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Abstract: This work studies the effect of the temperature in the solvothermal synthesis of CdS
modified with Ag (Ag-CdS) over both the structure of CdS and the chemical state of the Ag species.
The increase in the solvothermal temperature produces the evolution of the CdS nanostructures from
nanoparticles of low crystallinity in coexistence with small nanocrystals with strong confinement
effect to the formation of highly crystalline nanorods. The Ag species also change with the
solvothermal temperature from Ag2S species, formed at low temperature, to metallic species as
the temperature increases. The photoactivity of the Ag-CdS samples is the result of the combination
of three factors: crystallinity of the CdS structures, existence of small nanocrystals with strong
confinement effect and the presence of segregated Ag2S species. The Ag-CdS sample prepared at
120 ◦C shows the better efficiency for hydrogen production because it achieves the better combination
of the aforementioned factors.
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1. Introduction

Renewable hydrogen production by water splitting using photocatalytic materials has attracted
great interest over the past 40 years as exciting alternative for solar light harnessing. To date, a large
number of materials (oxides, sulfides, nitrides, oxynitrides, oxysulfides) have been developed for this
application [1,2]. Among the most efficient materials, the CdS stands out because of its narrow band
gap and the position of its valence and conduction bands that allow the absorption of a wide range
of the solar light spectrum [3–5]. The main challenge in the development of photocatalysts based
on CdS is to improve its efficiency bringing it to the value required for the practical production
of hydrogen. This requires the optimization of its photo-physical and photo-optical properties
because both factors determine the efficiency of the intermediate steps that compose the overall
photocatalytic process for hydrogen production (absorption of photons from solar light and the
generation, transport, and reaction of the charge carriers). It is known that shape, size, and crystallinity
of CdS control the efficiency for the generation and transport of charge carriers. The control of
the physicochemical properties of CdS has been widely explored in the literature, including the
control of the nanomorphology [6–9], the use of co-catalysts [10,11], the hybridization with highly
conductive materials [12,13], doping with transition metals [14] or forming solid solutions [15].
Among the nanostructures studied for efficient CdS photocatalysts, monodimensional structures
such as nanorods, nanowires, or nanofibers are reported to be beneficial for photoactivity because of
the confinement effects along their radial dimension which favors a better charge carrier separation.
These monodimensional nanostructures can be obtained applying different methodologies of synthesis:
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electrochemical synthesis, chemical vapor deposition, colloidal micellar method, vapor–liquid–solid
assisted-method, hydrothermal and solvothermal among others. Solvothermal methods have attracted
much interest for the nanosynthesis of CdS because they can control the crystal growth of CdS
through the coordination of the solvent with the Cd2+ ions in combination with the adjustment of
the synthesis variables such as temperature, time and precursors employed. Among the different
solvents used in the solvothermal nanosynthesis of CdS, ethylenediamine (EDA) has demonstrated to
be an interesting solvent due to its ability to form planar complexes with the Cd2+ ions [Cd(EDA)2]2+

which produces well-oriented two-dimensional nanostructures after the combination with the S2−

ions [16,17]. The evolution of these initial two-dimensional nanostructures towards well-crystallized
monodimensional structures is highly dependent on the temperature of synthesis, as it was described
by Mahdi et al. [18]. The crystallinity of the monodimensional CdS nanostructures increases with the
solvothermal temperature and it strongly influences on the photoactivity of CdS [19]. In spite of this
fact, previous studies performed in our laboratory [20] showed improved photo-efficiency for CdS
nanostructures prepared at low solvothermal temperature with relatively low crystallinity because
of the presence of small crystalline domains with strong confinement effect (quantum dots, QD) in
combination with monodimensional CdS nanostructures.

As it was mentioned above, the photo-efficiency of CdS could be also modified by addition of
transition metals as co-catalysts forming semiconductor–semiconductor (S–S) or semiconductor–metal
(S–M) heterojunctions [21]. The incorporation of noble metals such as Au, Pt, Pd, or Rh as co-catalysts in
CdS has been extensively studied due to their capacity to improve the charge separation, decreasing by
this way their recombination and enhancing the photoactivity of CdS [22–24]. Among the metals used
as co-catalysts, silver has been often considered for CdS as consequence of its optical and electronic
properties and also by its economic advantage respect to noble metals. Silver shows a higher work
function respect to that of Au or Pt and it maintains good ability to trap electrons being therefore an
effective co-catalyst to minimize the recombination of electron and holes on CdS [25]. Additionally,
the Ag+ ions in the presence of S2− could form segregated Ag2S during the synthesis of CdS taking into
account its low solubility. Ag2S has been reported by some authors [26–28] as an attractive material to
form an effective p–n heterojunction with CdS since Ag2S behaves as a semiconductor material with an
indirect band gap around 1 eV which favors the light absorption in a wider range of the solar spectrum.

