Rational Design of Chiral Selenium- π-Acid Catalysts

F. Krätzschmar, S. Ortgies, R. Y. N. Willing, and A. Breder*
Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany
\section*{Supporting Information}
\section*{Table of Contents}

1 Inhalt

General Remarks ... 2
Synthetic Procedures.. 2
Synthesis of Diselenocines .. 2
Asymmetric imidation... 5
Synthesis of alkoxy catalysts... 6
Photocatalysts .. 21
Asymmetric lactonisation... 22
NMR Spectra .. 24
Diselenocine catalysts .. 25
Imidation ... 31
Alkoxy-catalysts .. 32
Photocatalysts ... 59
Asymmetric lactonization .. 63
HPLC Chromatograms .. 64
Immidation... 64
Lactonisation.. 71

2 General Remarks

Chemicals were obtained from commercial sources and were used without further purification. Yields correspond to isolated compounds unless indicated otherwise. Purity is estimated to be $\geq 95 \%$ based on ${ }^{1} \mathrm{H}$-NMR spectroscopic analysis. Irradiation experiments were performed at $\lambda=465 \mathrm{~nm}$ using commercially available blue LED strips (see experimental setup picture below). The light intensity applied was in the range of $3500-4500 \mathrm{~lx}$. TLC: MACHEREY-NAGEL, TLC plates Alugram® Sil G/UV254. Visualization of the developed chromatogram was performed by fluorescence quenching at 254 nm and staining with potassium permanganate. Chromatography: Separations were carried out on Merck Silica 60 ($0.063-0.200 \mathrm{~mm}, 70-230$ mesh ASTM) using forced flow. GPC: Japan Analytical Industries (JAI) LC-92XX II Series, UV- and RI-detector, column: JAIGEL HH series; IR: Bruker FT-IR Alpha-spectrometer and JASCO FT/IR-4600 with ATR sampling module; High resolution mass spectrometry (HR-MS): APEX IV 7T FTICR, BRUKER Daltonic. NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{77} \mathrm{Se},{ }^{11} \mathrm{~B}\right.$, $\left.{ }^{31} \mathrm{P}\right)$ spectra were recorded at $300,400,500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $75,101,126 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right.$, APT (Attached Proton Test)), respectively, on VARIAN Unity-300, AMX 300, Inova 400 and Inova 500 instruments in CDCl_{3} solutions at 298 K , if not specified otherwise. Chemical shifts (δ) are given in ppm. Multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint = quintet, sex = sextet, sept = septet, $m=$ multiplet). Melting point: KRÜSS Melting Point Meter M5000; HPLC: Agilent Technologies 1290 Infinity; Kontron A.

3 Synthetic Procedures

3.1 Synthesis of diselenocines

3.1.1 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6) ${ }^{[1]}$

To a suspension of (R, R)-hydrobenzoin (5) ($1.00 \mathrm{~g}, 4.66 \mathrm{mmol}, 1.00$ equiv.) in n-hexane (25 mL) and $\mathrm{Et}_{2} \mathrm{O}(18 \mathrm{~mL}) n$ - $\mathrm{BuLi}(1.92 \mathrm{M}$ in hexane, 14.6 mL , $1.79 \mathrm{~g}, 28.0 \mathrm{mmol}, 6.00$ equiv.) was added dropwise at rt. The resulting mixture was refluxed for 16 h at $50^{\circ} \mathrm{C}$. After cooling to rt selenium (1.84 g, $23.3 \mathrm{mmol}, 5.00$ equiv.) and THF (18 mL) were added and the mixture was stirred for further 1.5 h at $50^{\circ} \mathrm{C}$. After cooling to rt the mixture was poured into ice water $(100 \mathrm{~mL})$ and stirred for 1 h under air. The phases were separated and the aqueous phase was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined org. phases were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 5: 1 \mathrm{PE} / \mathrm{EtOAc}$) provided the title product as a yellow solid (581 mg , $1.57 \mathrm{mmol}, 34 \%)$.

TLC: $R_{f}=0.19$ (PE/EtOAc, 5:1); \mathbf{T}_{m} : 210-213 ${ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=3430,3236,2543,2430,1441$, 1329, 1247, 1191, 1111, 1056, 898, 759, 734, $695 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{DMSO}_{6}\right): \delta(\mathrm{ppm})$ $=7.77\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.62\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.50\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.6\right.$,
$7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.27 (ddd, $\left.{ }^{3} J=7.6,7.6 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.67$ (d, ${ }^{3}=6.6 \mathrm{~Hz}, 2 \mathrm{H}$), 5.22 (d, $\left.{ }^{3} \mathrm{~J}=6.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{D}_{6}\right): \delta(\mathrm{ppm})=152.3,135.4,130.0,127.4$, 126.7, 125.0, 73.9 ; ${ }^{77 S e}$ NMR ($76 \mathrm{MHz}, \mathrm{DMSO}_{6}$) $\delta=461$; HR-MS (ESI): calc. for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{NaO}_{2} \mathrm{Se}_{2}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 394.9063$, found: 394.9056; optical rotation: $\alpha^{D_{20}}=-208^{\circ}$ ($\mathrm{c}=1.00$, $\mathrm{MeOH})$.

3.1.2 (3aR,13bR)-2,2-Dimethyl-3a,13b-dihydrodibenzo[3,4:7,8][1,2]diselenocino-[5,6d][1,3]dioxol (7a) ${ }^{[2]}$

To a suspension of (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6) ($595 \mathrm{mg}, 1.61 \mathrm{mmol}, 1.00$ equiv.) in 2,2-dimethoxypropane ($1.98 \mathrm{~mL}, 1.68 \mathrm{~g}, 16.1 \mathrm{mmol}, 10.0$ equiv.) a drop of aq. $\mathrm{HCl}(37 \%)$ was added and the resulting mixture was stirred for 16 h at rt. One drop of NEt_{3} was added and the solvent was evaporated. The residue was dissolved in $\mathrm{CHCl}_{3}(10 \mathrm{~mL})$, filtered through celite and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 50: 1 \mathrm{PE} / \mathrm{Et} 2 \mathrm{O}$) provided the title product as a yellow solid ($427 \mathrm{mg}, 1.04 \mathrm{mmol}, 65 \%$).

TLC: $R_{f}=0.13$ (PE/Et2O, 50:1); Tm: 106-109 ${ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=3047,2979,1454,1369,1240,1205$, $1061,1025,872,753 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.85\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.72\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.42\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.8,7.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.19$ (ddd, $\left.{ }^{3} \mathrm{~J}=7.5,7.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=1.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.85(\mathrm{~s}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 6 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta(\mathrm{ppm})=148.2,136.2,130.3,129.6,127.8,127.6,111.6,84.7,28.3 ; 77 \mathrm{Se} \operatorname{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=472.95$; HR-MS (ESI): calc. for $\mathrm{C} 17 \mathrm{H} 16 \mathrm{NaO} 2 \mathrm{Se} 2\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 434.9376$, found: 434.9367; optical rotation: $\alpha^{D_{20}}=-100^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

3.1.3 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diyldibenzoat (7d) ${ }^{[3]}$

To a solution of (11R,12R)-11,12-dihydrodibenzo[$[\mathrm{c}, \mathrm{g}][1,2]$ diselenocin-11,12-diol (6)($50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv.) and DMAP ($1.6 \mathrm{mg}, 14$ $\mu \mathrm{mol}, 0.10$ equiv.) in pyridine (1.5 mL), benzoyl chloride ($156 \mu \mathrm{~L}, 190$ $\mathrm{mg}, 1.35 \mathrm{mmol}, 10.0$ equiv.) was added at $0{ }^{\circ} \mathrm{C}$. The solution was warmed to $40^{\circ} \mathrm{C}$ and stirred for 24 h . Sat. aq. NaHCO3-sol. (2.5 mL) was added and the solution was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined org. phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{PE} / \mathrm{EtOAc}, 10: 1$) provided the title product as a yellow solid ($36 \mathrm{mg}, 62 \mu \mathrm{~mol}, 46 \%$).

TLC: $R_{f}=0.49$ (PE/EtOAc, 10:1); Tm: 180-185 ${ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=3060,1722,1451,1246,1094$, 1068, 1025, 761, $706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=8.20\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.85$ (d, ${ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.16-7.67 (m, 12 H$), 7.09(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ 164.9, 147.1, 136.4, 133.4, 130.2, 129.9, 129.7, 128.6, 128.5, 128.4, 128.3, 127.6, 124.8, 76.1; HR-

MS (ESI): calc. for $\mathrm{C}_{28} \mathrm{H}_{20} \mathrm{NaO}_{4} \mathrm{Se} 2\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 602.9590$, found: 602.9525 ; optical rotation: $\alpha^{D_{20}}$ $=+135^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

3.1.4 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diylbis(2,2dimethylpropanoat) (7b) ${ }^{[3]}$

To a solution of (11R,12R)-11,12-dihydrodibenzo[c, g$][1,2]$ diselenocin-11,12-diol (6) ($70 \mathrm{mg}, 0.19 \mathrm{mmol}, 1.00$ equiv.) and DMAP ($1.6 \mathrm{mg}, 14$ $\mu \mathrm{mol}, 0.10$ equiv.) in pyridine (1.5 mL), pivaloyl chloride ($228 \mathrm{mg}, 1.89$ mmol, 10.0 equiv.) was added at $0^{\circ} \mathrm{C}$. The solution was warmed to $40^{\circ} \mathrm{C}$ and stirred for 24 h . Sat. aq. NaHCO -sol. (2.5 mL) was added and the solution was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined org. phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{PE} / \mathrm{EtOAc}$, 10:1) provided the title product as a yellow solid ($100 \mathrm{mg}, 186 \mu \mathrm{~mol}, 98 \%$).

TLC: $R_{f}=0.37$ (PE/EtOAc, 10:1); $\mathbf{T}_{\mathrm{m}}: 140-150{ }^{\circ} \mathrm{C}$ (decomposition); IR (ATR): $\tilde{v}=2973,1734$, 1278, 1129, 1114, 1038, 759, 735, $448 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.80\left(\mathrm{dd},{ }^{3} \mathrm{~J}=\right.$ $\left.7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.16-7.40(\mathrm{~m}, 6 \mathrm{H}), 6.71$ (s, 2 H), 1.31 (s, 18 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (125 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=176.7,147.5,136.4,130.1,128.3,128.2,123.4,75.6,39.1,27.4 ;$ HR-MS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NO}_{4} \mathrm{Se}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right)$: 558.0661, found: 558.0630; optical rotation: $\alpha^{D_{20}}=+3^{\circ}(\mathrm{c}=$ $1.00, \mathrm{CHCl}_{3}$).

3.1.5 (3aR,13bR)-3a,13b-Dihydrodibenzo[3,4:7,8][1,2]diselenocino[5,6-d][1,3]dioxol-2-on (7c) ${ }^{[4]}$

To a solution of (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6) ($50 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.0$ equiv.) in DCM (1 mL) bis(trichlormethyl) carbonate ($44 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.1$ equiv.) and NEt_{3} (41 $\mu \mathrm{L}, 30 \mathrm{mg}, 300 \mu \mathrm{~mol}, 2.30$ equiv.) were added and the resulting mixture was stirred for 2 h at RT. $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{~mL})$ was added and the mixture was extracted with DCM ($3 \times 5 \mathrm{~mL}$). The combined org. phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography (PE/EtOAc, 10:1) provided the title product as a yellow solid ($32 \mathrm{mg}, 81$ $\mu \mathrm{mol}, 60 \%)$.

TLC: $R_{f}=0.39$ (PE/EtOAc, 10:1); \mathbf{T}_{m} : 245-252 ${ }^{\circ} \mathrm{C}$ (decomposition); IR (ATR): $=\tilde{v}=3051,2922$, 1822, 1798, 1143, 1067, 989, 744, $449 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=7.81(\mathrm{~m}, 2 \mathrm{H})$, 7.50-7.54 (m, 4 H), 7.34 (m, 2 H), 6.21 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=154.8$, 143.8, 136.9, 130.7, 129.3, 128.1, 124.4, 82.4; 77Se NMR ($76 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=465.16$; HRMS (ESI): calc for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3} \mathrm{Se}_{2}\left(\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+}\right): 415.9302$, found.: 415.9281; optical rotation: $\alpha^{D_{20}}$ $=-430^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

3.2 Asymmetric imidation

3.2.1 (E)-Benzyl-4-(N-(phenylsulfonyl)phenylsulfonamid)pent-2-enoat (3) ${ }^{[5]}$

To a solution of (E)-benzylpent-3-enoate (1) ($50 \mathrm{mg}, 0.26 \mathrm{mmol}$, 1.00 equiv.), NFSI (2) ($83 \mathrm{mg}, 260 \mu \mathrm{~mol}, 1.0$ equiv.), and $4 \AA$ molecular sieves (spatula tip) in the corresponding solvent (1.5 mL), the catalyst ($13 \mu \mathrm{~mol}, 5 \mathrm{~mol} \%$) was added. The resulting suspension was stirred for 16 h at rt . The solvent was removed under reduced pressure and column chromatography $\left(\mathrm{SiO}_{2}, 10: 1 \rightarrow 3: 1 \mathrm{PE} / \mathrm{Et}_{2} \mathrm{O}\right)$ provided the title product as a colorless solid.

