Rational Design of Chiral Selenium-π-Acid Catalysts

F. Krätzschmar, S. Ortgies, R. Y. N. Willing, and A. Breder*

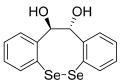
Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, D-37077 Göttingen, Germany

Supporting Information

Table of Contents

1 Inhalt

General Remarks	2
Synthetic Procedures	2
Synthesis of Diselenocines	2
Asymmetric imidation	5
Synthesis of alkoxycatalysts	6
Photocatalysts	21
Asymmetric lactonisation	22
NMR Spectra	24
Diselenocine catalysts	25
Imidation	
Alkoxy-catalysts	
Photocatalysts	59
Asymmetric lactonization	63
HPLC Chromatograms	64
Immidation	64
Lactonisation	71

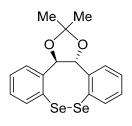

2 General Remarks

Chemicals were obtained from commercial sources and were used without further purification. Yields correspond to isolated compounds unless indicated otherwise. Purity is estimated to be ≥95% based on ¹H-NMR spectroscopic analysis. Irradiation experiments were performed at λ = 465 nm using commercially available blue LED strips (see experimental setup picture below). The light intensity applied was in the range of 3500-4500 lx. TLC: MACHEREY-NAGEL, TLC plates Alugram® Sil G/UV254. Visualization of the developed chromatogram was performed by fluorescence quenching at 254 nm and staining with potassium permanganate. Chromatography: Separations were carried out on Merck Silica 60 (0.063-0.200 mm, 70-230 mesh ASTM) using forced flow. GPC: Japan Analytical Industries (JAI) LC-92XX II Series, UV- and RI-detector, column: JAIGEL HH series; IR: Bruker FT-IR Alpha-spectrometer and JASCO FT/IR-4600 with ATR sampling module; High resolution mass spectrometry (HR-MS): APEX IV 7T FTICR, BRUKER Daltonic. NMR (¹H, ¹³C, ⁷⁷Se, ¹¹B, ³¹P) spectra were recorded at 300, 400, 500 MHz (¹H) and 75, 101, 126 MHz (¹³C, APT (Attached Proton Test)), respectively, on VARIAN Unity-300, AMX 300, Inova 400 and Inova 500 instruments in CDCl₃ solutions at 298 K, if not specified otherwise. Chemical shifts (δ) are given in ppm. Multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, quint = quintet, sex = sextet, sept = septet, m = multiplet). Melting point: KRUSS Melting Point Meter M5000; HPLC: Agilent Technologies 1290 Infinity; Kontron A.

3 Synthetic Procedures

3.1 Synthesis of diselenocines

3.1.1 (11*R*,12*R*)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6)^[1]

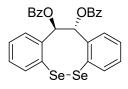

To a suspension of (R,R)-hydrobenzoin (5) (1.00 g, 4.66 mmol, 1.00 equiv.) in n-hexane (25 mL) and Et₂O (18 mL) n-BuLi (1.92 M in hexane, 14.6 mL, 1.79 g, 28.0 mmol, 6.00 equiv.) was added dropwise at rt. The resulting mixture was refluxed for 16 h at 50 °C. After cooling to rt selenium (1.84

g, 23.3 mmol, 5.00 equiv.) and THF (18 mL) were added and the mixture was stirred for further 1.5 h at 50 °C. After cooling to rt the mixture was poured into ice water (100 mL) and stirred for 1 h under air. The phases were separated and the aqueous phase was extracted with DCM (3 x 20 mL). The combined org. phases were washed with H₂O (3 x 20 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 5:1 PE/EtOAc) provided the title product as a yellow solid (581 mg, 1.57 mmol, 34 %).

TLC: $R_f = 0.19$ (PE/EtOAc, 5:1); **T**_m: 210-213 °C; **IR** (ATR): $\tilde{\nu} = 3430$, 3236, 2543, 2430, 1441, 1329, 1247, 1191, 1111, 1056, 898, 759, 734, 695 cm⁻¹; ¹**H-NMR** (300 MHz, DMSO-D₆): δ (ppm) =7.77 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.3 Hz, 2 H), 7.62 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.6 Hz, 2 H), 7.50 (ddd, ³*J* = 7.6,

7.6 Hz, ${}^{4}J$ = 1.3 Hz, 2 H), 7.27 (ddd, ${}^{3}J$ = 7.6, 7.6 Hz, ${}^{4}J$ = 1.6 Hz, 2 H), 5.67 (d, ${}^{3}J$ = 6.6 Hz, 2 H), 5.22 (d, ${}^{3}J$ = 6.6 Hz, 2 H); 1³**C-NMR** (75 MHz, DMSO-D₆): δ (ppm) = 152.3, 135.4, 130.0, 127.4, 126.7, 125.0, 73.9; ⁷⁷**Se NMR** (76 MHz, DMSO-D₆) δ = 461; **HR-MS** (ESI): calc. for C14H12NaO2Se2 ([M + Na]⁺): 394.9063, found: 394.9056; **optical rotation**: $\alpha^{D_{20}}$ = -208° (c = 1.00, MeOH).