With this background, the present work aims to study the solvothermal synthesis of CdS modified
with Ag (AgCdS) in order to explore the structural and nanomorphological evolution of CdS and the
nature of the silver species with the change in the temperature used in the synthesis. The relationship
between the changes in the properties of the prepared Ag-CdS nanostructures and their effects on
photoactivity under visible light were also studied.

2. Results

2.1. Physicochemical Characterization

2.1.1. Chemical and Textural Analysis

The chemical composition of AgCdS-T samples were analyzed by total reflection X-ray
fluorescence (TXRF) and the results were summarized in Table 1. The chemical analyses indicate that
the temperature of synthesis does not seem to be very significant on the coordination between Cd and
S because all samples show similar Cd/S atomic ratio. This ratio is lower than the nominal value on
all AgCdS-T samples and it could be ascribed to a defect of Cd as a consequence of the presence of
the amine ligands of solvent which can act as a cation sequestering binding to the Cd2+ ions on the
surface [29]. The Ag concentration on the AgCdS-T samples was also analyzed, showing all samples
values close to the theoretical concentration, except for the sample prepared at 90 ◦C (AgCdS-90)
that shows an important increase in the concentration of silver. This fact could be related to the low
temperature of synthesis used for this sample which could limit the growth of CdS nanostructures
improving the surface exposition of silver species as will be discussed later.
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Table 1. Chemical composition (atomic %) from TXRF and textural data from N2 isotherms of the
AgCdS-T photocatalysts.

% Cd % S % Ag Cd/S Ag/S BET (m2/g) Pore Volume (cm3/g)

AgCdS-90 43.8 48.7 7.5 0.9 0.15 87.9 0.43
AgCdS-120 45.8 52.1 2.1 0.88 0.04 84.6 0.29
AgCdS-150 46.6 50.4 3 0.92 0.06 65.2 0.25
AgCdS-190 46.2 51.3 2.5 0.9 0.05 52.2 0.21

All the AgCdS-T photocatalysts are mesoporous as the shape of its isotherms indicate (Type IV
Figure 1). The texture of the AgCdS-T materials present slit-like pores (H3 hysteresis loop) derived
from the agglomeration of the CdS particles. BET (Brunauer, Emmett, and Teller) surface area and
pore volume of AgCdS-T samples (Table 1) decrease with the increase in the temperature of synthesis
as a consequence of the collapse of the mesoporous structure derived from changes in the size and
aggregation of the CdS particles. The surface area of the AgCdS-T photocatalysts are lower than the
pure CdS counterparts synthesized under similar conditions [20] which indicates that the presence of
silver during the solvothermal synthesis influences on the size and aggregation of the CdS particles.
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Figure 1. N2 adsorption/desorption isotherms of AgCdS-T photocatalysts: (�) T = 90 ◦C; (�) T = 120 ◦C;
(N) T = 150 ◦C and (#) T = 190 ◦C.

2.1.2. X-ray Diffraction (XRD)

Figure 2 shows the diffraction profiles for the AgCdS-T samples which indicate the presence of
the hexagonal phase of CdS (JCPDS: 01-077-2306). The position of the main diffraction peaks does not
shift with the temperature used in the synthesis (inset Figure 2) which means small modification of the
CdS lattice by the insertion of Ag+ ions. The strain component (ε parameter, Table 2) calculated from
Williamson–Hall linear fit (Figure S1) shows low lattice strain which indicates that the presence of silver
equilibrates the lattice of CdS. The calculation of the lattice strain was not possible for the AgCdS-90
sample probably due to its highly anisotropic character [30]. The crystalline domain sizes of the CdS
(Table 2) in AgCdS-T samples increase with the rise in the solvothermal temperature and the relative
intensities of (100)/(002) hexagonal planes (Table 2) grow in parallel indicating preferential orientation
of the CdS nanostructures along the c-axis. In the XRD profiles of the samples synthesized at 90, 120,
and 150 ◦C is also detected the segregation of monoclinic Ag2S (JCPDS: 00-014-0072). Small diffraction
peaks associated to cubic Ag0 (JCPDS: 00-004-0783) was also detected in the samples prepared at
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150 ◦C and 190 ◦C. The intensity of the diffraction peaks of Ag2S tends to decrease with the rise in the
solvothermal temperature while the intensity associated to metallic silver increases simultaneously.
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Table 2. Crystallite size and lattice strains of AgCdS-T photocatalytsts determined from XRD.