Table 1: Conditions used in the asymmetric imidation

entry	solvent	catalyst	m (product)	n (product)	yield	ee
1	THF	$\mathbf{7 a}$	37 mg	$76 \mu \mathrm{~mol}$	29%	19%
2	1,4-dioxane	$\mathbf{7 a}$	22 mg	$45 \mu \mathrm{~mol}$	17%	15%
3	DCM	$\mathbf{7 a}$	23 mg	$47 \mu \mathrm{~mol}$	18%	18%
4	MeNO 2	$\mathbf{7 a}$	20 mg	$42 \mu \mathrm{~mol}$	16%	8%
5	MeCN	$\mathbf{7 a}$	64 mg	0.13 mmol	50%	3%
6	Toluol	$\mathbf{7 a}$	20 mg	$42 \mu \mathrm{~mol}$	16%	14%
7	THF/MeCN (9:1)	$\mathbf{7 a}$	47 mg	$97 \mu \mathrm{~mol}$	37%	7%
8	MTBE	$\mathbf{7 a}$	36 mg	$74 \mu \mathrm{~mol}$	28%	16%
9	Et2O	$\mathbf{7 a}$	34 mg	$71 \mu \mathrm{~mol}$	27%	14%
10	cyclohexane	$\mathbf{7 a}$	-	-	0%	-
11	THF	$7 d$	66 mg	0.14 mmol	52%	16%
12	THF	$7 d$	63 mg	0.13 mmol	49%	8%
13	THF	7 c	103 mg	$213 \mu \mathrm{~mol}$	81%	50%

TLC: $R_{f}=0.11$ (PE/Et2O, 3:1); IR (ATR): $\tilde{v}=3067,2937,1721,1448,1377,1354,1084,1165,850$, $720,684,546 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.93-8.12(\mathrm{~m}, 4 \mathrm{H}), 7.61(\mathrm{~m}, 2 \mathrm{H})$, $7.45-7.57$ (m, 4 H), $7.29-7.44(\mathrm{~m}, 5 \mathrm{H}), 7.00\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.9 \mathrm{~Hz}, 5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.79$ (dd, ${ }^{3} \mathrm{~J}=15.9 \mathrm{~Hz}$, $\left.{ }^{4} J=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.91\left(\mathrm{qdd},{ }^{3} \mathrm{~J}=7.0,5.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.17(\mathrm{~s}, 2 \mathrm{H}), 1.54\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3\right.$
H); ${ }^{13} \mathrm{C}-$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=18.8,58.1,66.4,122.8,128.3,128.5,128.6,128.9$, 129.0, 133.9, 135.7, 139.9, 146.0, 165.3; HR-MS (ESI): calc. for $\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{NO}_{6} \mathrm{~S}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 486.1040, found: 486.1038 ; HPLC: 22.734 min ., 25.738 min . (Daicel Chiralpak IA; eluent n-hexane $/ \mathrm{i}$ $\mathrm{PrOH}, 90: 10$; flow rate: $0.8 \mathrm{~mL} / \mathrm{min}$.).

3.3 Synthesis of alkoxycatalysts

3.3.1 1-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene ${ }^{[6]}$

Sodium hydride ($60 \mathrm{w} \%$ in mineral oil, $1.91 \mathrm{~g}, 47.7 \mathrm{mmol}, 1.50$ equiv.) was suspended in dry THF (20 mL) under argon-atmosphere at $0^{\circ} \mathrm{C}$, treated with 2 -fluoronitrobenzene ($3.00 \mathrm{~g}, 21.0 \mathrm{mmol}, 1.00$ equiv.). A solution of (-)-menthol ($4.98 \mathrm{~g}, 31.8 \mathrm{mmol}, 1.50$ equiv.) in dry THF (16 mL) was slowly added, and the mixture was allowed to warm to rt and stirred for 16 h at $60^{\circ} \mathrm{C}$. After cooling to rt, sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-sol. (45 mL) was added, the aqueous phase was extracted with DCM ($3 \times 25 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 20: 1$ pentane/DCM) provided the title product as a yellow solid (4.48 $\mathrm{g}, 16.0 \mathrm{mmol}, 76 \%$).

TLC: $R_{f}=0.71$ (pentane/EtOAc: 30:1); IR (neat): $\tilde{v}=2953,2929,2870,2360,1602,1524,1485$, 1456, 1355, 1277, 1256, 1163, 984, 851, 747, $669 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $7.78\left(\mathrm{dd},{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.49\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.5,7.4,{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz} 1 \mathrm{H}\right), 7.10\left(\mathrm{dt},{ }^{3} J=8.5,{ }^{4} \mathrm{~J}\right.$ $=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.98\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.1,7.4,{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22\left(\mathrm{td},{ }^{3} J=10.6,4.2,1 \mathrm{H}\right), 2.30-2.18(\mathrm{~m}$, $1 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 1.76\left(\mathrm{ddt},{ }^{3} J=11.5,4.9 \mathrm{~Hz},{ }^{4} J=2.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.63\left(\mathrm{ddt},{ }^{3} J=13.3,10.2 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=3.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.50\left(\mathrm{tdd},{ }^{3} J=12.0,6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.3-1.2(\mathrm{~m}, 2 \mathrm{H}), 0.95\left(\mathrm{dd},{ }^{3} J=6.8\right.$, $1.3 \mathrm{~Hz}, 6 \mathrm{H}), 0.77\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=151.6,133.6$, 125.5, 119.6, 115.1, 79.3, 47.6, 39.7, 34.2, 31.5, 25.8, 23.5, 22.0, 20.7, 16.4) HR-MS (ESI): calc. for.: $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 300.1570$ found: 300.1572; optical rotation $\alpha^{D_{20}}=-87^{\circ}(\mathrm{c}=0.52$, CHCl_{3}).

1-((($1 R, 2 S, 5 R)$-2-Isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene ($4.33 \mathrm{~g}, 15.6 \mathrm{mmol}, 1.00$ equiv.) was dissolved in ethanol/acetic acid (250 $\mathrm{mL}, 1: 1)$, treated with iron powder ($2.62 \mathrm{~g}, 46.0 \mathrm{mmol}, 3.00$ equiv.) and stirred for 3 h at $100^{\circ} \mathrm{C}$. After cooling to rt the mixture was diluted with EtOAc (275 mL) and the $p H$ value was adjusted to $p H=10$ using aq. $\mathrm{NaOH}(1 \mathrm{~m})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}$-sol. The phases were separated and the organic phase was washed with sat. aq. NaHCO_{3}-sol. ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 50: 1$ pentane/EtOAc) provided the title product as a yellow oil ($2.50 \mathrm{~g}, 10.1 \mathrm{mmol}, 65 \%$).

TLC: $R_{f}=0.19$ (Pent/EtOAc: 30:1); IR (neat): $\tilde{v}=2955,2925,2867,1612,1503,1456,1275,1217$, 1038, 1012, 991, $739 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=6.84-6.64(\mathrm{~m}, 4 \mathrm{H}), 4.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}\right.$ $=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 2 \mathrm{H}), 2.27\left(\mathrm{qd},{ }^{3} \mathrm{~J}=7.0,{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.18\left(\mathrm{dtd},{ }^{3} \mathrm{~J}=12.4,3.8,{ }^{4} \mathrm{~J}=2.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 1.81-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.36(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~m}, 1 \mathrm{H}), 1.01(\mathrm{~m}, 1 \mathrm{H}), 0.92\left(\mathrm{dd},{ }^{3} \mathrm{~J}=10.3\right.$, $6.8 \mathrm{~Hz}, 7 \mathrm{H}), 0.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=145.6,137.3,120.8$, 118.4, 115.4, 113.1, $77.8,48.1,40.5,34.6,31.4,26.1,23.7,22.2,20.9,16.7$); HR-MS (ESI): calc. for: $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 248.2009$, found: 248.2013; optical rotation $\alpha^{D_{20}}=-115^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

3.3.3 1-((($1 R, 2 S, 5 R)$-2-Isopropyl-5-methylcyclohexyl)oxy)-2-selenocyanatobenzol (10b)

BF_{3}.OEt2 ($4.24 \mathrm{~mL}, 4.79 \mathrm{~g}, 34.0 \mathrm{mmol}, 3.50$ equiv.) was dissolved in dry THF (65 mL) under an argon atmosphere at $-30^{\circ} \mathrm{C}(((1 R, 2 S, 5 R)-2-$ isopropyl-5-methylcyclohexyl)oxy)aniline (2.50 g, 10.1 mmol , 1.00 equiv.) in dry THF (20 mL) and tert-butylnitrite ($4.59 \mathrm{~mL}, 3.98 \mathrm{~g}$, $39 \mathrm{mmol}, 4.00$ equiv.) were slowly added and the mixture was warmed to rt within 30 min and stirred for further 30 min at rt . The resulting solid was filtered off and washed with diethyl ether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was also treated with diethyl ether (40 mL) and the resulting solid was also filtered off and washed with diethyl ether. The combined solids were dried in vacuo and then dissolved in dry acetonitrile (50 mL). The solution was cooled to $20^{\circ} \mathrm{C}$ and a solution of potassium selenocyanate ($1.39 \mathrm{~g}, 9.64 \mathrm{mmol}, 1.00$ equiv.) in dry acetonitrile (25 mL) was slowly added. The mixture was slowly warmed to $0^{\circ} \mathrm{C}$ (ice bath) and warmed to rt over 16 h . The mixture was diluted with $\mathrm{DCM} /$ water $(100 \mathrm{~mL}, 1: 1)$ and the phases were separated. The aqueous phase was extracted with diethyl ether ($3 \times 50 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure provided the title product as an orange-red oil ($2.98 \mathrm{~g}, 8.86 \mathrm{mmol}, 88 \%$). The crude product was used without further purification.

TLC: $R_{f}=0.44$ (Pent/EtOAc: 30:1); IR (neat): $\tilde{v}=2955,2925,2865,1471,1243,991,749,679,669$, $656 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CHCl}_{3}\right) \delta(\mathrm{ppm})=7.61\left(\mathrm{dd},{ }^{3} J=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.30(\mathrm{~m}$, $1 \mathrm{H}), 6.99(\mathrm{~m}, 1 \mathrm{H}), 6.88(\mathrm{~m}, 1 \mathrm{H}), 4.14\left(\mathrm{td},{ }^{3} \mathrm{~J}=10.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.17-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.79$ $1.66(\mathrm{~m}, 2 \mathrm{H}), 1.62-0.84(\mathrm{~m}, 12 \mathrm{H}), 0.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $(\mathrm{ppm})=154.0,129.6,129.3,122.4,112.6,101.8,79.2,47.8,40.2,34.3,31.5,26.3,23.7,22.1,20.8$, 16.7); HR-MS (ESI): calc. for: $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NOSeNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 360.0838$; found: 360.0841 .

3.3.4 1,2-Bis(2-(((1S,2R,5S)-2-isopropyl-5-methylcyclohexyl)oxy)-phenyl)diselane (11b) ${ }^{[8]}$

1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-selenocyan-atobenzene ($2.98 \mathrm{~g}, 8.86 \mathrm{mmol}, 1.00$ equiv.) was dissolved in ethanol (50 mL), treated with aq. NaOH sol. ($2.4 \mathrm{M}, 4 \mathrm{~mL}, 10.0 \mathrm{mmol}$, 1.10 equiv.) and stirred for 1 h at rt . A mixture of DCM/water (120 mL , 1:1) was added, the phases were separated, and the aqueous phase was extracted with DCM ($3 \times 60 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography (SiO_{2}, 20:1 pentane/DCM) provided the title product as a yellow oil ($900 \mathrm{mg}, 1.45 \mathrm{mmol}, 33 \%$).

TLC: $R_{f}=0.50$ (pentane/EtOAc: 30:1); IR (neat): $\tilde{v}=2948,2921,2866,1572,1463,1441,1275$, 1264, 1234, 1046, 1028, 1009, 992, 747, 668, $655 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=$ $7.51\left(\mathrm{dd},{ }^{3} J=8.0 \mathrm{~Hz},{ }^{4} J=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2,7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.84-6.79(\mathrm{~m}$, $2 \mathrm{H}), 4.15\left(\mathrm{dt},{ }^{3} \mathrm{~J}=10.5,4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.36$ (quintd, $\left.{ }^{3} \mathrm{~J}=7.0,{ }^{4} \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.18(\mathrm{~m}, 1 \mathrm{H}), 1.81-$ $1.68(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.48\left(\mathrm{dddd},{ }^{3} J=15.2,12.0,5.8 \mathrm{~Hz},{ }^{4} J=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.21-1.05$ (m, 2 H), $0.95\left(\mathrm{dd},{ }^{3} \mathrm{~J}=15.8,6.8 \mathrm{~Hz}, 6 \mathrm{H}\right), 0,81\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$: $\delta(\mathrm{ppm})=155.3,130.2,127.6,121.5,120.2,112.1,78.6,47.9,40.3,34.4,31.5,26.1,23.6,22.1,20.9$, 16.7; ${ }^{77} \mathrm{Se}-\mathrm{NMR}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=324.79$; HR-MS (ESI): calc. for: $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Se}_{2} \mathrm{~K}$ $\left([\mathrm{M}+\mathrm{K}]^{+}\right): 661.1466$, found: 661.1422; optical rotation $\alpha^{D_{20}}=-93^{\circ}\left(\mathrm{c}=1.10, \mathrm{CHCl}_{3}\right)$.

3.3.5 1-(((1R,2S,5R)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-nitrobenzene ${ }^{[6]}$

Sodium hydride ($60 \mathrm{w} \%$ in mineral oil, $103 \mathrm{mg}, 2.58 \mu \mathrm{~mol}, 1.50$ equiv.) was suspended in dry THF (6 mL) under an argon atmosphere at $0^{\circ} \mathrm{C}$, treated with 2 -fluoronitrobenzene ($243 \mathrm{mg}, 1.72 \mathrm{mmol}, 1.00$ equiv.). (-)-8-phenylmenthol ($600 \mathrm{mg}, 2.58 \mathrm{mg}, 1.50$ equiv.) in dry THF (2 mL) was slowly added and the mixture was allowed to warm to rt and stirred for 16 h at $60^{\circ} \mathrm{C}$. After cooling to rt, sat. aq. NH 4 Cl -sol. (10 mL) was added, the aqueous phase was extracted with DCM ($3 \times 25 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 20: 1$ pentane:DCM) provided the title product as a yellow solid (553 $\mathrm{mg}, 1.71 \mathrm{mmol}, 99 \%)$.