3.1.2 (3a*R*,13b*R*)-2,2-Dimethyl-3a,13b-dihydrodibenzo[3,4:7,8][1,2]diselenocino-[5,6-d][1,3]dioxol (7a)^[2]

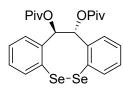


To a suspension of (11*R*,12*R*)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (**6**) (595 mg, 1.61 mmol, 1.00 equiv.) in 2,2-dimethoxypropane (1.98 mL, 1.68 g, 16.1 mmol, 10.0 equiv.) a drop of aq. HCl (37%) was added and the resulting mixture was stirred for 16 h at rt. One drop of NEt₃ was added and the solvent was evaporated. The residue was dissolved in CHCl₃ (10 mL), filtered through celite and the solvent was

removed under reduced pressure. Column chromatography (SiO₂, 50:1 PE/Et₂O) provided the title product as a yellow solid (427 mg, 1.04 mmol, 65 %).

TLC: $R_f = 0.13$ (PE/Et2O, 50:1); **Tm:** 106-109 °C; **IR** (ATR): $\tilde{v} = 3047$, 2979, 1454, 1369, 1240, 1205, 1061, 1025, 872, 753 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) =7.85 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.5 Hz, 2 H), 7.72 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.4 Hz, 2 H), 7.42 (ddd, ³*J* = 7.8, 7.5 Hz, ³*J* = 1.4 Hz, 2 H), 7.19 (ddd, ³*J* = 7.5, 7.5 Hz, ³*J* = 1.5 Hz, 2 H), 5.85 (s, 2 H), 1.75 (s, 6 H) ; ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 148.2, 136.2, 130.3, 129.6, 127.8, 127.6, 111.6, 84.7, 28.3 ;⁷⁷**Se NMR** (76 MHz, CDCl₃) δ = 472.95; **HR-MS** (ESI): calc. for C17H16NaO2Se2 ([M + Na]⁺): 434.9376, found: 434.9367; **optical rotation:** $\alpha^{D_{20}} = -100^{\circ}$ (c = 1.00, CHCl₃).

3.1.3 (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diyldibenzoat (7d)^[3]

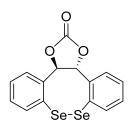

To a solution of (11R,12R)-11,12-dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6)(50 mg, 0.14 mmol, 1.0 equiv.) and DMAP (1.6 mg, 14 µmol, 0.10 equiv.) in pyridine (1.5 mL), benzoyl chloride (156 µL, 190 mg, 1.35 mmol, 10.0 equiv.) was added at 0 °C. The solution was

warmed to 40 °C and stirred for 24 h. Sat. aq. NaHCO₃-sol. (2.5 mL) was added and the solution was extracted with DCM (3 x 5 mL). The combined org. phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (PE/EtOAc, 10:1) provided the title product as a yellow solid (36 mg, 62 µmol, 46 %).

TLC: $R_f = 0.49$ (PE/EtOAc, 10:1); **T**_m: 180-185 °C; **IR** (ATR): $\tilde{\nu} = 3060$, 1722, 1451, 1246, 1094, 1068, 1025, 761, 706 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 8.20 (d, ³*J* = 7.6 Hz, 4 H), 7.85 (d, ³*J* = 7.5 Hz, 2 H), 7.16-7.67 (m, 12 H), 7.09 (s, 2 H) ; ¹³**C-NMR** (125 MHz, CDCl₃): δ (ppm) = 164.9, 147.1, 136.4, 133.4, 130.2, 129.9, 129.7, 128.6, 128.5, 128.4, 128.3, 127.6, 124.8, 76.1; **HR**-

MS (ESI): calc. for C₂₈H₂₀NaO₄Se₂ ([M + Na]⁺): 602.9590, found: 602.9525; **optical rotation**: $\alpha^{D_{20}}$ = +135° (c = 1.00, CHCl₃).

3.1.4 (11*R*,12*R*)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diylbis(2,2dimethylpropanoat) (7b)^[3]



To a solution of (11R,12R)-11,12-dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6) (70 mg, 0.19 mmol, 1.00 equiv.) and DMAP (1.6 mg, 14 µmol, 0.10 equiv.) in pyridine (1.5 mL), pivaloyl chloride (228 mg, 1.89 mmol, 10.0 equiv.) was added at 0 °C. The solution was warmed to

40 °C and stirred for 24 h. Sat. aq. NaHCO₃-sol. (2.5 mL) was added and the solution was extracted with DCM (3 x 5 mL). The combined org. phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (PE/EtOAc, 10:1) provided the title product as a yellow solid (100 mg, 186 µmol, 98 %).

TLC: *R*_{*f*} = 0.37 (PE/EtOAc, 10:1); **T**_m: 140-150 °C (decomposition); **IR** (ATR): \tilde{v} = 2973, 1734, 1278, 1129, 1114, 1038, 759, 735, 448 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.80 (dd, ³*J* = 7.6 Hz, ⁴*J* = 1.3 Hz, 2 H), 7.16-7.40 (m, 6 H), 6.71 (s, 2 H), 1.31 (s, 18 H); ¹³**C-NMR** (125 MHz, CDCl₃): δ (ppm) = 176.7, 147.5, 136.4, 130.1, 128.3, 128.2, 123.4, 75.6, 39.1, 27.4; **HR-MS** (ESI): calc. for C₂₄H₃₂NO₄Se₂ ([M+NH₄]⁺): 558.0661, found: 558.0630; **optical rotation:** $\alpha^{D_{20}}$ = +3° (c = 1.00, CHCl₃).

