 300000	$0,00199 \pm 0,000008$	0,91 ±0,01

Table S2.

dark	R1	R2	P1	n1
TiO2	30±80	176000±7000	0,000118±0,000001	0,79±0,01
CdSTiO2	200±100	49100±800	0,000103±0,00002	0,95±0,01
WO3TiO2	700±400	399000±8000	0,0000268±0000003	0,89±0,02
CdSWO3TiO2	70±30	380000±20000	0,000173±0,0000007	0,90±0,02

Table S3. The time constants τ calculated from Bode diagrams for nanotube heterostructures in the dark.

sample	frequency, Hz	τ, sec
TiO ₂	0,00889	17,9
Cd _S /TiO ₂	0,139	1,145
WO ₃ /TiO ₂	2,19	0,0727
CdS/WO ₃ /TiO ₂	0,00889	17,9

Table S4. The time constants τ calculated from Bode diagrams for planar heterostructures in the dark.

sample	frequency, Hz	t, sec
TiO ₂	9,94	0,0160
CdS/TiO ₂	0,23	0,692
CdS/TiO ₂	205	0,000776
WO ₃ /TiO ₂	0,139	1,145
WO ₃ /TiO ₂	478	0,000333
CdS/WO ₃ /TiO ₂	0,23	0,692