Dp (nm) I(100)/(002) Lattice Strain (ε)

AgCdS-90 13.1 0.614 -
AgCdS-120 15.6 0.594 −0.0032
AgCdS-150 37.6 0.492 −0.0021
AgCdS-190 39.3 0.473 −0.0022

2.1.3. X-ray Photoelectron Spectroscopy (XPS)

The composition and oxidation state of the elements on the surface of the AgCdS-T photocatalysts
were analyzed by XPS. Binding energies for Cd 3d, S 2p, and Ag 3d core-levels were recorded (Figure 3)
and summarized in Table 3. The Cd 3d5/2 region in all AgCdS-T samples show binding energies
located around 404.6 eV which are consistent with Cd2+ ions bonded to S2− in CdS [31]. The Ag 3d
level in the samples synthesized below 150 ◦C (AgCdS-90 and AgCdS-120) shows a main contribution
around 367.2 eV which are close to that reported for Ag2S species [32,33]. The Ag 3d level in the AgCdS
samples prepared above 150 ◦C (AgCdS-150 and AgCdS-190) showed a second minor component at
binding energies around 368.4–369 eV characteristic of metallic Ag species [34,35]. The position of the
main contribution of S 2p region in all AgCdS-T samples appears at 161.1 eV in agreement with the
values reported for S2− anions [36]. However a slight shift to higher energies has been observed in the
samples prepared at higher temperature associated with the appearance of sulphur vacancies derived
from the formation of metallic silver in the surface of the AgCdS photocatalysts.
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Figure 3. XPS core-level spectra from Cd 3d, S 2p and Ag 3d core levels of AgCdS-T: (a) T = 90 ◦C;
(b) T = 120 ◦C; (c) T = 150 ◦C; and (d) T = 190 ◦C.

Table 3. XPS binding energies (eV) of core levels and surface composition (atomic percentages) of
AgCdS-T photocatalysts.

Cd 3d5/2 Ag 3d5/2 S 2p % Cd % S % Ag

AgCdS-90 404.7 367.1 161.2 41.3 56.9 1.8
AgCdS-120 404.6 367.2 161.3 52.1 47.5 0.4
AgCdS-150 404.6 367.6 (81.4)/369 (18.6) 1 161.4 53.8 45.8 0.4
AgCdS-190 404.6 367.5 (91)/368.4 (9) 1 161.4 52.9 46.9 0.2

1 In parenthesis percentage of species.

The surface concentration of Cd, S, and Ag calculated from XPS areas are listed in Table 3.
The AgCdS-T photocatalysts prepared at temperatures above 120 ◦C shows sulfur impoverishment at
surface level and a decrease in the surface concentration of silver that become relevant in the sample
prepared at 190 ◦C. The decrease in the concentration of sulfur could be consequence of the increase
in the number of vacancies with the increase in the temperature of synthesis while the lower surface
concentration of silver is in line with the increase in the particle size of silver species already observed
by XRD (Figure 2).