3.1.5 (3a*R*,13b*R*)-3a,13b-Dihydrodibenzo[3,4:7,8][1,2]diselenocino[5,6-d][1,3]dioxol-2-on (7c)^[4]

To a solution of (11R,12R)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6) (50 mg, 0.14 mmol, 1.0 equiv.) in DCM (1 mL) bis(trichlormethyl) carbonate (44 mg, 0.15 mmol, 1.1 equiv.) and NEt₃ (41 μ L, 30 mg, 300 μ mol, 2.30 equiv.) were added and the resulting mixture was stirred for 2 h at RT. H₂O (2 mL) was added and the mixture was extracted with DCM (3 x 5 mL). The combined org. phases were dried

over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (PE/EtOAc, 10:1) provided the title product as a yellow solid (32 mg, 81 μ mol, 60 %).

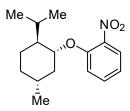
TLC: $R_f = 0.39$ (PE/EtOAc, 10:1); **T**_m: 245-252 °C (decomposition); **IR** (ATR): = $\tilde{\nu} = 3051$, 2922, 1822, 1798, 1143, 1067, 989, 744, 449 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.81 (m, 2 H), 7.50-7.54 (m, 4 H), 7.34 (m, 2 H), 6.21 (s, 2 H); ¹³**C-NMR** (125 MHz, CDCl₃): δ (ppm) = 154.8, 143.8, 136.9, 130.7, 129.3, 128.1, 124.4, 82.4; ⁷⁷**Se NMR** (76 MHz, CDCl₃) δ (ppm) = 465.16; **HR-MS** (ESI): calc for C₁₅H₁₄NO₃Se₂ ([M+NH₄]⁺): 415.9302, found.: 415.9281; **optical rotation**: $\alpha^{D_{20}} = -430^{\circ}$ (c = 1.00, CHCl₃).

3.2 Asymmetric imidation

3.2.1 (E)-Benzyl-4-(N-(phenylsulfonyl)phenylsulfonamid)pent-2-enoat (3)^[5]

 $N(SO_2Ph)_2$ To a solution of (*E*)-benzylpent-3-enoate (**1**) (50 mg, 0.26 mmol, $Me \rightarrow O$ To a solution of (*E*)-benzylpent-3-enoate (**1**) (50 mg, 0.26 mmol, 1.00 equiv.), NFSI (**2**) (83 mg, 260 µmol, 1.0 equiv.), and 4 Å molecular sieves (spatula tip) in the corresponding solvent (1.5 mL), the catalyst (13 µmol, 5 mol%) was added. The resulting suspension was stirred for 16 h at rt. The solvent was removed under reduced pressure and column chromatography (SiO₂, 10:1→3:1 PE/Et2O) provided the title product as a colorless solid.

entry	solvent	catalyst	m (product)	n (product)	yield	ее
1	THF	7a	37 mg	76 µmol	29 %	19 %
2	1,4-dioxane	7a	22 mg	45 µmol	17 %	15 %
3	DCM	7a	23 mg	47 µmol	18 %	18 %
4	MeNO ₂	7a	20 mg	42 µmol	16 %	8 %
5	MeCN	7a	64 mg	0.13 mmol	50 %	3 %
6	Toluol	7a	20 mg	42 µmol	16 %	14 %
7	THF/MeCN (9:1)	7a	47 mg	97 µmol	37 %	7 %
8	MTBE	7a	36 mg	74 µmol	28 %	16 %
9	Et ₂ O	7a	34 mg	71 µmol	27 %	14 %
10	cyclohexane	7a	-	-	0 %	-
11	THF	7d	66 mg	0.14 mmol	52 %	16 %
12	THF	7d	63 mg	0.13 mmol	49 %	8 %
13	THF	7c	103 mg	213 µmol	81 %	50 %

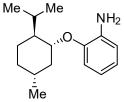

Table 1: Conditions used in the asymmetric imidation

TLC: $R_f = 0.11$ (PE/ Et₂O, 3:1); **IR** (ATR): $\tilde{\nu} = 3067$, 2937, 1721, 1448, 1377, 1354, 1084, 1165, 850, 720, 684, 546 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.93-8.12 (m, 4 H), 7.61 (m, 2 H), 7.45-7.57 (m, 4 H), 7.29-7.44 (m, 5 H), 7.00 (dd, ³*J* = 15.9 Hz, 5.6 Hz, 1 H), 5.79 (dd, ³*J* = 15.9 Hz, ⁴*J* = 1.8 Hz, 1 H), 4.91 (qdd, ³*J* = 7.0, 5.6 Hz, ⁴*J* = 1.8 Hz, 1 H), 5.17 (s, 2 H), 1.54 (d, ³*J* = 6.9 Hz, 3

H); ¹³**C-NMR** (125 MHz, CDCl₃): δ (ppm) = 18.8, 58.1, 66.4, 122.8, 128.3, 128.5, 128.6, 128.9, 129.0, 133.9, 135.7, 139.9, 146.0, 165.3; **HR-MS** (ESI): calc. for C₂₄H₂₃NO₆S₂ ([M+H]⁺): 486.1040, found: 486.1038; **HPLC**: 22.734 min., 25.738 min. (Daicel Chiralpak IA; eluent *n*-hexane/*i*-PrOH, 90:10; flow rate: 0.8 mL/min.).

3.3 Synthesis of alkoxycatalysts

3.3.1 1-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene [6]

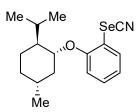


Sodium hydride (60 w% in mineral oil, 1.91 g, 47.7 mmol, 1.50 equiv.) was suspended in dry THF (20 mL) under argon-atmosphere at 0 °C, treated with 2-fluoronitrobenzene (3.00 g, 21.0 mmol, 1.00 equiv.). A solution of (–)-menthol (4.98 g, 31.8 mmol, 1.50 equiv.) in dry THF (16 mL) was slowly added, and the mixture was allowed to warm to rt and

stirred for 16 h at 60 °C. After cooling to rt, sat. aq. NH₄Cl-sol. (45 mL) was added, the aqueous phase was extracted with DCM (3 x 25 mL), the combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 20:1 pentane/DCM) provided the title product as a yellow solid (4.48 g, 16.0 mmol, 76%).