TLC: $R_{f}=0.26$ ($15: 1$ Hex:EtOAc); $\mathbf{T}_{\mathrm{m}}: 8{ }^{\circ}{ }^{\circ} \mathrm{C}$; IR (ATR): $\tilde{v}=2925,1604,1525,1483,1353,1279$, $989,767,701 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.73\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 7.42 (ddd, $\left.{ }^{3} J=8.4,7.3 \mathrm{~Hz}^{4}{ }^{4}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.26-7.18(\mathrm{~m}, 4 \mathrm{H}), 7.12(\mathrm{~m}, 1 \mathrm{H}), 6.93\left(\mathrm{ddd},{ }^{3} J=8.1\right.$, $\left.7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.88\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22\left(\mathrm{td},{ }^{3} J=10.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.08-1.90(\mathrm{~m}$, $2 \mathrm{H}), 1.60-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 7 \mathrm{H}), 1.12\left(\mathrm{td},{ }^{3} J=12.6,10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.02\left(\mathrm{tdd},{ }^{3} J=13.5,12.1\right.$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}$), $0.91-0.78(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=150.2,149.5,141.0$, 133.5, 127.8, 126.0, 125.6, 125.3, 119.5, 114.5, 79.0, 51.3, 40.4, 40.0, 34.5, 31.3, 29.6, 27.2, 25.6, 21.7; HR-ESI-MS (m/z) calc. for $\mathrm{C}_{22} \mathrm{H}_{2} \mathrm{O}_{3} \mathrm{NNa}[\mathrm{M}+\mathrm{Na}]^{+}: 376.1883$, found: 376.1883; optical rotation: $\alpha^{D_{20}}=-158^{\circ}\left(0.99, \mathrm{CHCl}_{3}\right)$.

1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-
nitrobenzene ($200 \mathrm{mg}, 566 \mu \mathrm{~mol}, 1.00$ equiv.) was dissolved in ethanol/acetic acid ($9 \mathrm{~mL}, 1: 1$), treated with iron powder ($95 \mathrm{mg}, 1.70$ mmol, 3.00 equiv.) and stirred for 3 h at $100^{\circ} \mathrm{C}$. After cooling to rt, the mixture was diluted with $\mathrm{EtOAc}(10 \mathrm{~mL})$ and sat. aq. $\mathrm{Na}_{2} \mathrm{CO}_{3}-\mathrm{sol} .(10 \mathrm{~mL})$ was added. The phases were separated and the organic phase was washed with sat. aq. NaHCO_{3}-sol. ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 20: 1$ 15:1 pentane/EtOAc) provided the title product as a yellow oil ($110 \mathrm{mg}, 340 \mu \mathrm{~mol}, 61 \%$).

TLC: $R_{f}=0.18$ (15:1 Hex:EtOAc); IR (ATR): $\tilde{v}=2951,2922,2867,1611,1501,1457,1278,1213$, $1008,764,735,700 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.37-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.19-7.08$ (m, 1 H), $6.74-6.55$ (m, 4 H), 4.19 (td, ${ }^{3} \mathrm{~J}=10.4,3.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.00 ($\mathrm{sbr}, 2 \mathrm{H}$), $2.27-2.00(\mathrm{~m}, 2$ H), $1.84-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~s}, 4 \mathrm{H}), 1.27(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~m}, 1 \mathrm{H}), 1.03-0.78(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=152.1,144.1,137.1,127.9,125.5,124.8,120.2,118.0,115.2,111.0$, 76.8, 51.4, 40.1, 39.9, 35.0, 31.3, 28.1, 26.8, 25.7, 21.8; HR-ESI-MS (m/z) calc. for $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{ON}$ $[\mathrm{M}+\mathrm{H}]^{\dagger}: 324.2322$, found: 324.2322; optical rotation: $\alpha^{D_{20}=}=78^{\circ}(0.92, \mathrm{DCM})$.

3.3.7 1-(((1R,2S,5R)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-selenocyanatobenzene (10c)

$\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(564 \mu \mathrm{~L}, 638 \mathrm{mg}, 5.06 \mathrm{mmol}, 3.50$ equiv.) was dissolved in dry THF (2.5 mL) under an argon atmosphere at $-30^{\circ} \mathrm{C}$. A solution of 2-(((1S,2R,5S)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)aniline (9c) $(468 \mathrm{mg}, 1.45 \mathrm{mmol}, 1.00$ equiv.) in dry THF (10 mL) and tertbutylnitrite ($688 \mu \mathrm{~L}, 597 \mathrm{mg}, 5.79 \mathrm{mmol}, 4.00$ equiv.) were slowly added and the mixture was warmed to rt within 30 min and stirred for further 30 min at rt. The resulting solid was filtered off and washed with diethylether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was also treated with diethyl ether $(40 \mathrm{~mL})$ and the resulting solid was also filtered off and washed with diethyl ether. The combined solids were dried in vacuo and dissolved in dry acetonitrile $(10 \mathrm{~mL})$. The solution was cooled to $-20^{\circ} \mathrm{C}$ and a solution of potassium selenocyanate ($418 \mathrm{mg}, 2.90 \mathrm{mmol}, 2.00$ equiv.) in dry acetonitrile (5 mL) was slowly added. The mixture was slowly warmed to $0^{\circ} \mathrm{C}$ (ice bath) and warmed to rt over 16 h . Then the mixture was diluted with DCM/water ($20 \mathrm{~mL}, 1: 1$) and the phases were separated. The aqueous phase was extracted with diethyl ether ($3 \times 10 \mathrm{~mL}$) and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Removal of the solvent under reduced pressure provided the title product as orange-red oil ($433 \mathrm{mg}, 1.04 \mathrm{mmol}, 72 \%$). The crude product was used without further purification.

IR (ATR): $\tilde{v}=2956,2924,2869,2151,1585,1494,1470,1445,1239,1030,993,749,700 \mathrm{~cm}-1$; H-NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta(\mathrm{ppm})=7.62\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.43-7.09(\mathrm{~m}, 6$ H), $7.01\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4,^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.28(\mathrm{~m}, 1 \mathrm{H}), 2.17-$ $1.91(\mathrm{~m}, 2 \mathrm{H}), 1.77-0.78(\mathrm{~m}, 17 \mathrm{H})$; HR-ESI-MS (m/z) calc. for: $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{ONSeNa}[\mathrm{M}+\mathrm{Na}]^{+}$: 436.1151, found: 436.1151 .

3.3.8 1,2-Bis(2-(((1R,2S,5R)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl) diselane (11c) ${ }^{[8]}$

1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-selenocyanatobenzene ($420 \mathrm{mg}, 1.01 \mathrm{mmol}, 1.00$ equiv.) was dissolved in ethanol $(12 \mathrm{~mL})$, treated with aq. NaOH -sol. ($4.5 \mathrm{M}, 161 \mu \mathrm{~L}, 725 \mu \mathrm{~mol}, 0.50$ equiv.) and stirred for 1 h at rt . A mixture of $\mathrm{DCM} /$ water ($20 \mathrm{~mL}, 1: 1$) was added, the phases were separated, and the aqueous phase was extracted with DCM ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography (SiO_{2}, $20: 1 \rightarrow 5: 1$ pentane/DCM) provided the title product as yellow oil ($214 \mathrm{mg}, 277 \mu \mathrm{~mol}, 54 \%$).

TLC: $R_{f}=0.18$ (15:1 Hex:EtOAc); IR (ATR): $\tilde{v}=2952,2921,2868,1571,1464,1441,1227,1030$, 996, 908, 746, 700, $409 \mathrm{~cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=7.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.26(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.83\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.8,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=\right.$ $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~m}, 1 \mathrm{H}), 4.25\left(\mathrm{td},{ }^{3} \mathrm{~J}=10.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.12-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.29(\mathrm{~m}, 9$ H), $1.09\left(\mathrm{td},{ }^{3} \mathrm{~J}=12.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.00(\mathrm{~m}, 1 \mathrm{H}), 0.92-0.81(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(126 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=153.9,150.1,130.4,127.9,127.5,126.1,125.3,121.5,120.6,111.8,78.4,51.5$, 40.7, 40.4, 34.7, 31.4, 30.6, 27.3, 25.1, 21.8; ${ }^{77} \mathrm{Se-NMR}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=331.86$. HR-ESI-MS (m/z) calc. for: $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{O}_{2} \mathrm{Se}_{2} \mathrm{Na}[\mathrm{M}+\mathrm{Na}]^{+}: 797.2356$ found: 797.2338. optical rotation: $\alpha^{D_{20}}=-84\left(0.60, \mathrm{CHCl}_{3}\right)$.

3.3.9 (1S,4aR,8R,8aR)-8-Phenyldecahydronaphthalen-1-ol ${ }^{[9]}$

\bar{H} The compound was synthesized according to a literature-known procedure. The spectra are in accordance with the literature.

TLC: $R_{f}(30: 1$ Pent/EtOAc $)=0.13$; IR (ATR) $\tilde{v}=3591,2921,2853,1714,1493,1449,1048,759$, $701 \mathrm{~cm}^{-1} \mathbf{~}^{1} \mathbf{H}-\mathbf{N M R}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.50-7.13(\mathrm{~m}, 5 \mathrm{H}), 3.49$ (dddd, ${ }^{3} \mathrm{~J}=10.6,9.1$, $\left.4.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.41\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=11.9,10.3,{ }^{4} \mathrm{~J}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.04-0.92(\mathrm{~m}, 13 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=146.8,129.1,127.4,126.8,75.6,54.8,50.5,41.8,37.1,35.1$, 33.9, 33.8, 26.5, 23.9; HR-ESI-MS m/z calc. for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{ONa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 253.1563$, found: 253.1563; optical rotation: $\alpha^{D_{20}}=9.9^{\circ}\left(\mathrm{c}=1.00, \mathrm{CHCl}_{3}\right)$.

(1S, $4 \mathrm{a} R, 8 R, 8 \mathrm{a} R$)-8-Phenyldecahydronaphthalen-1-ol
(275 mg ,
$1.19 \mathrm{mmol}, 1.00$ equiv.) and 1-bromo-2-fluorobenzene (189 mg , 1.08 mmol, 0.90 equiv.) were dissolved in dry DMF (3 mL) and potassium tert-butoxide (1 M in THF, $1.37 \mathrm{~mL}, 1.37 \mathrm{mmol}, 1.15$ equiv.) was added dropwise. The mixture was stirred for 16 h at $100^{\circ} \mathrm{C}$ and another portion of 1-bromo-2-fluorobenzene ($100 \mathrm{mg}, 570 \mu \mathrm{~mol}, 0.48$ equiv.) and potassium tert-butoxide (1 M in THF, $1.00 \mathrm{~mL}, 1.00 \mathrm{mmol}, 0.90$ equiv.) were added. The reaction was stirred 3 h at $100^{\circ} \mathrm{C}$ and, after cooling to rt quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}$ $(3 \times 10 \mathrm{~mL})$, the combined org. phases were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\rightarrow 4: 1$ pentane: DCM) provided the title product as yellow oil ($261 \mathrm{mg}, 677 \mu \mathrm{~mol}, 57 \%$).

TLC: $R_{f}(4: 1$ Pent/DCM $)=0.74$; IR (ATR) $\tilde{v}=2925,2852,1585,1474,1441,1272,1245,1031,744$, $697 \mathrm{~cm}^{-1}{ }^{1} \mathbf{H} \mathbf{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.23\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.8 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.12-$ $6.99(\mathrm{~m}, 3 \mathrm{H}), 6.99\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.89(\mathrm{~m}, 1 \mathrm{H}), 6.65\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.60$ $\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.6 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.13\left(\mathrm{td},{ }^{3} \mathrm{~J}=9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.45-2.30(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.13$ $(\mathrm{m}, 15 \mathrm{H}) . ;{ }^{13} \mathrm{C}-\mathbf{N M R}\left(125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=153.4,146.9,133.0,127.6,127.0,125.0,120.5$, 113.6, 113.0, 80.5, 51.7, 50.8, 42.9, 37.3, 34.0, 32.0, 26.6, 23.6; HR-ESI-MS m/z calc. for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{OBrNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 407.0981, found: 407.0980; optical rotation: $\alpha^{D_{20}}=-41.9^{\circ}(\mathrm{c}=1.04$, CHCl_{3}).

3.3.11 Butyl(2-(((1S,4aR,8R,8aR)-8-phenyldecahydronaphthalen-1-yl)oxy)phenyl)selane (11d)

($1 S, 4 \mathrm{a} R, 8 R, 8 \mathrm{a} R$)-1-(2-bromophenoxy)-8-
phenyldecahydronaphthalene (16) ($260 \mathrm{mg}, 677 \mu \mathrm{~mol}, 1.00$ equiv.) was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(12 \mathrm{~mL})$ and n-butyllithium $(2.5 \mathrm{M}$ in hexane, $298 \mu \mathrm{~L}, 745 \mathrm{mmol}, 1.10$ equiv.) was added dropwise. The mixture was stirred for 1 h at $45^{\circ} \mathrm{C}$ and selenium ($160 \mathrm{mg}, 2.03 \mathrm{mmol}, 3.00$ equiv.) was added. The mixture was stirred for another 16 h at $45^{\circ} \mathrm{C}$ and quenched with $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The mixture was extracted with DCM $(3 \times 20 \mathrm{~mL})$, the combined org. phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 20: 1$ Pent/DCM) followed by gel-permeation chromatography $\left(\mathrm{CHCl}_{3}\right)$ provided the title product as yellow oil ($48.5 \mathrm{mg}, 110 \mu \mathrm{~mol}, 16 \%$).

TLC: $R_{f}=0.21$ (pentane:DCM) ; IR (ATR) $\tilde{v}=2922,2852,1574,1467,1440,1268,1233,1123$, 1036, 1012, 965, 753, $697 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-N M R\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.11-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.05$ $-6.93(\mathrm{~m}, 3 \mathrm{H}), 6.86\left(\mathrm{tt},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.69\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.60$
$\left(\mathrm{dt},{ }^{3} \mathrm{~J}=8.0 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.09\left(\mathrm{td},{ }^{3} \mathrm{~J}=9.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.67-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.41$ (ddd, $\left.{ }^{3} J=12.0,10.3,{ }^{4} \mathrm{~J}=3.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.92-1.11(\mathrm{~m}, 18 \mathrm{H}), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=155.3,147.2,130.0,127.6,127.0,126.0,124.8,122.6,120.5,113.1$, 81.2, 53.4, 51.6, 50.6, 42.3, 37.4, 33.9, 33.5, 32.1, 31.6, 26.5, 24.7, 23.5, 23.1, 13.6; 77Se-NMR (95 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=232.35$; HR-ESI-MS m/z calc. for $\mathrm{C}_{26} \mathrm{H}_{35} \mathrm{OSe}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 443.1849$, found: 443.1854; optical rotation: $\alpha^{D_{20}}=-65.8^{\circ}\left(c=0.96, \mathrm{CHCl}_{3}\right)$.