2.1.4. UV–vis Spectroscopy (UV–vis)

Figure 4 collects the UV–vis spectra of the AgCdS-T photocatalysts. The sample prepared at
90 ◦C showed two different absorption steps below 500 nm related with the coexistence of cubic and
hexagonal phases of CdS [4,37,38]. On the contrary, the samples prepared at higher temperature show
one well-defined absorption edge around 500 nm related with the allowed transitions in the CdS with
hexagonal phase. It is interesting to note that the samples prepared at temperature below 150 ◦C
also exhibit an excitonic emission peak located at 370 nm. This emission peak is related with the
presence of small crystalline domains of CdS with a diameter lower than its Bohr radius (<2.5 nm)
which produces a strong quantum confinement effect (SQE) [39]. The concentration of this type of
nanostructures, commonly known as quantum dots (QD), depends on the temperature of synthesis
showing the sample AgCdS-120 the maximum concentration of these species (Table 4). The UV–vis
spectra of AgCdS-T samples also show (Figure 4) an additional absorption shoulder around 500 and
1250 nm related to the absorption in the Ag2S species [40] whose intensity decreases with the increase
in the temperature of synthesis in line with the decrease in the segregation of Ag2S previously observed
from the XRD analysis (Figure 2). The extension of the absorption range towards NIR of the AgCdS-T
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samples respect to the bare CdS was demonstrated through the UV–vis analysis of a sample of Ag2S
prepared using the same solvothermal methodology (results not shown).
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The absorption edges of the AgCdS-T samples shifted to higher wavelengths with the increase in
the temperature which produces a decrease in its band gaps (Table 4, calculated from the slope of the
Tauc plots (Figure S2)). The decrease in the band gap could be derived from the rearrangement and
growth of the crystal domains of CdS leading to a better definition of the electronic band structure
since crystallinity means low density of surface defects that result in the narrowing of the band
gap [20,41–43]. However, it was observed tailing effects in the UV–vis spectra of AgCdS-T samples
which denote the presence of some residual crystalline defects. These defects have been quantified by
means of the Urbach parameter [41–43] (Figure S2, Table 4). Higher Urbach energy is observed for the
AgCdS-T samples prepared at lower temperature as consequence of its crystalline disorder as already
stated from the XRD data (ε in Table 2).

Table 4. Band gap, relative intensity of the excitonic peak areas and Urbach energy (Eu) of AgCdS-T
photocatalysts from UV–vis.

BG (eV) Excitonic Peak (Rel. Intensity) Eu (meV)

AgCdS-90 2.71/2.36 0.49 177.5
AgCdS-120 2.54 1 92.2
AgCdS-150 2.48 0.08 62.6
AgCdS-190 2.47 - 50.5

2.1.5. Photoluminescence (PL)

Figure 5 shows the photoluminescence (PL) spectra of AgCdS-T photocatalysts measured at room
temperature with an excitation wavelength of 375 nm. All the samples show a green emission band
in the 480–530 nm range associated with band to band transitions near the band gap of CdS [44,45].
This emission band shifts to higher wavelengths in the samples prepared at higher temperature.
The excitonic peaks associated with the quantum dots observed in the UV–vis spectra of the samples
prepared at temperature below 150 ◦C are translated as luminescent emissions located around 480 nm
in its PL spectra [14,46,47]. The PL spectra of all samples also show a broader yellow emission band at
530–590 nm (Figure 5), which according to the literature [44,45] are originated from surface defects due
to the presence of interstitial cadmium or cadmium vacancies. The profile of this band narrows and
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decreases as the solvothermal temperature increases. This evolution is consequence of the increase
in the crystallinity and the decrease in the cubic phase observed in the AgCdS-T samples as the
temperature of preparation increases. The samples prepared at temperatures above 150 ◦C show an
emission shoulder over 590 nm which is commonly related with deep shallow defects derived from
the presence of sulphur vacancies [48] which act as recombination sites of shallow trapped electrons
in sulphur vacancy defect energy states with holes in the valence band [49]. The higher presence
of sulphur vacancies in samples prepared above 150 ◦C is in agreement with the defective sulphur
concentration previously determined by XPS analyses. In this sense, the shifting in this emission
shoulder to higher wavelengths observed in the sample prepared at 190 ◦C may be related with the
additional appearance of sulphur vacancies derived from the formation of metallic silver in the surface
as discussed above in the XPS section.
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Figure 5. PL spectra of AgCdS-T photocatalysts: (a) T = 90 ◦C; (b) T = 120 ◦C; (c) T = 150 ◦C; and (d)
T = 190 ◦C.