TLC: $R_f = 0.71$ (pentane/EtOAc: 30:1); **IR** (neat): $\tilde{\nu} = 2953$, 2929, 2870, 2360, 1602, 1524, 1485, 1456, 1355, 1277, 1256, 1163, 984, 851, 747, 669 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.78 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.7 Hz, 1 H), 7.49 (ddd, ³*J* = 8.5, 7.4, ⁴*J* = 1.8 Hz 1 H), 7.10 (dt, ³*J* = 8.5, ⁴*J* = 0.9 Hz, 1 H), 6.98 (ddd, ³*J* = 8.1, 7.4, ⁴*J* = 1.2 Hz, 1 H), 4.22 (td, ³*J* = 10.6, 4.2, 1 H), 2.30-2.18 (m, 1 H), 2.18-2.10 (m, 1 H), 1.76 (ddt, ³*J* = 11.5, 4.9 Hz, ⁴*J* = 2.8 Hz, 2 H), 1.63 (ddt, ³*J* = 13.3, 10.2 Hz, ⁴*J* = 3.2 Hz, 1 H), 1.50 (tdd, ³*J* = 12.0, 6.5 Hz, ⁴*J* = 3.3 Hz, 1 H), 1.3-1.2 (m, 2 H), 0.95 (dd, ³*J* = 6.8, 1.3 Hz, 6 H), 0.77 (d, ³*J* = 7.0 Hz, 3 H); ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 151.6, 133.6, 125.5, 119.6, 115.1, 79.3, 47.6, 39.7, 34.2, 31.5, 25.8, 23.5, 22.0, 20.7, 16.4) **HR-MS (ESI)**: calc. for.: C₁₆H₂₃NO₃Na ([M+Na]⁺): 300.1570 found: 300.1572; **optical rotation** $\alpha^{D_{20}} = -87^{\circ}$ (c = 0.52, CHCl₃).

3.3.2 2-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)aniline (9b)^[7]

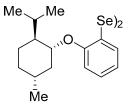


1-(((1*R*,2*S*,5*R*)-2-Isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene (4.33 g, 15.6 mmol, 1.00 equiv.) was dissolved in ethanol/acetic acid (250 mL, 1:1), treated with iron powder (2.62 g, 46.0 mmol, 3.00 equiv.) and stirred for 3 h at 100 °C. After cooling to rt the mixture was diluted with EtOAc (275 mL) and the *pH* value was adjusted to *pH*=10 using aq.

NaOH (1 M) and sat. aq. Na₂CO₃-sol. The phases were separated and the organic phase was washed with sat. aq. NaHCO₃-sol. (3 x10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 50:1 pentane/EtOAc) provided the title product as a yellow oil (2.50 g, 10.1 mmol, 65%).

TLC: R_f = 0.19 (Pent/EtOAc: 30:1); **IR** (neat): \tilde{v} = 2955, 2925, 2867, 1612, 1503, 1456, 1275, 1217, 1038, 1012, 991, 739 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 6.84-6.64 (m, 4 H), 4.06 (d, ³*J* = 4.1 Hz, 1 H), 3.76 (s, 2 H), 2.27 (qd, ³*J* = 7.0, ⁴*J* = 2.8 Hz, 1 H), 2.18 (dtd, ³*J* = 12.4, 3.8, ⁴*J* = 2.1 Hz, 1 H), 1.81-1.66 (m, 2 H), 1.66-1.36 (m, 2 H), 1.13 (m, 1 H), 1.01 (m, 1 H), 0.92 (dd, ³*J* = 10.3, 6.8Hz, 7 H), 0.80 (d, ³*J* = 6.9 Hz, 3 H). ¹³**C-NMR** (75 MHz, CDCl₃): δ (ppm) = 145.6, 137.3, 120.8, 118.4, 115.4, 113.1, 77.8, 48.1, 40.5, 34.6, 31.4, 26.1, 23.7, 22.2, 20.9, 16.7); **HR-MS** (ESI): calc. for: C₁₆H₂₆Na [M+Na]⁺: 248.2009, found: 248.2013; **optical rotation** $\alpha^{D_{20}}$ = -115° (c = 1.00, CHCl₃).

3.3.3 1-(((1R,2S,5R)-2-Isopropyl-5-methylcyclohexyl)oxy)-2-selenocyanatobenzol (10b)

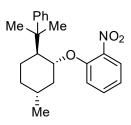


BF₃·OEt₂ (4.24 mL, 4.79 g, 34.0 mmol, 3.50 equiv.) was dissolved in dry THF (65 mL) under an argon atmosphere at -30 °C (((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)aniline (2.50 g, 10.1 mmol, 1.00 equiv.) in dry THF (20 mL) and *tert*-butylnitrite (4.59 mL, 3.98 g, 39 mmol, 4.00 equiv.) were slowly added and the mixture was

warmed to rt within 30 min and stirred for further 30 min at rt. The resulting solid was filtered off and washed with diethyl ether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was also treated with diethyl ether (40 mL) and the resulting solid was also filtered off and washed with diethyl ether. The combined solids were dried *in vacuo* and then dissolved in dry acetonitrile (50 mL). The solution was cooled to – 20 °C and a solution of potassium selenocyanate (1.39 g, 9.64 mmol, 1.00 equiv.) in dry acetonitrile (25 mL) was slowly added. The mixture was slowly warmed to 0 °C (ice bath) and warmed to rt over 16 h. The mixture was diluted with DCM/water (100 mL, 1:1) and the phases were separated. The aqueous phase was extracted with diethyl ether (3 x 50 mL) and the combined organic phases were dried over Na₂SO₄. Removal of the solvent under reduced pressure provided the title product as an orange-red oil (2.98 g, 8.86 mmol, 88%). The crude product was used without further purification.