3.3.12 (1S)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane ${ }^{[6]}$

Sodium hydride ($60 \mathrm{w} \%$ in mineral oil, $2.00 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.25$ equiv.) was suspended in dry THF (32 mL) under an argon atmosphere at $0^{\circ} \mathrm{C}$, treated with 2-fluoronitrobenzene ($1.46 \mathrm{mg}, 10.37 \mathrm{mmol}, 1.00$ equiv.). A solution of (-)-borneol ($2.00 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.25$ Äq equiv.) in dry THF (12 mL) was slowly added and the mixture was allowed to warm to rt and stirred for 16 h at $60{ }^{\circ} \mathrm{C}$. After cooling to rt sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-sol. (30 mL) was added, the aqueous phase was extracted with DCM ($3 \times 50 \mathrm{~mL}$), the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 15: 1$ pentane/EtOAc) provided the title product as an orange solid ($2.36 \mathrm{~g}, 8.57 \mathrm{mmol}, 83 \%$).

TLC: $R_{f}=0.41$ (30:1 pentane:EtOAc); $\mathbf{T}_{\mathrm{m}}: 68^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2953,1606,1523,1482,1351,1274$, 1164, 1021, 867, 840, $743 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.82\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}\right.$, ${ }^{4} J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (ddd, $\left.{ }^{3} \mathrm{~J}=8.3,7.4 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.99-6.89(\mathrm{~m}, 2 \mathrm{H}), 4.43$ (ddd, $\left.{ }^{3} J=9.3,3.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40\left(\mathrm{ddt},{ }^{3} J=13.3,9.2,3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.27(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.70$ (m, 2 H), $1.46-1.21(\mathrm{~m}, 2 \mathrm{H}), 1.16\left(\mathrm{dd},{ }^{3} \mathrm{~J}=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.94(\mathrm{~s}, 6 \mathrm{H}), 0.93$ (s, 3 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=152.5,140.1,133.9,125.6,119.5,115.4,85.1,49.8,47.6$, 45.1, 36.6, 27.8, 26.8, 19.6, 18.9, 13.6; HR-ESI-MS m/z calc. for $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right):$ 298.1414, found: 298.1418; optical rotation $\alpha^{D_{20}}=-136^{\circ}\left(\mathrm{c}=0.997, \mathrm{CHCl}_{3}\right)$.

3.3.13 2-(((1S,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (9a) ${ }^{[7]}$

(1S)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane (2.00 g, $7.26 \mathrm{mmol}, 1.00$ equiv.) was dissolved in ethanol/acetic acid ($140 \mathrm{~mL}, 1: 1$), treated with iron powder ($1.22 \mathrm{~g}, 21.8 \mathrm{mmol}, 3.00$ equiv.) and stirred for 3 h at $100^{\circ} \mathrm{C}$. After cooling to rt the mixture was diluted with EtOAc (10 mL) and brought to $\mathrm{pH}=10$ by the addition of aq. NaOH -sol. (1 m). The phases were separated and the organic phase was washed with sat. aq. NaHCO_{3}-sol. (3×100 $\mathrm{mL})$. The combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 30: 1$ pentane:EtOAc) provided the
title product as a red solid (1.33 g, $5.42 \mathrm{mmol}, 75 \%$). (1S)-1,7,7-Trimethyl-2-(2nitrophenoxy)bicyclo[2.2.1]heptane ($222 \mathrm{mg}, 806 \mu \mathrm{~mol}, 11 \%$) could be reisolated.

TLC: $R_{f}=0.34$ (15:1 Hex:EtOAc); $\mathbf{T}_{\mathrm{m}:} 66^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2951,1612,1504,1457,1273,1216$, 1114, 1053, $735 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=6.81-6.63(\mathrm{~m}, 4 \mathrm{H}), 4.34$ (ddd,
 $2.27-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.34(\mathrm{~m}, 1 \mathrm{H}), 1.29(\mathrm{~m}, 1 \mathrm{H}), 1.17\left(\mathrm{dd},{ }^{3} \mathrm{JHH}_{H}=13.4\right.$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=146.5$, 136.6, 120.6, 118.4, 115.0, 112.5, 83.1, 49.6, 47.6, 45.2, 37.0, 28.0, 27.1, 19.7, 18.9, 13.9; HR-ESIMS m/z calc. for: $\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NO}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 246.1852$,found: 246.1860; optical rotation $\alpha^{D_{20}=}=-117^{\circ}$ ($c=1.00, \mathrm{CHCl}_{3}, 3 \mathrm{~mm}$).

3.3.14 (1S)-1,7,7-Trimethyl-2-(2-selenocyanatophenoxy)bicyclo[2.2.1]-heptane (10a)

$\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(796 \mu \mathrm{~L}, 899 \mathrm{mg}, 7.14 \mathrm{mmol}, 3.50$ equiv.) was dissolved in dry THF (15 mL) under argon atmosphere at $-30^{\circ} \mathrm{C}$. A solution of 2-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (9a) ($500 \mathrm{mg}, 2.04 \mathrm{mmol}, 1.00$ equiv.) in dry THF (15 mL) and tert-butyl nitrite ($841 \mathrm{mg}, 8.16 \mathrm{mmol}, 4.00$ equiv.) were slowly added and the mixture was slowly warmed to rt within 30 min and stirred for further 30 min at rt . The resulting solid was filtered off and washed with diethyl ether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was treated with pentane (15 mL) and the resulting solid was filtered off. The combined solids were dried in vacuo and then dissolved in dry acetonitrile (10 mL). The solution was cooled to $-20^{\circ} \mathrm{C}$ and potassium selenocyanate ($293 \mathrm{mg}, 2.04 \mathrm{mmol}, 1.00$ equiv.) in dry acetonitrile (5 mL) was slowly added. The mixture was slowly warmed to $0^{\circ} \mathrm{C}$ (ice-bath) and warmed to rt over 16 h . Then the mixture was diluted with DCM/water ($20 \mathrm{~mL}, 1: 1$) and the phases were separated. The aqueous phase was extracted with DCM $(2 \times 20 \mathrm{~mL})$ and the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 4: 1 \mathrm{Pent} / \mathrm{DCM}$) provided the title product as an brown oil (409 mg , $1.22 \mathrm{mmol}, 60 \%$).

TLC: $R_{f}(4: 1$ Pent:DCM $)=0.15$; IR (ATR) $\tilde{v}=2953,1574,1472,1446,1305,1278,1245,1054$, 1022, $993,746 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.63\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.9 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1\right.$ H), 7.29 (ddd, ${ }^{3} \mathrm{~J}=8.2,7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.00\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=7.9,7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76$ (dd, ${ }^{3} J=8.2 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.41 (ddd, ${ }^{3} J=9.3,3.3 \mathrm{~Hz},{ }^{4} J=1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 2.39 (dddd, $\left.{ }^{3} J=13.7,9.2,4.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.10\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=13.4,9.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.91-1.71$ (m, 2 H$), 1.42$ (m, 1 H), $1.27(\mathrm{~m}, 1 \mathrm{H}), 1.13\left(\mathrm{dd},{ }^{3} \mathrm{~J}=13.5,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=154.9,129.7,129.6,122.4,113.7,112.8,101.6,84.9,49.8$, 47.7, 45.1, 36.7, 27.8, 27.0, 19.6, 18.9, 13.8; 77Se-NMR (76 MHz, CDCl3) $\delta(\mathrm{ppm})=281.0$; HR-ESI-MS m/z calc. for: $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NOSeNa}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 358.0681$, found: 358.0688.

3.3.15 1,2-Bis(2-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2yl)oxy)phenyl)diselenide (11a) ${ }^{[8]}$

(1S)-1,7,7-Trimethyl-2-(2-selenocyanatophenoxy)bicyclo[2.2.1]-heptane (10a) ($370 \mathrm{mg}, 1.11 \mathrm{mmol}, 1.00$ equiv.) was dissolved in ethanol (12 mL), treated with aq. NaOH-sol. (2.5 M in water, $221 \mu \mathrm{~L}, 553 \mu \mathrm{~mol}, 0.50$ equiv.) and stirred for 1 h at rt. Filtration yielded the title product as a yellow solid ($270 \mathrm{mg}, 438 \mu \mathrm{~mol}, 79 \%$).
$\mathrm{T}_{\mathrm{m}:} 162^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2951,2876,1572,1466,1442,1390,1364,1304,1271,1238,1054,1022$, $744 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.53\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.15$ (ddd, ${ }^{3} J=8.1,7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}$), $6.84\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$), 6.68 (dd, $\left.{ }^{3} J=8.1 \mathrm{~Hz},{ }^{4} J=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.44\left(\mathrm{ddd},{ }^{3} J=9.3,3.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.40\left(\mathrm{dddd},{ }^{3} J=13.5\right.$, $9.9,4.8,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.92-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.22\left(\mathrm{dd},{ }^{3} J=13.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $1.03(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=156.0,130.0$, $130.0,127.7,127.6,121.5,121.5,121.4,119.8,112.1,111.9,84.2,84.1,49.9,47.6,45.3,45.2,37.0$, $36.9,36.8,27.9,27.9,27.8,27.2,27.1,27.1,19.7,19.7,19.0,19.0,19.0,13.9,13.9,13.9,13.8 ;$ ${ }^{77} \mathrm{Se}-\mathrm{NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=281$; HR-ESI-MS m/z calc. for $\mathrm{C}_{32} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Se} 2 \mathrm{Na}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 657.1153$, found.: 657.1150; optical rotation $\alpha^{D_{20}}=-91^{\circ}\left(\mathrm{c}=1.005 \%, \mathrm{CHCl}_{3}, 3 \mathrm{~mm}\right)$.

3.3.16 (R)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide (18) ${ }^{[11]}$

(R)-BINOL ($500 \mathrm{mg}, 1.75 \mathrm{mmol}, 1.00$ equiv.) and triethyl amine ($975 \mu \mathrm{~L}$, $707 \mathrm{mg}, 6.98 \mathrm{mmol}, 4.00$ equiv.) were dissolved in dry toluene (10 mL), cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{POCl}_{3}(175 \mu \mathrm{~L}, 294 \mathrm{mg}, 1.92 \mathrm{mmol}, 1.10$ equiv.) was added slowly. The mixture was stirred for 16 h at $0^{\circ} \mathrm{C}$ and the solvent was removed under reduced pressure. Column chromatography (SiO_{2}, DCM) provided the title compound as colorless solid (484 mg , $1.32 \mathrm{mmol}, 75 \%)$.

TLC: $R_{f}=0.60(\mathrm{DCM}) ; \mathbf{T}_{\mathrm{m}}: 188^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2956,2923,2853,1591,1508,1463,1227,1029$, $963,815,748,597,483,400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.13-8.04(\mathrm{~m}, 2 \mathrm{H})$, $8.04-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.63\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.59-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.29(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=146.6\left(\mathrm{~d},{ }^{3}{ }^{3} c p=12.7 \mathrm{~Hz}\right), 146.3\left(\mathrm{~d},{ }^{3}{ }^{3}{ }^{2} P=11.3 \mathrm{~Hz}\right), 132.2(\mathrm{~d}$, $\left.{ }^{5}{ }^{5} \subset P=1.9 \mathrm{~Hz}\right), 132.1,132.0\left(\mathrm{~d},{ }^{5}{ }^{5} \subset P=1.8 \mathrm{~Hz}\right), 131.9\left(\mathrm{~d},{ }^{5}{ }^{5} \subset P=1.5 \mathrm{~Hz}\right), 131.6\left(\mathrm{~d},{ }^{5}{ }^{5} \mathrm{CP}=1.6 \mathrm{~Hz}\right)$, 128.8 - 128.4 (m), 127.3 - 127.0 (m), 126.3 - 126.3 (m), 121.6 (d, ${ }^{4} \mathrm{Jcp}=3.0 \mathrm{~Hz}$), 121.5 (d, ${ }^{4}{ }^{\mathrm{J} c p}=2.5$ $\mathrm{Hz}), 120.3\left(\mathrm{~d},{ }^{4} \mathrm{~J} \subset=2.8 \mathrm{~Hz}\right), 119.9\left(\mathrm{~d},{ }^{4}{ }^{4} \mathrm{CP}=3.8 \mathrm{~Hz}\right) ;{ }^{31 P}-\mathrm{NMR}\left(162 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=10.9$; HR-ESI-MS m/z calc. for: $\mathrm{C}_{20} \mathrm{H}_{13} \mathrm{O}_{3} \mathrm{PCl}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 367.0285$, found: 367.0277 ; the results are in accordance with literature.

3.3.17 2,2'-Diphenol diselenide (19) ${ }^{[12]}$

n-Butyllithium (2.5 m in hexan, $21 \mathrm{~mL}, 52.0 \mathrm{mmol}, 1.50$ equiv.) was added to dry hexane at $-78^{\circ} \mathrm{C}(20 \mathrm{~mL})$ and TMEDA $(5.2 \mathrm{~mL}, 4.03 \mathrm{~g}$, $34.7 \mathrm{mmol}, 2.00$ equiv.) was added slowly. 2-Bromophenol (2.01 mL , $3.00 \mathrm{~g}, 17.3 \mathrm{mmol} 0.50$ equiv.) was then added to the cloudy solution at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for further 2 h at rt. Selenium ($1.38 \mathrm{~g}, 17.3 \mathrm{mmol}, 0.50$ equiv.) was added at $0^{\circ} \mathrm{C}$ and the mixture was stirred for further 16 h at rt. Aq. $\mathrm{HCl}(1 \mathrm{M}, 10 \mathrm{~mL})$, water (30 mL) and EtOAc (20 mL) were added. The phases were separated, aq. $\mathrm{HCl}(5 \mathrm{M}, 10 \mathrm{~mL})$ was added to the aqueous phase, and it was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined org.
phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography ($\mathrm{SiO}_{2}, 15: 1 \rightarrow 2: 1$ Pent:EtOAc) provided the title compound as a red solid ($893 \mathrm{mg}, 2.58 \mathrm{mmol}, 30 \%$) as an inseperatable mixture with $10 \mathrm{~mol} \%$ 2-bromophenol.