2.1.6. Transmission Electron Microscopy (TEM)

TEM micrographs of AgCdS-T samples (Figure 6) show an evident evolution of the
nanomorphology of the CdS with the solvothermal temperature and the location and dispersion
of the Ag2S/Ag0 species deposited over the CdS. It is observed a change from the prevalent lamellar
nanostructures of CdS in the sample prepared at 90 ◦C (AgCdS-90 Figure 6a) to more defined CdS
nanorods in the samples prepared at higher solvothermal temperature (AgCdS-150 Figure 6c and
AgCdS-190 Figure 6d). The AgCdS-T samples prepared at temperature below 120 ◦C showed a
lattice space corresponding to cubic and hexagonal phases of CdS, 0.33 nm and 0.21 nm respectively.
These samples also displayed crystalline structures with interplanar distances corresponding to Ag2S
monoclinic phase. This phase transforms into metallic silver in the sample prepared at 190 ◦C as it can
be observed in the micrograph presented in Figure 6d. It was also observed slight differences in the
dispersion and morphology of Ag2S/Ag0 species deposited over the CdS nanostructures (marked by
arrows and circles in Figure 6). It was found the coexistence of highly agglomerated sphere-like and
filamentous Ag2S structures at low temperature (Figure 6a,b) whereas at 150 ◦C the most of Ag2S/Ag0
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particles are spherical and well dispersed (Figure 6c). At 190 ◦C the Ag0/Ag2S particles tend to bind
together leading to irregular agglomerates on CdS nanostructures (Figure 6d).
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Figure 6. HR-TEM images of AgCdS-T samples: (a) T = 90 ◦C, (b) T = 120 ◦C, (c) T = 150 ◦C; and (d)
T = 190 ◦C (Ag2S/Ag particles noted in images by arrows and circles).



Catalysts 2019, 9, 110 9 of 16

2.2. Photoactivity Tests

Figure 7 depicts the hydrogen production over the AgCdS-T samples. For comparison, Figure 7
also includes the photoactivity of bare CdS reference samples synthesized under similar solvothermal
conditions. The AgCdS-T samples show higher activity than the bare CdS-T counterparts which
demonstrates the promoter effect of the addition of Ag in the photoactivity of CdS. The photoactivity
tests show important differences in the hydrogen production over the AgCdS samples depending on
the temperature of synthesis. The sample AgCdS-120 shows the highest hydrogen production value
followed by the sample AgCdS-90. On the contrary, the samples AgCdS-150 and AgCdS-190 show a
sharp decrease in their photoactivity. The light conversion efficiency on the most active AgCdS-120
sample (0.54%) is close to the most active Ag2S/CdS system published in literature (0.7% [50]) in
spite that the latter was modified with Pt as co-catalyst. The most active photocatalysts, AgCdS-120,
was subjected to three consecutive photoactivity cycles in order to evaluate its stability under reaction
conditions. It was observed some deactivation of the sample (around 2.9 µmol/h) which indicated
changes in the initial characteristics of the sample under visible irradiation conditions. This fact
contrasts with the stability of the Ag2S/CdS systems reported in the work of S.S. Mao et al. [50] but is
in line with the low stability reported for the Ag2S/CdS samples prepared by precipitation method [51].
According to Mao et al. [50] differences in dispersion of Ag2S could be the origin of the observed
differences in the stability of the Ag2S/CdS photocatalysts.
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3. Discussion

The physicochemical characterization of the AgCdS samples has shown that solvothermal
temperature produces modifications in the nanomorphology, crystallinity and chemical state of both
the CdS and Ag structures. The reaction mechanism operating during the solvothermal synthesis
of CdS has been described in our previous work [20]. However the presence of silver alters the
solvothermal mechanism due to the much lower solubility of Ag2S (Ks = 6 × 10−51). The low solubility
causes the quick precipitation of Ag2S which alters the nucleation and growth steps of CdS under
solvothermal conditions [52]. In this scenario, the first nucleation of CdS in the form of sheets is affected
by the precipitation of Ag2S forming heterojunctions between the two sulfides without excluding some
insertion of Ag+ ions into the CdS during this nucleation step (Figures 2a and 6a). The subsequent
growth step of CdS after nucleation is determined by the temperature of synthesis which defines the
kinetics of crystallization of two-dimensional sheets into one-dimensional nanostructures in agreement
with the mechanism established for the formation of nanorods by rolling and breaking of the initial
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precipitates in form of sheets [53]. In such a way the variation in the solvothermal temperature
produces important changes in the size, crystallinity, and nanostructuration of the CdS (Figures 2b–d
and 6b–d) as consequence of changes in the kinetics of crystallization. The solvothermal temperature
also affects to the nature of the Ag structures because the Ag2S entities initially precipitated suffer
(Figures 2a and 6a) reduction by the ethylenediamine solvent at temperature higher than 150 ◦C
forming metallic Ag0 particles in close contact with the nanostructures of CdS (Figures 3d and 6d).