TLC: R_f = 0.44 (Pent/EtOAc: 30:1); **IR** (neat): $\tilde{\nu}$ = 2955, 2925, 2865, 1471, 1243, 991, 749, 679, 669, 656 cm⁻¹; ¹**H NMR** (300 MHz, CHCl₃) δ (ppm) = 7.61 (dd, ³*J* = 7.9 Hz, ⁴*J* =1.5 Hz, 1 H), 7.30 (m, 1 H), 6.99 (m, 1 H), 6.88 (m, 1 H), 4.14 (td, ³*J* = 10.5, 4.2 Hz, 1 H), 2.17 – 2.04 (m, 2 H), 1.79 – 1.66 (m, 2 H), 1.62 – 0.84 (m, 12 H), 0.75 (d, ³*J* = 6.9 Hz, 2 H). ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 154.0, 129.6, 129.3, 122.4, 112.6, 101.8, 79.2, 47.8, 40.2, 34.3, 31.5, 26.3, 23.7, 22.1, 20.8, 16.7); **HR-MS (ESI)**: calc. for: C₁₇H₂₃NOSeNa ([M+Na]⁺): 360.0838; found: 360.0841.

3.3.4 1,2-Bis(2-(((1*S*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)oxy)-phenyl)diselane (11b)^[8]

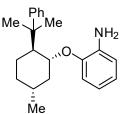


1-(((1*S*,2*R*,5*S*)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2selenocyan-atobenzene (2.98 g, 8.86 mmol, 1.00 equiv.) was dissolved in ethanol (50 mL), treated with aq. NaOH sol. (2.4 M, 4 mL, 10.0 mmol, 1.10 equiv.) and stirred for 1 h at rt. A mixture of DCM/water (120 mL, 1:1) was added, the phases were separated, and the aqueous phase was

extracted with DCM (3 x 60 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 20:1 pentane/DCM) provided the title product as a yellow oil (900 mg, 1.45 mmol, 33%).

TLC: $R_f = 0.50$ (pentane/EtOAc: 30:1); **IR** (neat): $\tilde{\nu} = 2948$, 2921, 2866, 1572, 1463, 1441, 1275, 1264, 1234, 1046, 1028, 1009, 992, 747, 668, 655 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) = 7.51 (dd, ${}^{3}J = 8.0$ Hz, ${}^{4}J = 1.6$ Hz, 1 H), 7.15 (ddd, ${}^{3}J = 8.2$, 7.4 Hz, ${}^{4}J = 1.6$ Hz, 1 H), 6.84-6.79 (m, 2 H), 4.15 (dt, ${}^{3}J = 10.5$, 4.1 Hz, 1 H), 2.36 (quintd, ${}^{3}J = 7.0$, ${}^{4}J = 2.8$ Hz, 1 H), 2.18 (m,1 H), 1.81-1.68 (m, 2 H), 1.67-1.58 (m, 2H), 1.48 (dddd, ${}^{3}J = 15.2$, 12.0, 5.8 Hz, ${}^{4}J = 3.3$ Hz, 1 H), 1.21-1.05 (m, 2 H), 0.95 (dd, ${}^{3}J = 15.8$, 6.8 Hz, 6 H), 0.81 (d, ${}^{3}J = 7.0$ Hz, 3 H); ¹³**C-NMR** (101 MHz, CDCl₃): δ (ppm) = 155.3, 130.2, 127.6, 121.5, 120.2, 112.1, 78.6, 47.9, 40.3, 34.4, 31.5, 26.1, 23.6, 22.1, 20.9, 16.7; ⁷⁷**Se-NMR** (95 MHz, CDCl₃): δ (ppm) =324.79; **HR-MS** (**ESI**): calc. for: C₃₂H₄₆O₂Se₂K ([M+K]⁺): 661.1466, found: 661.1422; **optical rotation** $\alpha^{D_{20}} = -93^{\circ}$ (c = 1.10, CHCl₃).

3.3.5 1-(((1R,2S,5R)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-nitrobenzene^[6]

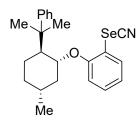


Sodium hydride (60 w% in mineral oil, 103 mg, 2.58 μ mol, 1.50 equiv.) was suspended in dry THF (6 mL) under an argon atmosphere at 0 °C, treated with 2-fluoronitrobenzene (243 mg, 1.72 mmol, 1.00 equiv.). (–)-8-phenylmenthol (600 mg, 2.58 mg, 1.50 equiv.) in dry THF (2 mL) was slowly added and the mixture was allowed to warm to rt and stirred for 16 h at 60 °C. After cooling to rt, sat. aq. NH₄Cl-sol. (10 mL) was added,

the aqueous phase was extracted with DCM (3 x 25 mL), the combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 20:1 pentane:DCM) provided the title product as a yellow solid (553 mg, 1.71 mmol, 99%).