TLC: $R_{f}=0.15$ (5:1 Hex:EtOAc); IR (ATR) $\tilde{v}=3424,1574,1463,1443,1334,1287,1236,1180$, 1022, 826, 750, 472, $446 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.37\left(\mathrm{dd},{ }^{3} \mathrm{~J}=7.7 \mathrm{~Hz}\right.$, $\left.{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.32\left(\mathrm{ddd},{ }^{3} \mathrm{~J}=8.2,7.3 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.01\left(\mathrm{dd},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 2\right.$ H), $6.79\left(\mathrm{td},{ }^{3} \mathrm{~J}=7.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.11(\mathrm{sbr}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=$ 156.7, 137.5, 133.0, 121.1, 115.2; ${ }^{77 S e-N M R ~(76 ~ M H z, ~} \mathrm{CDCl}_{3}$) $\delta(\mathrm{ppm})=377$; HR-ESI-MS m / z calc. for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{Se}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 368.8906$, found: 368.8900 .

3.3.18 (R)-4,4'-((Diseleniddiylbis(2,1-phenylene))bis(oxy))bis(dinaphtho-[2,1-d:1',2'$\mathrm{f}][1,3,2$]dioxaphosphepine 4-oxid) (20)

(R)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4oxide (18) ($100 \mathrm{mg}, \quad 273 \mu \mathrm{~mol}, \quad 2.00$ equiv. $), \quad 2,2^{\prime}-$ diphenoldiselenid (19) ($50 \mathrm{mg}, 138 \mu \mathrm{~mol}, 1.00$ equiv.) and triethyl amine ($152 \mu \mathrm{~L}, 110 \mathrm{mg}, 1.09 \mathrm{mmol}, 4.00$ equiv.) were dissolved in dry DCM (5 mL). The mixture was stirred for 16 h at rt and sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-Lsg. (5 mL) was added. The aqueous phase was extracted with DCM $(3 \times 15 \mathrm{~mL})$ the combined organic phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and column chromatography ($\mathrm{SiO}_{2}, \mathrm{DCM}$) provided the title compound as yellow oil ($37 \mathrm{mg}, 28.4 \mu \mathrm{~mol}$, 21%).

TLC: $R_{f}(\mathrm{DCM})=0.70$; IR (ATR) $\tilde{v}=1508,1312,1200,1187,1156,967,951,899,815,750 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=8.07\left(\mathrm{~d},{ }^{3} \mathrm{JHH}=8.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 8.03-7.89(\mathrm{~m}, 6 \mathrm{H}), 7.64(\mathrm{~m}$, $2 \mathrm{H}), 7.57-7.27$ (m, 18 H$), 7.23-7.13(\mathrm{~m}, 2 \mathrm{H}), 6.96\left(\mathrm{t},{ }^{3} \mathrm{~J} \mathrm{H}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=148.3\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=6.0 \mathrm{~Hz}\right), 147.3\left(\mathrm{~d},{ }^{2}{ }^{5} \mathrm{CP}=11.6 \mathrm{~Hz}\right), 146.0\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=8.6\right.$ $\mathrm{Hz}), 132.4,132.2\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{CP}}=1.0 \mathrm{~Hz}\right), 132.2\left(\mathrm{~d},{ }^{5} \mathrm{~J}_{\mathrm{CP}}=1.1 \mathrm{~Hz}\right), 132.0\left(\mathrm{~d},{ }^{5}{ }_{\mathrm{CP}}=1.4 \mathrm{~Hz}\right), 131.8(\mathrm{~d}$, $\left.{ }^{5} \mathrm{~J} \subset \mathrm{P}=1.1 \mathrm{~Hz}\right), 129.0-128.9(\mathrm{~m}), 128.5\left(\mathrm{~d},{ }^{4} \mathrm{~J} \subset P=4.3 \mathrm{~Hz}\right), 127.1\left(\mathrm{~d},{ }^{2} \mathrm{~J} \subset P=9.1 \mathrm{~Hz}\right), 126.9(\mathrm{~d}$, $\left.{ }^{4} J c p=2.2 \mathrm{~Hz}\right), 126.6,126.0\left(\mathrm{~d},{ }^{3}{ }^{3} c p=6.4 \mathrm{~Hz}\right), 121.5\left(\mathrm{~d},{ }^{3} \mathrm{~J} c P=6.3 \mathrm{~Hz}\right), 121.1\left(\mathrm{~d},{ }^{4}{ }^{4} c p=2.2 \mathrm{~Hz}\right), 120.5$ $\left(\mathrm{d},{ }^{4} \mathrm{~J} c \mathrm{P}=3.0 \mathrm{~Hz}\right), 120.2\left(\mathrm{~d},{ }^{4} \mathrm{~J} \mathrm{cp}=3.4 \mathrm{~Hz}\right), 119.3\left(\mathrm{~d},{ }^{4} \mathrm{~J} \mathrm{cp}=2.0 \mathrm{~Hz}\right) ;{ }^{31} \mathrm{P}-\mathrm{NMR}\left(203 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm})=-3.75 ;{ }^{77} \mathrm{Se}-\mathrm{NMR}\left(95 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=364 ;$ HR-ESI-MS m/z calc. for $\mathrm{C}_{52} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Se} 2 \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right)$: 1028.9809, found: 1028.9782. optical rotation: $\alpha^{D_{20}}=-45.5$ ($\mathrm{c}=1.44$, CHCl_{3}).

3.3.19 (1S,1'S,2R,2'R,4R,4'R)-2,2'-((2-Bromo-1,3-phenylene)bis(oxy))bis(1-isopropyl-4methylcyclohexane)(13a) ${ }^{[10]}$

(-)-Menthol ($810 \mathrm{mg}, 5.18 \mathrm{mmol}, 2.00$ equiv.) and 1-bromo-2,6-difluorobenzene ($189 \mathrm{mg}, 1.08 \mathrm{mmol}, 0.90$ equiv.) were dissolved in dry DMF (10 mL) and sodium hydride ($60 \mathrm{w} \%$ in mineral oil, $248 \mathrm{mg}, 6.22 \mathrm{mmol}, 2.40$ equiv.) was added to the solution. The mixture was stirred for 19 h at $100^{\circ} \mathrm{C}$ and quenched by the addition of aq. sat. $\mathrm{NH}_{4} \mathrm{Cl}$-sol. The mixture was extracted with EtOAc $(3 \times 20 \mathrm{~mL})$, the combined org. phases were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\rightarrow 143: 1$ pentane/DCM) provided the title product as a colorless solid (467 mg , $1.12 \mathrm{mmol}, 43 \%$).

TLC: $R_{f}(\mathrm{DCM})=0.20$ (pentane/DCM, 143:1); $\mathrm{T}_{\mathrm{m}}: 104{ }^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2954,2929,2669,1582$, 1459, 1367,1331, 1249, 1272, 1250, 1183, 1100, 1054, 1035, 981, 946, 923, 878, 844, 756, 703, 664 $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.12\left(\mathrm{t},{ }^{3} \mathrm{~J}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $4.07\left(\mathrm{td},{ }^{3} J=10.5,4.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.31\left(\mathrm{heptd},{ }^{3} \mathrm{~J}=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.18,2.09(\mathrm{~m}, 2 \mathrm{H}), 1.80,1.58$ $(\mathrm{m}, 6 \mathrm{H}), 1.45\left(\mathrm{ddtd},{ }^{3} \mathrm{~J}=19.3,9.7,6.5 \mathrm{~Hz},{ }^{4} \mathrm{~J}=3.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.18,0.99(\mathrm{~m}, 6 \mathrm{H}), 0.93\left(\mathrm{t},{ }^{3} \mathrm{~J}=6.9\right.$ $\mathrm{Hz}, 12 \mathrm{H}), 0.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=7.0 \mathrm{~Hz}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=156.3,127.7,106.3$, 104.3, 79.1, 48.1, 40.5, 34.7, 31.7, 26.2, 23.9, 22.4, 21.1, 16.9; HR-ESI-MS m/z calc. for $\mathrm{C}_{26} \mathrm{H}_{42} \mathrm{O}_{2} \mathrm{Br}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 465.2363$, found: 465.2365 ; optical rotation: $\alpha^{D_{20}}=-111^{\circ}\left(1.00, \mathrm{CHCl}_{3}\right)$.

3.3.20 Bis-2,6-bis(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)benzene diselenide (14a)

(1S,1'S,2R,2'R,4R,4'R)-2,2'-((2-Bromo-1,3-
phenylene)bis(oxy))bis-(1-isopropyl-4-methylcyclohexane)
(13a) ($467 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.00$ equiv.) was dissolved in dry diethyl ether (1.1 mL) and cooled to -78°. t-Butyllithium (1.9 M in pentane, $425 \mu \mathrm{~L}, 820 \mu \mathrm{~mol}, 2.52$ equiv.) was slowly added and the mixture was stirred for 1 h at $0^{\circ} \mathrm{C}$. A solution of $\mathrm{PMBSeCN}(98 \mathrm{mg}$, $430 \mu \mathrm{~mol}$, 1.33 equiv.) in THF (2 mL) was added to the solution and the mixture was stirred for further 15 min . Then the reaction is quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$-sol. (4 mL) and extracted with EtOAc $(2 \times 5 \mathrm{~mL})$. The organic phase was washed with brine (3 mL), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}\right.$, pentane $\rightarrow 50: 1$ pentane/EtOAc) provided the title product as yellow oil ($66 \mathrm{mg}, 0.126 \mathrm{mmol}, 35 \%$).

TLC: $R_{f}\left(50: 1\right.$ Pent/Et $\left.{ }_{2} \mathrm{O}\right)=0.38$; IR (ATR) $\tilde{v}=2952,2923,2867,1609,1578,1509,1453,1369$, 1299, 1246, 1231, 1173, 1098, 1068, 1053, 829, 764, 741, $712 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta(\mathrm{ppm})=7.19-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.78-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.49\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.16\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.9\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 4.11-4.01(\mathrm{~m}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.32\left(\mathrm{dqd},{ }^{3} \mathrm{~J}=13.7,6.9,3.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.16-2.03(\mathrm{~m}, 2$ H), $1.72\left(\mathrm{ddt},{ }^{3} \mathrm{~J}=11.1,8.3,3.9 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.65-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.43\left(\mathrm{dddd},{ }^{3} \mathrm{~J}=15.3,12.3,6.3 \mathrm{~Hz}\right.$, $\left.{ }^{4} J=3.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.17-0.96(\mathrm{~m}, 6 \mathrm{H}), 0.96-0.88(\mathrm{~m}, 12 \mathrm{H}), 0.75\left(\mathrm{~d},{ }^{3} \mathrm{~J}=6.9 \mathrm{~Hz}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$
$\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=159.4,158.3,132.1,130.1,128.8,113.8,105.5,78.3,77.2,55.3,48.1$, $40.4,34.7,31.6,29.9,26.1,23.6,22.3,21.1,16.6 ;{ }^{77} \mathrm{Se-NMR}\left(76 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta(\mathrm{ppm})=231.8$; HR-ESI-MS m/z calc. for $\mathrm{C}_{52} \mathrm{H}_{32} \mathrm{O}_{8} \mathrm{P}_{2} \mathrm{Se}_{2} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 587.3001$, found: 587.2983; optical rotation: $\alpha^{D_{20}}=40^{\circ}\left(\mathrm{c}=0.37, \mathrm{CHCl}_{3}\right)$.

3.3.21 (((1S,1'S,2R,2'R,4R,4'R)-((2-Bromo-1,3-phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-diyl))bis(propane-2,2-diyl))dibenzene (13b) ${ }^{[10]}$

(-)-8-Phenylmenthol (1.18 g, $5.01 \mathrm{mmol}, 2.56$ equiv.) and 1-bromo-2,6-difluorobenzene $\quad(376 \mathrm{mg}$, $\quad 1.96 \mathrm{mmol}$, 1.00 equiv.) were dissolved in dry DMF $(7.5 \mathrm{~mL})$ and potassium tert-butoxide (1 M in THF, $5 \mathrm{~mL}, 5.00 \mathrm{mmol}$, 2.30 equiv.) was added dropwise to the solution. The mixture was stirred for 16 h at $100^{\circ} \mathrm{C}$. After cooling to rt quenched with $\mathrm{H}_{2} \mathrm{O}(5 \mathrm{~mL})$, the mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$, the combined org. phases were washed with water $(2 \times 10 \mathrm{~mL})$ and brine $(10 \mathrm{~mL})$, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography (SiO_{2}, pentane $\rightarrow 4: 1$ pentane:DCM) provided the title product as colorless solid ($618 \mathrm{mg}, 1.00 \mathrm{mmol}, 51 \%$). The mono-substituted product was also isolated ($137 \mathrm{mg}, 338 \mu \mathrm{~mol}, 17 \%$).