The surface area exposed to irradiation is one of the most important parameters that have influence
on the photoactivity of AgCdS-T samples because this parameter is related to their ability for light
absorption. However the differences in the normalized hydrogen production per surface area of the
AgCdS-T samples (not shown) indicated the participation of other parameters, apart from surface area,
to justify the differences in the photoactivity. The capacity to generate electron and holes is another
important parameter related with the photoactivity. The generation of these charges is governed by the
band gap of the Ag-CdS-T photocatalysts. In this sense, the comparison of the hydrogen production
with the band gap of the samples (Figure 8a) did not show a linear relationship. In fact, it is observed
higher photoactivity for those samples with higher band gap (AgCdS-90 and AgCdS-120) in spite that
it implies less efficiency for visible light absorption. This behavior can be justified by the presence of
quantum dots (QD) in the samples with higher band gap prepared at lower temperature, as it was
observed from the UV–vis results (Figure 4). These QD nanostructures are able to absorb photonic
energy to produce hydrogen themselves [20] and therefore they could be involved in the improvement
of photoactivity observed in the CdS-T samples prepared at low temperature as shown in Figure 9.
The mobility of the photogenerated carriers on AgCdS-T samples should be also analyzed in order
to explain its photocatalytic behavior. It is well known that carrier mobility can be affected by the
crystallinity and size of the CdS. The comparison between the CdS crystallite size calculated by the
Debye–Scherrer equation with the photoactivity is presented in Figure 8b and from this figure it is
not observed a linear relationship among the crystallite size of AgCdS-T samples and their capacity
for hydrogen evolution. Hence the carrier mobility associated to the different size of CdS play a role
in the photoactivity but is not the only factor which justifies the differences in photoactivity of the
AgCdS-T samples.
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As stated above, the carrier mobility can also be affected by the presence of co-catalysts which can
modify the recombination mechanisms and/or the surface reactivity of energy carriers. Regarding to
the PL measurements, it was observed a higher recombination rate for the AgCdS-T samples prepared
at lower temperatures due to its lower crystallinity and high density of structural defects (Figure 5).
The presence of silver exerts a quenching effect over the recombination processes (Figure 5) because
of its ability to scavenge the holes coming from the CdS valence band. The quenching effect of silver
depends on their state and concentration. PL measurements show that Ag2S species were more efficient
for this purpose, because the reduction to Ag0 generates sulfur vacancies acting as deep shallow traps
that favor the recombination of electrons and holes (Figure 5). Figure 9 compares the photoactivity of
the AgCdS-T samples with the surface content of Ag2S in the samples determined by XPS (Table 3).
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Also in this case there is not a linear relationship among the Ag2S surface concentration and the
capacity of the AgCdS-T photocatalysts to produce hydrogen.
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Therefore, the photoactivity of the AgCdS-T samples is not defined by a single parameter but
is linked to the combination of three main factors: CdS nanostructures, quantum dots (QD) and
Ag2S species. The precise implication of each factor in the photoactivity of AgCdS-Ag samples
is not easy to determine but it is clear that the three factors only concur in the AgCdS-T samples
prepared at lower temperature which show the formation of the ternary CdS/QD/Ag2S systems as
schematically represented in Figure 10. In this scenario the ternary system obtained in the sample
AgCdS-120 was the most effective photocatalyst because it combines crystalline monodimensional
CdS structures, the presence of quantum dots and the existence of Ag2S species. This combination
offers the best photoactivity because the crystalline monodimensional CdS structures favours the
effective charge carrier separation along the axial direction, the quantum dots capture electrons from
the conduction band of the CdS and contributes to the production of H2 while the Ag2S species
form a p–n heterojunction with CdS favouring the scavenging of holes from the valence band of
CdS. The enhancement of photoactivity associated with Ag2S could be also induced by the additional
light absorption in the 570–1250 nm region by Ag2S (insert Figure 4). However the energy of the
photons corresponding to the extension of wavelengths associated with Ag2S are low to perform the
reactions involved in the photo-production of hydrogen and therefore it could exclude the possible
effect of the additional light absorption of Ag2S to the enhancement of the photocatalytic activity
in line with previous works published in the literature [50]. The sample prepared at 90 ◦C is less
photoactive because this temperature of preparation produces CdS with poor crystallinity which does
not favor the effective charge carrier separation associated with crystalline nanostructures of CdS.
At temperatures above 150 ◦C, the ternary system changes with the partial reduction of Ag2S into Ag0,
the disappearance of the QD structures and the increase in the crystalline growth of CdS. This evolution
leads to a ternary system composed by CdS/Ag2S/Ag0 with lower photoactivity derived from the
absence of QD together with the presence of metallic silver which could attract electrons altering by this
way the mobility of the carriers in the heterojunction between CdS and Ag2S, which was responsible
for a portion of the improvement in activity observed in the samples prepared at lower temperature.
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4. Materials and Methods