TLC: *R*_{*f*}= 0.26 (15:1 Hex:EtOAc); **T**_m: 82 °C; **IR** (ATR): \tilde{v} = 2925, 1604, 1525, 1483, 1353, 1279, 989, 767, 701 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃): δ (ppm) =7.73 (dd, ³*J* = 8.0 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.42 (ddd, ³*J* = 8.4, 7.3 Hz, ⁴*J* = 1.8 Hz, 1 H), 7.26 – 7.18 (m, 4 H), 7.12 (m, 1 H), 6.93 (ddd, ³*J* = 8.1, 7.4 Hz, ⁴*J* = 1.1 Hz, 1 H), 6.88 (d, ³*J* = 8.4 Hz, 1 H), 4.22 (td, ³*J* = 10.4, 4.2 Hz, 1 H), 2.08 – 1.90 (m, 2 H), 1.60 – 1.48 (m, 2 H), 1.36 (s, 7 H), 1.12 (td, ³*J* = 12.6, 10.8 Hz, 1 H), 1.02 (tdd, ³*J* = 13.5, 12.1, 3.8 Hz, 1 H), 0.91 – 0.78 (m, 4 H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) =150.2, 149.5, 141.0, 133.5, 127.8, 126.0, 125.6, 125.3, 119.5, 114.5, 79.0, 51.3, 40.4, 40.0, 34.5, 31.3, 29.6, 27.2, 25.6, 21.7; **HR-ESI-MS** (m/z) calc. for C₂₂H₂₇O₃NNa [M+Na]⁺: 376.1883, found: 376.1883; **optical rotation**: $\alpha^{D_{20}}$ = –158° (0.99, CHCl₃).

3.3.6 2-(((1R,2S,5R)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)aniline (9c) [7]

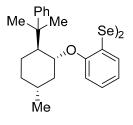


1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2nitrobenzene (200 mg, 566 µmol, 1.00 equiv.) was dissolved in ethanol/acetic acid (9 mL, 1:1), treated with iron powder (95 mg, 1.70 mmol, 3.00 equiv.) and stirred for 3 h at 100 °C. After cooling to rt, the

Me mixture was diluted with EtOAc (10 mL) and sat. aq. Na₂CO₃-sol. (10 mL) was added. The phases were separated and the organic phase was washed with sat. aq. NaHCO₃-sol. (3 x10 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 20:1 15:1 pentane/EtOAc) provided the title product as a yellow oil (110 mg, 340 µmol, 61%).

TLC: *R_f* = 0.18 (15:1 Hex:EtOAc); **IR** (ATR): $\tilde{\nu}$ = 2951, 2922, 2867, 1611, 1501, 1457, 1278, 1213, 1008, 764, 735, 700 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃): δ (ppm) =7.37 – 7.20 (m, 4 H), 7.19 – 7.08 (m, 1 H), 6.74 – 6.55 (m, 4 H), 4.19 (td, ³*J* = 10.4, 3.9 Hz, 1 H), 3.00 (sbr, 2 H), 2.27 – 2.00 (m, 2 H), 1.84 – 1.55 (m, 2 H), 1.37 (s, 4 H), 1.27 (s, 3 H), 1.12 (m, 1 H), 1.03 – 0.78 (m, 5 H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 152.1, 144.1, 137.1, 127.9, 125.5, 124.8, 120.2, 118.0, 115.2, 111.0, 76.8, 51.4, 40.1, 39.9, 35.0, 31.3, 28.1, 26.8, 25.7, 21.8; **HR-ESI-MS** (m/z) calc. for C₂₂H₃₀ON [M+H]⁺: 324.2322, found: 324.2322; **optical rotation:** $\alpha^{D_{20}}$ = -78° (0.92, DCM).

3.3.7 1-(((1*R*,2*S*,5*R*)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-selenocyanatobenzene (10c)



BF₃·Et₂O (564 μ L, 638 mg, 5.06 mmol, 3.50 equiv.) was dissolved in dry THF (2.5 mL) under an argon atmosphere at -30 °C. A solution of 2-(((1*S*,2*R*,5*S*)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)aniline (**9c**) (468 mg, 1.45 mmol, 1.00 equiv.) in dry THF (10 mL) and *tert*-butylnitrite (688 μ L, 597 mg, 5.79 mmol, 4.00 equiv.) were slowly added and the mixture was warmed to rt within 30 min and stirred for

further 30 min at rt. The resulting solid was filtered off and washed with diethylether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was also treated with diethyl ether (40 mL) and the resulting solid was also filtered off and washed with diethyl ether. The combined solids were dried *in vacuo* and dissolved in dry acetonitrile (10 mL). The solution was cooled to -20 °C and a solution of potassium selenocyanate (418 mg, 2.90 mmol, 2.00 equiv.) in dry acetonitrile (5 mL) was slowly added. The mixture was slowly warmed to 0 °C (ice bath) and warmed to rt over 16 h. Then the mixture was diluted with DCM/water (20 mL, 1:1) and the phases were separated. The aqueous phase was extracted with diethyl ether (3 x 10 mL) and the combined organic phases were dried over Na2SO4. Removal of the solvent under reduced pressure provided the title product as orange-red oil (433 mg, 1.04 mmol, 72%). The crude product was used without further purification.