TLC: $R_{f}(4: 1$ Pent/DCM $)=0.71 ; \mathrm{T}_{\mathrm{m}}: 209^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=2951,2923,2869,1586,1461,1251$, 1092, 1064, 1034, 907, 760, 734, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.37-7.21(\mathrm{~m}$, $8 \mathrm{H}), 7.19-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.39(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18(\mathrm{td}, \mathrm{J}=10.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-1.94(\mathrm{~m}$, $4 \mathrm{H}), 1.52(\mathrm{~d}, \mathrm{~J}=10.4 \mathrm{~Hz}, 8 \mathrm{H}), 1.42(\mathrm{~s}, 10 \mathrm{H}), 1.22-0.74(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $(\mathrm{ppm})=155.0,150.0,127.7,127.4,126.2,125.1,105.2,103.9,78.4,51.5,40.8,40.5,34.8,31.5,31.4$, 27.5, 24.5, 21.9; HR-ESI-MS m/z calc. for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{Br}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 617.2989$, found: 617.2986; optical rotation: $\alpha^{D_{20}}=-54^{\circ}\left(\mathrm{c}=0.09, \mathrm{CHCl}_{3}\right)$

3.3.22 (2,6-Bis(((1R,2S,5R)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl)(4methoxybenzyl)selane (14b)

(((1S,1'S,2R,2'R,4R,4'R)-((2-Bromo-1,3-phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-diyl))bis(propane-2,2-diyl))dibenzene (13b) (100 mg, $162 \mu \mathrm{~mol}, 1.00$ equiv.) is dissolved in dry diethyl ether (2 mL) and n-butyllithium $(2.5 \mathrm{M}$ in hexane, $71 \mu \mathrm{~L}, 178 \mu \mathrm{~mol}$, 1.10 equiv.) was added at rt. The mixture was stirred for 1 h at $45^{\circ} \mathrm{C}$ and a solution of $\mathrm{PMBSeCN}(68 \mathrm{mg}, 243 \mu \mathrm{~mol}, 1.50$ equiv.) in dry diethyl ether $(1.5 \mathrm{~mL})$ was added to the solution. The mixture was stirred for 16 h at $40^{\circ} \mathrm{C}$. The reaction was quenched by the addition of sat. aq. $\mathrm{NH}_{4} \mathrm{Cl}$, the mixture was extracted with DCM
$(3 \times 10 \mathrm{~mL})$, the combined org. phases were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent was removed under reduced pressure. Column chromatography $\left(\mathrm{SiO}_{2}, 4: 1\right.$ pentane/DCM) provided the title product as a yellow oil ($27 \mathrm{mg}, 36.0 \mu \mathrm{~mol}, 22 \%$).

TLC: $R_{f}=0.37$ (4:1 Pent:DCM); IR (ATR) $\tilde{v}=2953,2923,2869,2369,2359,2342,1579,1510,1453$, 1246, 1226, 1092, 1061, 1036, 801, 763, $700 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.37-$ $7.31(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.24(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.19-7.11(\mathrm{~m}, 3 \mathrm{H}), 6.80\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2\right.$ H), $6.43\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.25\left(\mathrm{~d},{ }^{3} \mathrm{~J}=10.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17\left(\mathrm{td},{ }^{3} \mathrm{~J}=10.3,4.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.00(\mathrm{~d}$, $\left.{ }^{3} J=10.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.11-1.98(\mathrm{~m}, 4 \mathrm{H}), 1.62-1.19(\mathrm{~m}, 24 \mathrm{H}), 1.13-0.74(\mathrm{~m}, 16 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=158.2,150.1,131.9,130.0,128.7,127.8,126.3,125.2,113.7$, 111.5, 105.2, 78.4, 55.2, 51.6, 40.8, 40.5, 34.7, 31.5, 31.4, 30.2, 27.5, 24.4, 21.8, 1.0; HR-ESI-MS m / z calc. for $\mathrm{C}_{42} \mathrm{H}_{59} \mathrm{O}_{2} \mathrm{Se}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 675.3679$, found: 675.3671 ; optical rotation: $\alpha^{D_{20}}=-34^{\circ}$ $\left(c=0.53, \mathrm{CHCl}_{3}\right)$.

3.3.23 1,2-Bis(2-((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)diselane(4) ${ }^{[13]}$

The compound was synthesized according to literature. The spectroscopic data are in accordance with literature.

IR (ATR) $\tilde{v}=2956,2929,2872,1643,1463,1354,1247,1019,967,732 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.83(\mathrm{~m}, 4 \mathrm{H}), 7.24(\mathrm{~m}, 4 \mathrm{H}), 4.48\left(\mathrm{dd},{ }^{2} \mathrm{~J}=8.7 \mathrm{~Hz},{ }^{3} \mathrm{~J}=7.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 1.86\left(\right.$ hept, $\left.^{3} J=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.22(\mathrm{~m}, 4 \mathrm{H}), 1.12(\mathrm{~m}, 6 \mathrm{H}), 1.03(\mathrm{~m}, 6 \mathrm{H})$; HR-ESI-MS m / z calc. for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{O}_{2} \mathrm{~N}_{2} \mathrm{Se}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 537.0558, found: 537.0543.

3.3.24 (R)-tert-Butyl((6-methoxy-7-((4-methoxybenzyl)selanyl)-2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (23) ${ }^{[14]}$

The compound was synthesized according to the literature: spectoscopic data are in accordance with literature

TLC: $R_{f}(1: 1$ DCM:Pent $)=0.65$; $\operatorname{IR}(A T R) \tilde{v}=2953,2928,2855,1609,1510,1460,1434,1247$, 1173, 1063, 1039, 834, $774 \mathrm{~cm}^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.06\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.96\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.73\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.09(\mathrm{~d}$, $\left.{ }^{3} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90(\mathrm{~s}, 3 \mathrm{H}), 3.86\left(\mathrm{~d},{ }^{3} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.95\left(\mathrm{~d},{ }^{3} \mathrm{~J}=14.3 \mathrm{~Hz}, 1\right.$ H), $2.27\left(\mathrm{~d},{ }^{3} \mathrm{~J}=14.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.13(\mathrm{~s}, 3 \mathrm{H}), 0.80(\mathrm{~s}, 9 \mathrm{H}), 0.50(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}),-0.04(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=158.2,158.1,152.1,136.8,131.9,129.6,125.7,115.4,113.6$, 110.2, 85.2, 56.3, 55.2, 44.8, 44.7, 30.3, 26.2, 26.1, 23.5, 18.6, -3.2, -3.5; ${ }^{77}$ Se-NMR (76 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=269.61$; HR-ESI-MS m / z calc for $\left[\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{3} \mathrm{SeSiNa}^{+}[\mathrm{M}+\mathrm{Na}]^{+}: 529.1649\right.$, found: 529.1648. optical rotation $\alpha^{D_{20}}=155^{\circ}\left(\mathrm{c}=1.01, \mathrm{CHCl}_{3}\right)$.

3.4 Photocatalysts

3.4.1 2,4,6-Tris(4-methoxyphenyl)pyrylium tetrafluoroborate (TAPT) ${ }^{[15]}$

This compound was synthesized according to literature:
Spectra are in accordance to literature.
IR (ATR) $\tilde{v}=2941,2841,1585,1482,1457,1434,1258,1235$, 1174, 1016, 829, 562, $518 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, DMSO-D $\left._{6}\right) \delta(\mathrm{ppm})=8.54(\mathrm{~s}, 2 \mathrm{H}), 8.43(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H})$, $8.29(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.04-7.21(\mathrm{~m}, 6 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H})$, 3.91 (s, 6 H); ${ }^{13} \mathrm{C}-\mathrm{NMR}$ (101 MHz, DMSO-D $_{6}$) $\delta(\mathrm{ppm})=$ 167.4, 165.2, 164.4, 161.5, 132.2, 130.4, 124.2, 121.0, 115.2, 115.1, 110.3, 55.9, 55.8; HR-ESI-MS m / z calc for $\left[\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}\right]^{+}[\mathrm{M}]^{+}: 399.1591$, found.: 399.1587.

3.4.2 2,4,6-Tris(4-methoxyphenyl)pyrylium tetraphenylborate (TAPTP)

2,4,6-Tris(4-methoxyphenyl)pyrylium tetraphenylborate ($300 \mathrm{mg}, 617 \mu \mathrm{~mol}, 1.00$ equiv.) was dissolved in dry diethyl ether (10 mL), potassium tetraphenylborate was added ($321 \mathrm{mg}, 617 \mu \mathrm{~mol}, 1.00$ equiv.) and the mixture was stirred for 16 h at rt. THF (10 mL) was added and the suspension was filtered. The filtrate was collected and evaporation of the solvent provided the title compound as red solid ($391 \mathrm{mg}, 544 \mu \mathrm{~mol}, 88 \%$).
$\mathrm{T}_{\mathrm{m}}=85.2^{\circ} \mathrm{C}$; IR (ATR) $\tilde{v}=1584,1569,1509,1478,1457,1436,1304,1257,1240,1171,1121,1018$, $830,732,703 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=7.76\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.8 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.58-7.44$ (m, 12 H), 6.96 (t, $\left.{ }^{3} \mathrm{~J}=7.4 \mathrm{~Hz}, 12 \mathrm{H}\right), 6.82\left(\mathrm{q},{ }^{3} \mathrm{~J}=8.2,7.2 \mathrm{~Hz}, 6 \mathrm{H}\right), 3.87(\mathrm{~s}, 6 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=168.0,165.9,165.3,164.6,163.9,163.3,162.4,136.2,131.6$, $130.2,128.8,127.2,125.7,125.7,125.6,125.6,124.1,121.7,120.6,115.9,115.8,110.3,56.2,56.1$; ${ }^{11} \mathrm{~B}-\mathrm{NMR}\left(96 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=-6.42$; HR-ESI-MS m/z Cation: calc for $\left[\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{O}_{4}\right]^{+}[\mathrm{M}]^{+}$: 399.1591, found.: 399.1589, Anion: calc for $\left[\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~B}\right]^{-}[\mathrm{M}]: 319.1700$, found.: 318.1693.

3.4.3 10-(3,5-Dimethoxyphenyl)-9-mesityl-1,3,6,8-tetramethoxyacridin-10-ium tetrafluoroborate (DMTA) ${ }^{[16]}$

This compound was synthesized according to literature:
Spectra are in accordance to literature.
IR (ATR) $\tilde{v}=3030,2968,2937,2878,2251,1655,1461,1417$, 1287, 1072, 969, 907, 865, 793, $730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=6.90\left(\mathrm{dd},{ }^{3} \mathrm{~J}=1.3,0.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.83\left(\mathrm{t},{ }^{3} \mathrm{~J}=2.2\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.60\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.50\left(\mathrm{dd},{ }^{3} \mathrm{~J}=2.3,0.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 6.18\left(\mathrm{~d},{ }^{3} \mathrm{~J}=2.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.92$ (s, 6 H$), 3.85(\mathrm{~s}, 6 \mathrm{H}), 3.53-3.45(\mathrm{~m}, 6 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H}), 1.83\left(\mathrm{t},{ }^{4} \mathrm{~J}=0.6 \mathrm{~Hz}, 6 \mathrm{H}\right) ;{ }^{13} \mathrm{C}-\mathrm{NMR}$ $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta(\mathrm{ppm})=168.3,163.2,162.3,160.7,144.7,139.8,137.5,136.4,132.0,127.0$, 113.3, 105.6, 102.8, 97.5, 92.8, 57.1, 56.5, 56.2, 21.1, 20.2;HR-ESI-MS m/z calc for $\left[\mathrm{C}_{34} \mathrm{H}_{36} \mathrm{O}_{6}\right]^{+}$ [M] ${ }^{\dagger}: 554.2537$, found.: 554.2538.

3.5 Asymmetric lactonization

(E)-5-Phenylpent-3-enoic acid (1.00 equiv.), the photocatalyst (0.05 equiv.) and the selenium catalyst (0.05 equiv. for diselenides, 0.10 equiv. for monoselenides) were dissolved in acetonitrile (0.1 M). The mixture was stirred vigorously at rt and irradiated with blue light ($465 \mathrm{~nm}, 4500 \mathrm{~lx}$). The solvent was removed under reduced pressure and column chromatography $\left(\mathrm{SiO}_{2}, 1: 2\right.$ pentane/DCM) provided the title product as light yellow oil.

Table 2: Conditions used in the asymmetric aerobic lactonization.

entry	$\begin{gathered} \text { Se- } \\ \text { catalyst } \end{gathered}$	photocatalyst	solvent	T	t	yield	ee
1	11b	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	70\%	19\%
2	11c	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	68\%	49\%
3	11c	TAPT	acetone	$35^{\circ} \mathrm{C}$	16h	10\%	nd
4	11c	TAPT	DCE	$35^{\circ} \mathrm{C}$	16h	61\%	25\%
5	11c	TAPT	MeCN	$0^{\circ} \mathrm{C}$	20h	65\%	47\%
6	11d	TAPT	MeCN	$20^{\circ} \mathrm{C}$	16h	40\%	55\%
7	11d	TAPT	DCE	$20^{\circ} \mathrm{C}$	19 h	38\%	50\%
8	11a	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	81\%	5\%
9	20	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	78\%	10\%
10	14b	TAPT	MeCN	$35^{\circ} \mathrm{C}$	20h	24\%	48\%
$11^{\text {a }}$	14b	TAPT	MeCN	$35^{\circ} \mathrm{C}$	40h	59\%	33\%
12	14b	-	PhMe	$35^{\circ} \mathrm{C}$	16h	n.d.	37\%
13	14b	DMTA	PhMe	$35^{\circ} \mathrm{C}$	16h	33\%	8\%
14	14b	TAPT	MeCN	$50^{\circ} \mathrm{C}$	96h	99\%	24\%
15	14b	TAPT	MeCN	$35^{\circ} \mathrm{C}$	6h	23\%	15\%

16	14b	TAPT	MeCN	$0^{\circ} \mathrm{C}$	16 h	21\%	20\%
17	14b	Rhodamin G	MeCN	$35^{\circ} \mathrm{C}$	16h	0\%	nd
18	14b	Rhodamin G	MeCN	$35^{\circ} \mathrm{C}$	16h	0\%	nd
19	14b	$\mathrm{Ru}(\mathrm{bpz})_{3} \mathrm{PF}_{6}$	MeCN	$45^{\circ} \mathrm{C}$	16h	19\%	4\%
20	14b	TAPTP	MeCN	$35^{\circ} \mathrm{C}$	18h	10\%	12\%
21	14b	TAPTP	MeCN	$35^{\circ} \mathrm{C}$	17 h	13\%	12\%
22	14b	TAPT	MeCN dry	$35^{\circ} \mathrm{C}$	16h	35\%	16\%
23	14b	TAPT	$\begin{gathered} \mathrm{MeCN} / \mathrm{H}_{2} \mathrm{O} \\ 10: 1 \end{gathered}$	$35^{\circ} \mathrm{C}$	16h	0\%	nd
24	14a	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	40\%	55\%
25	4	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	0\%	nd
26	23	TAPT	MeCN	$0^{\circ} \mathrm{C}$	48h	10\%	65\%
27	23	TAPT	MeCN	$0^{\circ} \mathrm{C}$	88h	44\%	67\%
28	23	DMTA	PhMe	$35^{\circ} \mathrm{C}$	16h	0\%	nd
30	23	$\mathrm{NO}\left[\mathrm{BF}_{4}\right]$	DCM	$25^{\circ} \mathrm{C}$	21h	0\%	nd
31	23	$\mathrm{NO}\left[\mathrm{BF}_{4}\right]$	DCM	$25^{\circ} \mathrm{C}$	21h	12\%	0\%
32	7 a	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	44\%	22\%
33	7c	TAPT	MeCN	$35^{\circ} \mathrm{C}$	16h	11\%	0\%