4.1. Synthesis of Ag Modified CdS Photocatalysts

All the reagents employed for the preparation of the Ag modified CdS photocatalysts (AgCdS)
were of analytical grade and used without further purification. The selected reagents were cadmium
acetate (Cd(CH3CO2)2·2H2O), thiourea (SC(NH2)2 and silver acetate (AgCH3CO2) all of them
from Sigma Aldrich. Cadmium and sulphur precursors were added according to the molar ratio
Cd:S = 1:2 to assure the total precipitation of CdS, followed by the addition of water in a molar
ratio thiourea: H2O = 1:2. Silver was added in a molar ratio equal to 0.05 mol Ag/0.95 mol Cd.
As described in previous works [3] the solvothermal synthesis was performed using a Teflon-lined
stainless steel autoclave filled up with the precursors dissolved in 100 mL of ethylenediamine (EDA).
The solvothermal conditions established for the experiments are analogous to those described in our
previous work [20], maintaining the autoclave for 12 h at the selected temperatures: 90, 120, 150,
and 190 ◦C. The obtained yellow precipitates suspended in the solvent were washed with distilled
water and ethanol several times and dried under vacuum (70 ◦C, 0.008 bar, 2 h) in order to get the
solid powders. The obtained samples were labeled as: AgCdS-T (T = 90, 120, 150, 190 ◦C).

4.2. Physicochemical Characterization

The chemical composition of all AgCdS-T photocatalysts was measured by total X-ray fluorescence
analysis (TXRF) through the quantification of the k-lines corresponding to Cd, S, and Ag in a benchtop
S2 PicoFox TXRF spectrometer from Bruker Nano GmbH (Berlin, Germany).

Specific surface area of all samples were determined by the BET method to the N2

adsorption/desorption isotherms measured at liquid nitrogen at −196 ◦C on a Micromeritics TRISTAR
3000 instrument over samples degassed under vacuum at 70 ◦C for 2 h. The BET equation has been
calculated within the relative pressure in the range 0.05 < P/Po < 0.30. Pore size and distribution were
estimated assuming a cylindrical pore model by applying the Barret–Joyner–Halenda method.

The crystalline structure of AgCdS-T photocatalysts were evaluated by X-ray powder diffraction
(XRD) using an X’Pert Pro PANalytical polycrystal diffractometer (Malvern Pananalytical, Malvern,
UK) with a X’Celerator RTMS detector and nickel-filtered Cu Kα1 radiation (λ = 0.15406 nm, 45 kV,
40 mA). The estimation of the crystallite size (Dp) was carried out by applying the Scherrer equation
from the broadening of the (002) reflection. In this study Williamson–Hall analysis has been carried
out for the estimation of the lattice strains of the nanostructures as a function of the temperature of
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synthesis. Through the plotting of the Equation (1) for the three main reflection planes of the hexagonal
CdS, it is possible the quantification of the microstrain parameter, ε:

βcosθ = Kλ/D + 4ε·sinθ (1)

where β is the broadening of the diffracted peak, K is a shape factor close to unity, λ is the X-ray
wavelength, D is the crystallite size and ε is the slope of the linear fit of the plot.

XPS spectra of the AgCdS-T photocatalysts were acquired with a VG Escalab 200R spectrometer
(Thermo Fisher Scientific, East Grinstead, UK) equipped with a hemispherical electron analyzer and a
Mg Kα (hν = 1253.6 eV) X-ray source. The scanned regions were Cd 3d, Ag 3d and S 2p and the areas
of the peaks were computed by fitting the experimental spectra to Gaussian/Lorenztian curves (90/10)
after subtracting the background.