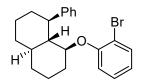
IR (ATR): $\tilde{\nu}$ = 2956, 2924, 2869, 2151, 1585, 1494, 1470, 1445, 1239, 1030, 993, 749, 700 cm-1; **H-NMR** (300 MHz, CDCl₃): δ (ppm) =7.62 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.43 – 7.09 (m, 6 H), 7.01 (td, ³*J* = 7.6 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.82 (dd, ³*J* = 8.4, ⁴*J* = 1.2 Hz, 1 H), 4.28 (m, 1 H), 2.17 – 1.91 (m, 2 H), 1.77 – 0.78 (m, 17 H); **HR-ESI-MS** (m/z) calc. for: C₂₃H₂₇ONSeNa [M+Na]⁺: 436.1151, found: 436.1151.

3.3.8 1,2-Bis(2-(((1R,2S,5R)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl) diselane (11c)^[8]

1-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-selenocyanatobenzene (420 mg, 1.01 mmol, 1.00 equiv.) was dissolved in ethanol (12 mL), treated with aq. NaOH-sol. (4.5 M, 161 µL, 725 µmol, 0.50 equiv.) and stirred for 1 h at rt. A mixture of DCM/water (20 mL, 1:1) was added, the phases were separated, and the aqueous phase was extracted with DCM (3 x 10 mL). The combined organic phases were dried over Na₂SO₄

and the solvent was removed under reduced pressure. Column chromatography (SiO₂, $20:1 \rightarrow 5:1$ pentane/DCM) provided the title product as yellow oil (214 mg, 277 µmol, 54%).

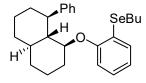
TLC: $R_f = 0.18$ (15:1 Hex:EtOAc); **IR** (ATR): $\tilde{v} = 2952$, 2921, 2868, 1571, 1464, 1441, 1227, 1030, 996, 908, 746, 700, 409 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃): δ (ppm) = 7.50 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.37 – 7.32 (m, 2 H), 7.26 (m, 2 H), 7.20 – 7.10 (m, 2 H), 6.83 (ddd, ³*J* = 7.8, 7.3 Hz, ⁴*J* = 1.1 Hz, 1 H), 6.72 (m, 1 H), 4.25 (td, ³*J* = 10.4, 4.1 Hz, 1 H), 2.12 – 2.00 (m, 2 H), 1.61 – 1.29 (m, 9 H), 1.09 (td, ³*J* = 12.5, 10.7 Hz, 1H), 1.00 (m, 1 H), 0.92 – 0.81 (m, 4 H); ¹³**C-NMR** (126 MHz, CDCl₃): δ (ppm) = 153.9, 150.1, 130.4, 127.9, 127.5, 126.1, 125.3, 121.5, 120.6, 111.8, 78.4, 51.5, 40.7, 40.4, 34.7, 31.4, 30.6, 27.3, 25.1, 21.8; ⁷⁷**Se-NMR** (95 MHz, CDCl₃) δ (ppm) = 331.86. HR-ESI-MS (m/z) calc. for: C₄₄H₅₄O₂Se₂Na [M+Na]⁺: 797.2356 found: 797.2338. optical rotation: α^{D}_{20} = -84 (0.60, CHCl₃).


3.3.9 (15,4aR,8R,8aR)-8-Phenyldecahydronaphthalen-1-ol^[9]

The compound was synthesized according to a literature-known procedure. The spectra are in accordance with the literature.

TLC: *R_f* (30:1 Pent/EtOAc) = 0.13; **IR** (ATR) $\tilde{\nu}$ = 3591, 2921, 2853, 1714, 1493, 1449, 1048, 759, 701 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =7.50 – 7.13 (m, 5 H), 3.49 (dddd, ³*J* = 10.6, 9.1, 4.5 Hz, ⁴*J* = 1.9 Hz, 1 H), 2.41 (ddd, ³*J* = 11.9, 10.3, ⁴*J* = 3.3 Hz, 1 H), 2.04 – 0.92 (m, 13 H); ¹³**C-NMR** (126 MHz,CDCl₃) δ (ppm) =146.8, 129.1, 127.4, 126.8, 75.6, 54.8, 50.5, 41.8, 37.1, 35.1, 33.9, 33.8, 26.5, 23.9; **HR-ESI-MS** m/z calc. for C₁₆H₂₂ONa ([M+Na]⁺): 253.1563, found: 253.1563; **optical rotation**: $\alpha^{D_{20}}$ = 9.9° (c = 1.00, CHCl₃).

3.3.10 (1S,4aR,8R,8aR)-1-(2-Bromophenoxy)-8-phenyldecahydronaphthalene (16)^[10]



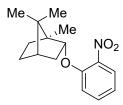
(1*S*,4a*R*,8*R*,8a*R*)-8-Phenyldecahydronaphthalen-1-ol (275 mg, 1.19 mmol, 1.00 equiv.) and 1-bromo-2-fluorobenzene (189 mg, 1.08 mmol, 0.90 equiv.) were dissolved in dry DMF (3 mL) and potassium *tert*-butoxide (1 M in THF, 1.37 mL, 1.37 mmol, 1.15 equiv.)

was added dropwise. The mixture was stirred for 16 h at 100 °C and another portion of 1bromo-2-fluorobenzene (100 mg, 570 µmol, 0.48 equiv.) and potassium *tert*-butoxide (1 M in THF, 1.00 mL, 1.00 mmol, 0.90 equiv.) were added. The reaction was stirred 3 h at 100 °C and, after cooling to rt quenched with H₂O (5 mL). The mixture was extracted with Et₂O (3 x 10 mL), the combined org. phases were washed with water (2 x 10 mL) and brine (10 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, pentane \rightarrow 4:1 pentane:DCM) provided the title product as yellow oil (261 mg, 677 µmol, 57%).