${ }^{\text {a }}$ Instead of the respective aryl-PMB-selenide 14b its butyl-substituted analogue was used.
$\mathbf{R}_{\mathrm{f}}\left(\right.$ Pent:Et $\left.{ }_{2} \mathrm{O}\right)=0.21$; IR (ATR): $\tilde{v}=3030,1748,1602,1496,1455,1337,1160,1099,1023,924$, 900, 812, 748, $701 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta=7.40\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.37-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.08\left(\mathrm{dd},{ }^{3} \mathrm{~J}=5.7 \mathrm{~Hz},{ }^{4} \mathrm{~J}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.27-5.20(\mathrm{~m}, 1$ H), 3.16 (dd, ${ }^{3} J=13.9,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.96\left(\mathrm{dd},{ }^{3} \mathrm{~J}=13.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$; ${ }^{13} \mathrm{C}-\mathrm{NMR}(101 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): ~ \delta=172.7,155.5,134.8,129.4,128.7,127.3,122.1,83.4,39.6$; HR-ESI-MS (m/z) calculated for $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 175.0754 found: 175.0755 ; HPLC: Daicel OD, $0.9 \mathrm{~mL} / \mathrm{min}, 99: 1$ Hex: $i \mathrm{PrOH} \quad R_{T}=49.160 \mathrm{~min}, 51.825 \mathrm{~min}$; Daicel ID, $1.0 \mathrm{~mL} / \mathrm{min}, ~ 90.1: 9.9$ Hex: $i-\mathrm{PrOH}$ $R_{T}=16.557 \mathrm{~min}, 17.644 \mathrm{~min}$; Daicel $\mathrm{ID}, 0.8 \mathrm{~mL} / \mathrm{min}, 90.1: 9.9 \mathrm{Hex}: i-\mathrm{PrOH} R T=23.469 \mathrm{~min}$, 24.491 min.

4 Literature

[1] I.Cho, L. Meimetis, R. Britton, Org. Lett. 2009, 11, 1903-1906.
[2] K.S. Jeong, Y.S. Kim, Y.J. Kim, E. Lee, J.H. Yoon, W.H. Park, Y.W. Park, S.-J. Jeon, Z.H. Kim, J. Kim, N. Jeong, Angew. Chem. Int. Ed. 2006, 45, 8134-8138.
[3] W.-D. Lee, K. Kim, G.A. Sulikowski, Org. Lett. 2005, 7, 1687-1689.
[4] M. Lombardo, S.Morganti, C.Trombini, J. Org. Chem. 2000, 65, 8767-8773.
[5] J. Trenner, C. Depken, T.J. Weber, A.Breder, Angew. Chem. Int. Ed. 2013, 52, 8952-8956.
[6] S.M. Altermann, R.D. Richardson, T.K. Page, R.K. Schmidt, A. Holland, U. Mohammed, A.M. Paradine, A.N. French, C. Richter, A.M. Bahar, B. Witulski, T. Wirth, Eur. J. Org.Chem. 2008, 5315-5328.
[7] M. Shen, B. E. Leslie, T.G. Driver, Angew. Chem. Int. Ed. 2008, 47, 5056-5059.
[8] M. Minozzi, D. Nanni, J. C. Walton, J. Org. Chem. 2004, 2056-2069.
[9] (a) N. Yasukawa, H. Yokoyama, M. Masuda, Y. Monguchi, H. Sajiki, Y. Sawama GreenChemistry, 2018, 20, 1213. (b) J. Whitesell, R. Lawrence, H. Chen J.Org.Chem. 1986, 51, 4779. (c) M. Murakata, M. Tamura, O. Hoshino, J.Org.Chem. 1997, 62, 4428.
[10] K. Kumazawa, K. Ishihara, H. Yamamoto, Org. Lett. 2004, 6, 2551-2554.
[11] A. Kattuboina, Guigen Li, Tetrahedron Lett. 2008, 49, 1573-1577.
[12] L. Zhao, Z. Li, T. Wirth, Eur. J. Org. Chem. 2011, 35, 7080-7082.
[13] A. L. Braga, S. J. N. Silva, D. S. Lüdtke, R. L. Drekener, C. C. Silveira, J. B. T. Rochaa, L. A. Wessjohann, Tetrahedron Lett. 2002, 43, 7329-7331.
[14] Y. Kawamata, T. Hashimoto, K. Maruoka J. Am. Chem. Soc., 2016, 138 , 5206-5209.
[15] M. Martiny, E. Steckhan, T. Esch, Chem. Ber. 1993, 126, 1671-1682.
[16] A. Joshi-Pangu, F. Lévesque, H.G. Roth, S.F. Oliver, L.-C. Campeau, D. Nicewicz, D. DiRocco, J.Org.Chem. 2016, 81, 7244-7249.

5 NMR Spectra

5.1 Diselenocine catalysts

5.1.1 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6)

Page 1/1
5.1.2 (3aR,13bR)-2,2-Dimethyl-3a,13b-dihydrodibenzo[3,4:7,8][1,2]diselenocino-[5,6d][1,3]dioxol (7a)

5.1.3 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diyldibenzoat (7d)

C

5.1.4 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diylbis(2,2-dimethylpropanoat) (7b)

5.1.5 (3aR,13bR)-3a,13b-Dihydrodibenzo[3,4:7,8][1,2]diselenocino[5,6-d][1,3]dioxol-2-on (7c)

5.2 Imidation

5.2.1 (E)-Benzyl-4-(N-(phenylsulfonyl)phenylsulfonamid)pent-2-enoat (3)

5.3 Alkoxy-catalysts

5.3.1 1-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene

5.3.2 2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)aniline (9b)

5.3.3 1-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)-2-selenocyanatobenzene (10b)

5.3.4 1,2-Bis(2-(((1S,2R,5S)-2-isopropyl-5-methylcyclohexyl)oxy)-phenyl)diselane (11b)

 SSSSU U U

5.3.5 1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-nitrobenzol

[^0]12/02/2016
5.3.6 2-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)aniline (9c)

| 30 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 90 | 80 | 70 | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
| :--- |


```
D:\Data\kkraetzsc\FK216-03_.0 FK216-03
```

5.3.7 1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2selenocyanatobenzene (10c)

Page 1/1
5.3.8 1,2-Bis(2-(((1S,2R,5S)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl)diselane (11c)

Page 1/1
5.3.9 (1S,4aR,8R,8aR)-8-phenyldecahydronaphthalen-1-ol

5.3.10 (1S,4aR,8R,8aR)-1-(2-bromophenoxy)-8-phenyldecahydronaphthalene (16)

5.3.11 Butyl(2-(((1S,4aR,8R,8aR)-8-phenyldecahydronaphthalen-1-yl)oxy)phenyl)selane (11d)

5.3.12 (1S)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane (

 | D:VataifkraetzsciFK233-01_o FK233-01 | 20\%05/2016 |
| :--- | :--- | :--- |

Page 1/1
5.3.13 2-(((1S,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (9a)

5.3.14 (1S)-1,7,7-trimethyl-2-(2-selenocyanatophenoxy)bicyclo[2.2.1]-heptane (10a)

[^1]5.3.15 1,2-Bis(2-(((1S,2R,4S)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)phenyl) diselenide (11a)

| D:VataifkraetzsciFK236-01_. FK236-01 | 20\%09/2016 |
| :--- | :--- | :--- |

Page 1/1
5.3.16 (R)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide (18)

5.3.17 2,2'-Diphenol diselenide (19)

5.3.18 (R)-4,4'-((Diseleniddiylbis(2,1-phenylene))bis(oxy))bis-(dinaphtho-[2,1-d:1',2'f] [1,3,2]dioxaphosphepine 4-oxid) (20)

5.3.19 (1S,1'S,2R,2'R,4R,4'R)-2,2'-((2-bromo-1,3-phenylene)bis(oxy))bis(1-isopropyl-4methylcyclohexane) (13a)

5.3.20 Bis-2,6-bis(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)benzene diselenide (14a)

5.3.21 (($\left(1 S, 1^{\prime} S, 2 R, 2^{\prime} R, 4 R, 4^{\prime} R\right)$-((2-bromo-1,3-phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-diyl))bis(propane-2,2-diyl))dibenzene (13b)

5.3.22 (2,6-bis(((1R,2S,5R)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl)(4methoxybenzyl)selane (14b)

5.3.23 1,2-Bis(2-((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)diselane(4)

5.3.24 (R)-tert-butyl((6-methoxy-7-((4-methoxybenzyl)selanyl)-2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (23)

5.4 Photocatalysts

5.4.1 2,4,6-tris(4-methoxyphenyl)pyrylium tetrafluoroborate (TAPT)

5.4.2 2,4,6-tris(4-methoxyphenyl)pyrylium tetraphenylborate (TABTP)

 $\begin{aligned} & 80^{\circ} 9 \mathrm{~g} \\ & \mathrm{ST} .9 \mathrm{~g}\end{aligned}>$

$\begin{array}{lllllllllllllllllllllllllllll}200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

5.5 Asymmetric lactonization

5.5.1 5-Benzylfuran-2(5H)-on (22)

Page 1/1

6 HPLC Chromatograms

6.1 Imidation

6.1.1 Racemate

6.1.2 Entry 1

6.1.3 Entry 2

6.1.4 Entry 3

6.1.5 Entry4

6.1.6 Entry 5

6.1.7 Entry 6

6.1.8 Entry 7

6.1.9 Entry 8

6.1.10 Entry 9

6.1.11 Entry 11

6.1.12 Entry 12

6.1.13 Entry 13

6.2 Lactonisation

6.2.1 Racemate

Single Injection Report

Agileni Technologies

Data file:	C: ${ }^{\text {D }}$ DataiFelixiPraktik		
Sample name:	FK-Ere04		
Description:	FK-Bre04_Racemat		
Instrument:	LC1260		
Injection date:	11/2/2017 2:40:54 PM		STEM
Acq. method:	10_90.1_1.0_25_ID.M	Sample type:	Sample
Analysis method:	$\begin{aligned} & 10 _90.1 _1.0 _25 _ \\ & \text {D. }{ }^{1} \end{aligned}$	Dilution:	1
Last changed:	9/16/2016 3:57:01 PM		
Column name:	CHIRALPAKID-3		
Serial \#:	555		

6.2.2 Entry 1

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

C:IDataiFelixPPraktikumiFK-Bre04_Gruppe12.D
FK-Bre04_Gruppe12
FK-Bre04_Menthol-Kat
LC1260
11/17/2017 3:15:14 PM
10_90.1_1.0_25_ID.M
10_90.1_1.0_25_1
D.M

9/16/2016 3:57:01 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

| Signal: | DAD1 A, Sig=250,4 Ref=360,100 | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| RT [min] Type | Width [min] | Area | Height | Area度 Name |
| 16.857 MM | 0.2969 | 1362.2036 | 76.4608 | 59.6493 |
| 17.654 MM | 0.3042 | 921.4839 | 50.4820 | 40.3507 |
| | Sum | 2283.6875 | | |

6.2.3 Entry 2

Single Injection Report

Agilan Technologias

Data file:	C:LDataiFelixilnduktion_neuerKat_221UInduktion_neuerKat_221 2016-03-01 18-13 -37.FK221-01.D		
Sample name:	FK221-01		
Description:			
Instrument:	LC1260	Injection volume:	20.000
Injection date:	3/1/2016 6:14:37 PM	Acc operator:	SYSTEM
Acq. method:	20_99_0.9_70_OD.M	Sample type:	Sample
Analysis method:	20_99_0.9_70_OD	Dilution:	1
Last changed:	3/1/2016 5:50:23 PM		
Column name:	CHIRALCELOD-3		
Serial \#:	444		

6.2.4 Entry 4

Data file:	C:LDataiFelixilnduktion_neuerKat_221UInduktion_neuerKat_221 2016-03-01 18-13 -37IFK221-03.D		
Sample name:	FK221-03		
Description:			
Instrument:	LC1260	Injection volume:	20.000
Injection date:	3/1/2016 8:36:43 PM	Aca. operator:	SYSTEM
Acq. method:	20_99_0.9_70_OD.M	Sample type:	Sample
Analysis method:	$\mathrm{Ma}^{-\mathrm{M}} \mathrm{Ma}^{-} 0.9 \text {-70_OD }$	Dilution:	$1{ }^{\text {Sample }}$
Last changed:	3/1/2016 5:50:23 PM		
Column name:	CHIRALCELOD-3		
Serial \#:			

6.2.5 Entry 5

Data file: \quad C:LDataiFelixinduktion_neuerKat_221iFK221-15_Ph-Menth_0 $0^{\circ} \mathrm{C} . \mathrm{D}$

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

FK221-15 Ph-Menth $0^{\circ} \mathrm{C}$
10_90.1_1.0_25_ID FK221-15_Ph-Menth_ $0^{\circ} \mathrm{C}$
LC1260
9/16/2016 6:03:34 PM Injection volume: 10.000 10_90.1_1.0_25_ID.M A.M. operator: SYSTEM 10_90.1_1.0_25_1 D.M

6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Acq. operator:	SYSTEM
Sample type:	Sample

Dilution: 1

Signal:	DAD	, $\mathrm{Sig}=250,4$	60,100		
RT [min]	Type	Width [min]	Area	Height	Area\% Name
17.369	BV	0.3374	2534.8894	112.2577	73.2480
18.377	VB	0.3059	925.8031	46.5747	26.7520
		Sum	3460.6925		

6.2.6 Entry 6

Agileat Technologias
Data file: \quad C:2DataiFelixilnduktion_neuerKat_2211FK221-41.D
Sample name:
Description:
Instrument: Injection date:
Acq. method: Analysis method:

Injection volume: 10.000

Last changed: Column name: Serial \#:

11/2/2018 4:29:30 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_| D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3
FK221-41
FK221-40 Decalinol Kat
LC1260

555
Acq.operator: SYSTEM
Sample type: Sample
Dilution: 1
6.2.7 Entry 7

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_2211FK221-42.D

C:IDataiFelixIInduktion_neuerKat_221lFK221-42.D
FK221-42
FK221-42 Decalinol KatDCE

LC1260

11/8/2018 10:59:48 AM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_
D.M

6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal: \quad DAD1 A, $\operatorname{Sig}=220,4$ Ref $=360,100$
RT [min] Type Width [min] Area Height Area\% Name

23.303	BV	0.3480	10534.7627	472.6717	25.0152

24.263	VB	0.4141	31578.7324	1180.6094	74.9848

6.2.8 Entry 8

Data file: \quad C:LDataiFelixilnduktion_neuerKat_2211FK221-46.D

Sample name:
Description:
Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

FK221-46
FK221-46 Borneol Kat. entsprichtFK221-02
LC1260
12/17/20185:03:16 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_ D.M 6/5/2018 5:13:20 PM

Injection volume:	10.000
Acq. operator:	SYSTEM

Acq. operator:	SYSTEM
Sample type:	
Sample	

Dilution: 1

| Signal: | DAD1 A, Sig=220,4 Ref=360,100 | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| RT [min] Type | Width [min] | Area | Height | Area\%服 Name |
| 24.229 MM | 0.4034 | 20262.0078 | 837.0413 | 47.2880 |
| 25.343 MM | 0.4032 | 22586.0664 | 933.6463 | 52.7120 |
| | Sum | 42848.0742 | | |

6.2.9 Entry 9

Agileat Technologias
Data file: \quad C:2DataiFelixilnduktion_neuerKat_2211FK221-45.D
Sample name:
Description:
Instrument:
Injection date:
Acq. method:
Analysis method:
FK221-45
FK221-46 BINOL-Kat.
LC1260
12/17/20186:15:56 PM
Injection volume: 10.000 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_1 D.M

Last changed:
6/5/2018 5:13:20 PM
Column name:
Serial \#:

| Signal: | DAD1 A, Sig=220,4 Ref=360,100 | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| RT [min] Type | Width [min] | Area | Height | Area服 Name |
| 23.235 MM | 0.4202 | 36434.2930 | 1445.1360 | 44.9293 |
| 24.295 MM | 0.4658 | 44658.2227 | 1597.7968 | 55.0707 |
| | Sum | 81092.5156 | | |

6.2.10 Entry 10

Single Injection Report

Agileat Technologies

Data file:	C:IDatalFelixIInduktion_neuerKat_221iso-9182018-05-1617-36-031FK221-23.D		
Sample name:	FK221-23		
Description:			
Instrument:	LC1260	Injection volume:	10.000
Injection date:	$5 / 16 / 2018$	$5: 38: 12$ PM	Acq. operator:
Acq. method:	$10 _90.1 _1.0 _25 _$IDM	SYSTEM	
Analysis method:	$10 _90.1 _1.0 _25$ I	Sample type:	Sample
	D.M	Dilution:	1
Last changed:	$9 / 16 / 20163: 57: 01$ PM		
Column name:	CHIRALPAKID-3		
Serial \#:	555		

6.2.11 Entry 11

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

Data file: \quad C:IDatalFelixilnduktion_neuerKat_2211FK221-24.D
FK221-24
FK221-24_DiPhenylmethy
LC1260
5/24/2018 3:12:35 PM Injection volume: 10.000 Acq. operator: SYSTEM 10_90.1_1.0_25_1 D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Sample type: Sample
Dilution: 1

RT [min] Type Width [min] Area Height Arealh Name

| 17.375 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| BV | 0.2983 | 28718.0859 | 1467.6029 | 66.4654 |

18.513	VB	0.3197	14489.4551	699.3735	33.5346

6.2.12 Entry 12

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_221ifK221-25.D

C:IDatalFelixIInduktion_neuerKat_221lFK221-25.D
FK221-25
FK221-25_DiPhenylmethyl_Maruoka Cond
LC1260
5/25/2018 5:02:13 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_ D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume: 10.000 Acq.operator: SYSTEM Sample type: Sample Dilution: 1

1

| Signal: | DAD1 A, Sig=220,4 Ref=360,100 | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| RT [min] Type | Width [min] | Area | Height | Areaf, Name |
| 18.629 MM | 0.2907 | 4160.9102 | 238.5581 | 68.2703 |
| 19.598 MM | 0.3081 | 1933.8499 | 104.6171 | 31.7297 |
| | Sum | 6094.7600 | | |

6.2.13 Entry 13

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_2211FK221-26.D

C:IDatalFelixIInduktion_neuerKat_221lFK221-26.D
FK221-24
FK221-26_DiPhenylmethyl_PhMe
LC1260
5/25/2018 3:21:05 PM
Injection volume: 10.000 ACq.operator: SYSTEM 10_90.1_1.0_25_1 D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Signal: \quad DAD1 A, Sig=220,4 Ref $=360,100$

RT [min] Type	Width [min]	Area	Height	Area復 Name
18.492 MM	0.3337	22314.7383	1114.5094	53.7668
19.468 MM	0.3526	19188.0918	906.8666	46.2332
	Sum	41502.8301		

6.2.14 Entry 14

Sample name: Description: instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_221ifK221-27.D

C:IDataiFelixIInduktion_neuerKat_221lFK221-27.D
FK221-27
FK221-27_DiPhenylmethyl_Lange_Bestrahlung
LC1260
5/28/2018 4:49:10 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_
D.M

6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

6.2.15 Entry 15

Sample name: Description: instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_2211FK221-29.D

C:IDataiFelixIInduktion_neuerKat_221lFK221-29.D
FK221-27
FK221-27_DiPhenylmethyl_MeCN_6h
LC1260
5/31/2018 1:41:51 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_| D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acc. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal: \quad DAD1 A, $\operatorname{Sig}=220,4$ Ref $=360,100$

RT [min] Type	Width [min]	Area	Height	Area\% Name
18.061 MM	0.3098	16799.9395	903.8807	57.3758
18.990 MM	0.3194	12480.6104	651.3352	42.6242

6.2.16 Entry 16

Agilan Technologies

Data file:	C:SataiFelixilnduktion_neuerKat_2211FK221-30.D		
Sample name:	FK221-30		
Description:	FK221-30_Tiefe Temperatur		
Instrument:	LC1260		10.000
Injection date:	6/5/2018 2:52:27 PM		
Acc. method:	10_90.1_1.0_25_ID.M	Sample type:	Sample
Analysis method:	$\begin{aligned} & 10 _90.1 _1.0 _25 _ \\ & \text {D.M } \end{aligned}$	Dilution:	
Last changed:	6/5/2018 5:13:20 PM		
Column name:	CHIRALPAKID-3		
Serial \#:	555		

6.2.17 Entry 19

Data file:	C.:DataiFelixInduktion_neuerKat_2211FK221-34.D		
Sample name:	FK221-34		
Description:	FK221-34_FK431-Ru		
Instrument:	LC1260	Injection volume:	10.000
Injection date:	6i8/2018 3:41:57 PM	Acq. operator:	SYSTEM
Acq. method:	$10 _90.1 _1.0 _25$ ID.M	Sample type:	Sample
Analysis method:	$10 _90.1 _1.0 _25$ _I	Dilution:	1
Last changed:	D.M		
Column name:	CHIRALPAKID-3		
Serial \#:	555		

6.2.18 Entry 20

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

Data file: \quad C:LDataiFelixilnduktion_neuerKat_221lFK221-34_BPh4.D
FK221-34
FK221-34_FK431-PyrromeBPh4
LC1260
6/13/2018 4:42:17 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_1 D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal: \quad DAD1 A, $\operatorname{Sig}=220,4$ Ref $=360,100$

RT [min] Type	Width [min]	Area	Height	Area\% Name
18.738 MM	0.3314	13023.4590	654.9884	55.8723
19.684 MM	0.3406	10285.8906	503.2816	44.1277
	Sum	23309.3496		

6.2.19 Entry 21

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

C:IDatalFelixilnduktion_neuerKat_2211FK221-35_日Ph4_dyy.D FK221-35
FK221-35_FK431-PyrromeBPh4_dry
LC1260
6/13/2018 5:28:30 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_ D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal: \quad DAD1 A, $\operatorname{Sig}=220,4$ Ref $=360,100$
RT [min] Type Width [min] Area Height Area\% Name

| 18.709 BV | 0.3018 | 14767.6328 | 756.3871 | 55.7442 |
| :--- | :--- | :--- | :--- | :--- | :--- |

| 19.660 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| VBA | 0.3119 | 11724.1719 | 579.9187 | 44.2568 |

6.2.20 Entry 22

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

Data file: \quad C:LDataiFelixilnduktion_neuerKat_2211FK221-36.D
FK221-36
FK221-36_FK431_dry_conditions
LC1260
6/14/2018 3:13:10 PM Injection volume: 10.000 $\begin{array}{lll}10 _90.1 _1.0 _25 _I D . M & \text { Acq. operator: } & \text { SYSTEM } \\ & \text { Sample type: } & \text { Sample }\end{array}$ 10_90.1_1.0_25_1 D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555
Sample type: Sample

Dilution: 1

RT [min] Type	Width [min]	Area	Height	Area夘 Name
18.542 MM	0.3844	39879.4492	1729.0916	57.8361
19.530 MM	0.3840	29073.1152	1261.9829	42.1639
	Sum	68952.5645		

6.2.21 Entry 24

Data file:	C:LDataiKathaiRW-6-FR7-8.D		
Sample name:	RW-6-FR7-8		
Description:	RW-6-FR7-8		
Instrument:	LC1260		
Injection date:	3/15/2018 3:20:59 PM	Injection volume:	
Acq. method:	10_90.1_1.0_25_ID.M		Sample
Analysis method:	$\begin{aligned} & 10-99.5 _0.8 _20 \\ & \text { OD. } \end{aligned}$	Dilution:	
Last changed:	2/28/2018 2:20:13 PM		
Column name:	CHIRALPAKID-3		
Serial \#:	555		

6.2.22 Entry 26

Data file: \quad C:LDataiFelixilnduktion_neuerKat_221iFK221-13_Maruoka_0 $0^{\circ} \mathrm{C} . \mathrm{D}$

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

CD-3290.J-III
10_90.1_1.0_25_ID FK221-13_Maruoka_(0C
LC1260
9/16/2016 3:59:29 PM
10_90.1_1.0_25_ID.M
10_90.1_1.0_25_
D.M

6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal: \quad DAD1 A, $\operatorname{Sig}=250,4$ Ref $=360,100$

RT [min] Type	Width [min]	Area	Height	Area应 Name
17.337 MM	0.4216	3744.0320	148.0126	82.5616
18.480 MM	0.3366	790.8032	39.1546	17.4384

6.2.23 Entry 27

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C: $:$ DataiFelixilnduktion_neuerKat_221iFK221-14_Maruoka_0 $0^{\circ} \mathrm{C} . \mathrm{D}$

C:IDataiFelixilnduktion_neuerKat_2211FK221-14_Maruoka_0 $0^{\circ} \mathrm{C} . \mathrm{D}$ FK221-14_Maruoka_0응 10_90.1_1.0_25_IDFK221-14_Maruoka_foC
LC1260
9/19/2016 4:00:16 PM
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_1 D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal:	DAD1 A, Sig=250,4 Ref=360,100							
RT [min] Type Width [min]	Area	Height	Area\%\% Name					
17.401 BV	0.3529	3043.9487	128.2518	83.1920				
18.454 VB	0.3006	614.9948	31.6648	16.8080				

6.2.24 Entry 31

Data file: \quad C:LDataiFelixilnduktion_neuerKat_221lFK221-19_NOBF4_Maruoka.D

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

FK221-19
FK221-19_NOBF4_Maruoka
LC1260
Injection volume: 10.000
10_90.1_1.0_25_ID.M 10_90.1_1.0_25_ D.M 6/5/2018 5:13:20 PM CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

| Signal: | DAD1 A, Sig=250,4 Ref=360,100 | | | |
| :---: | ---: | ---: | ---: | ---: | ---: |
| RT [min] Type | Width [min] | Area | Height | Areal! Name |
| 17.305 MM | 0.3036 | 800.9833 | 43.9698 | 50.3888 |
| 18.091 MM | 0.3241 | 788.6212 | 40.5596 | 49.6112 |
| | Sum | 1589.6045 | | |

6.2.25 Entry 32

Data file: \quad C:LDataiFelixilnduktion_neuerKat_2211FK221-43.D

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:

FK221-43
FK221-43 Diselenocin Acetal
LC1260
12/14/2018 4:28:34 PM
10_90.1_1.0_25_ID.M
10_90.1_1.0_25_|
D.M

6/5/2018 5:13:20 PM
CHIRALPAKID-3 555

Injection volume:	10.000
Acq. operator:	SYSTEM
Sample type:	Sample
Dilution:	1

Signal:	DAD	Sig=220,4	360,100		
RT [min]	Type	Width [min]	Area	Height	Area\% Name
23.469	MM	0.4227	26266.6113	1035.7816	38.5517
24.491	MM	0.4878	41866.8594	1430.5667	61.4483
		Sum	68133.4707		

6.2.26 Entry 33

Sample name: Description: Instrument: Injection date: Acq. method: Analysis method:

Last changed: Column name: Serial \#:
Data file: \quad C:IDataiFelixilnduktion_neuerKat_221ifK221-44.D

C:IDataiFelixIInduktion_neuerKat_221lFK221-44.D
FK221-44
FK221-44 Diselenocin Carbonat
LC1260
$12 / 14 / 20185: 12: 58 \mathrm{PM} \quad$ Injection volume: 10.000 10_90.1_1.0_25_ID.M ÁM. operator: SYSTEM 10_90.1_1.0_25_1 D. \bar{M} 6/5/2018 5:13:20 PM CHIRALPAKID-3 555
Acq. operator: \quad SYSTEM
Sample type: Sample

Dilution: 1

[^0]: D:DataffraetzsclFK215-01_o FK215-01

[^1]: D: DataifkraetzsCIFK235-01_.2 FK235-01