UV–vis spectra of the AgCdS samples was measured with an UV–vis–NIR Varian Cary
5000 spectrometer (Agilent, Santa Clara, CA, USA) with double beam and double shutter synchronized
electronically. The sources are deuterium (UV) and halogen quartz. The detectors were a multiplier
and PbS detector refrigerated for the NIR area. The absorption of samples was analyzed trough the
Kubelka–Munk Function F(R) plot, whereas band gap size was obtained from Tauc plot tracing a
tangent line parallel to the slope of the curve to the x-axis. The structural defects of the materials
promotes tailing effects on UV–vis spectra or Urbach tails [53,54], as a consequence of the apparition
of localized electronic states near the band gap region in the UV–vis spectra. The density of defects
near the band gap was quantified applying the Urbach law (Equation (2)) through the Urbach energy
parameter, Eu

ln(F(R)) = A + (1/Eu)·hν (2)

where F(R) is the Kubelka-Munk function, h is the Planck constant, ν the speed of light and Eu is the
inverse of the slope of the straight line of the plot in meV.

The photoluminescence (PL) spectra of all samples were recorded to analyze the role of the
structural defects on the recombination of electron and holes. PL experiments were carried out in
a sonicated aqueous suspension and room temperature using a Varian Cary Eclipse fluorescence
spectrophotometer (Agilent, Santa Clara, CA, USA) with sweep analysis among 400–600 nm and
an excitation wavelength of 375 nm at high voltage. All the spectra were deconvoluted applying a
Gaussian function using Origin 8.0 OPK fitting tool in order to identify the blue (BE, λ < 480 nm),
green (GE, λ: 480–530 nm), yellow (YE, λ: 530–590 nm), and red emission (RE, λ: 610–700 nm) bands.

The nanomorphology of the AgCdS samples were studied by high-resolution transmission
electron microscopy (HRTEM) with a TEM/STEM JEOL 2100F (JEOL, Tokio, Japan) operating at
200 kV accelerating voltage with a field emission gun (FEG), obtaining a point resolution of 0.19 nm.

4.3. Photocatalytic Activity Tests

The hydrogen production tests were performed employing 0.050 g of AgCdS photocatalysts
suspended in an aqueous solution containing sacrificial reagents (0.05 M Na2S/0.02 M Na2SO3)
magnetically stirred in a closed Pyrex glass reactor under ambient temperature, pressure, and inert
atmosphere. The system was irradiated with a Xenon arc lamp (150 W, Ozone Free, LOT Oriel GmbH
& CO KG, Darmstadt, Germany) for 5 h. Every 60 min, 0.5 mL of the gases evolved were extracted
from the reactor with a Hamilton Samplelock gas syringe and injected in a gas chromatograph (Star
3400 CX chromatograph, Varian, Agilent, Santa Clara, CA, USA) equipped with a TCD detector and a
5Å molecular sieve packed column using Ar as carrier gas to quantify the hydrogen production.

5. Conclusions

The temperature used in the solvothermal synthesis of Ag-CdS photocatalysts has strong influence
on both the nanomorphology of CdS and in the state of the Ag species. The increase in the solvothermal
temperature provokes the evolution of the CdS nanostructures from nanoparticles of low crystallinity
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in coexistence with small nanocrystals with strong confinement effect (quantum dots) to the formation
of highly crystalline monodimensional nanorods without quantum dots. The Ag species present in
the AgCdS samples also evolve with the increase in the solvothermal temperature. In this case the
initially Ag2S segregated from CdS formed in the samples prepared at low temperature evolve towards
the formation of metallic species as the temperature increases above 150 ◦C. The photoactivity of the
AgCdS-T samples is the result of the combination of three factors: crystallinity of CdS structures,
existence of QD and presence of Ag2S. The AgCdS sample prepared at 120 ◦C shows the better
efficiency for hydrogen production because it achieves the better combination of these three factors:
1D CdS in combination with QD and Ag2S.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4344/9/2/110/s1,
Figure S1: William–Hall plot linear fit of AgCdS-T photocatalysts; Figure S2: Urbach tails linear fit of AgCdS-T
photocatalysts: (a) AgCdS-90; (b) AgCdS-120; (c) AgCdS-150 and (d) AgCdS-190.
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