TLC: *R_f* (4:1 Pent/DCM) = 0.74; **IR** (ATR) \tilde{v} = 2925, 2852, 1585, 1474, 1441, 1272, 1245, 1031, 744, 697 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =7.23 (dd, ³*J* = 7.8 Hz, ⁴*J* = 1.7 Hz, 1 H), 7.12 – 6.99 (m, 3 H), 6.99 (t, ³*J* = 7.4 Hz, 2H), 6.89 (m, 1 H), 6.65 (dd, ³*J* = 8.4 Hz, ⁴*J* = 1.3 Hz, 1 H), 6.60 (td, ³*J* = 7.6 Hz, ⁴*J* = 1.4 Hz, 1 H), 4.13 (td, ³*J* = 9.6, 4.7 Hz, 1 H), 2.45 – 2.30 (m, 2 H), 1.99 – 1.13 (m, 15 H).; ¹³**C-NMR** (125 MHz,CDCl₃) δ (ppm) = 153.4, 146.9, 133.0, 127.6, 127.0, 125.0, 120.5, 113.6, 113.0, 80.5, 51.7, 50.8, 42.9, 37.3, 34.0, 32.0, 26.6, 23.6; **HR-ESI-MS** m/z calc. for C₂₂H₂₅OBrNa ([M+Na]⁺): 407.0981, found: 407.0980; **optical rotation:** $\alpha^{D_{20}}$ = -41.9° (c = 1.04, CHCl₃).

3.3.11 Butyl(2-(((1*S*,4*aR*,8*R*,8*aR*)-8-phenyldecahydronaphthalen-1-yl)oxy)phenyl)selane (11d)

(1*S*,4a*R*,8*R*,8a*R*)-1-(2-bromophenoxy)-8-

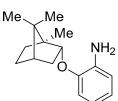

phenyldecahydronaphthalene (**16**) (260 mg, 677 μ mol, 1.00 equiv.) was dissolved in dry Et₂O (12 mL) and *n*-butyllithium (2.5 M in hexane, 298 μ L, 745 mmol, 1.10 equiv.) was added dropwise. The

mixture was stirred for 1 h at 45°C and selenium (160 mg, 2.03 mmol, 3.00 equiv.) was added. The mixture was stirred for another 16 h at 45 °C and quenched with NH₄Cl (10 mL). The mixture was extracted with DCM (3 x 20 mL), the combined org. phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 20:1 Pent/DCM) followed by gel-permeation chromatography (CHCl₃) provided the title product as yellow oil (48.5 mg, 110 µmol, 16%).

TLC: $R_f = 0.21$ (pentane:DCM) ; **IR** (ATR) $\tilde{v} = 2922$, 2852, 1574, 1467, 1440, 1268, 1233, 1123, 1036, 1012, 965, 753, 697 cm⁻¹; ¹**H-NMR** (500 MHz, CDCl₃) δ (ppm) = 7.11 – 7.01 (m, 3 H), 7.05 – 6.93 (m, 3 H), 6.86 (tt, ³*J* = 7.4 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.69 (td, ³*J* = 7.4 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.60

(dt, ${}^{3}J$ = 8.0 Hz, ${}^{4}J$ = 1.0 Hz, 1 H), 4.09 (td, ${}^{3}J$ = 9.7, 4.5 Hz, 1 H), 2.67 – 2.56 (m, 2 H), 2.41 (ddd, ${}^{3}J$ = 12.0, 10.3, ${}^{4}J$ = 3.5 Hz, 1 H), 1.92 – 1.11 (m, 18 H), 0.90 (t, ${}^{3}J$ = 7.4 Hz, 3 H); 13 C-NMR (126 MHz,CDCl₃) δ (ppm) = 155.3, 147.2, 130.0, 127.6, 127.0, 126.0, 124.8, 122.6, 120.5, 113.1, 81.2, 53.4, 51.6, 50.6, 42.3, 37.4, 33.9, 33.5, 32.1, 31.6, 26.5, 24.7, 23.5, 23.1, 13.6; 77 Se-NMR (95 MHz, CDCl₃) δ (ppm) = 232.35; HR-ESI-MS m/z calc. for C₂₆H₃₅OSe ([M+H]⁺): 443.1849, found: 443.1854; optical rotation: $\alpha^{D_{20}}$ = -65.8° (c = 0.96, CHCl₃).

3.3.12 (1S)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane^[6]

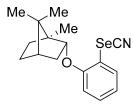


Sodium hydride (60 w% in mineral oil, 2.00 g, 13.0 mmol, 1.25 equiv.) was suspended in dry THF (32 mL) under an argon atmosphere at 0 °C, treated with 2-fluoronitrobenzene (1.46 mg, 10.37 mmol, 1.00 equiv.). A solution of (–)-borneol (2.00 g, 13.0 mmol, 1.25 Äq equiv.) in dry THF (12 mL) was slowly added and the mixture was allowed to warm to rt and

stirred for 16 h at 60 °C. After cooling to rt sat. aq. NH₄Cl-sol. (30 mL) was added, the aqueous phase was extracted with DCM (3 x 50 mL), the combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 15:1 pentane/EtOAc) provided the title product as an orange solid (2.36 g, 8.57 mmol, 83%).

TLC: $R_f = 0.41$ (30:1 pentane:EtOAc); **T**_m: 68 °C; **IR** (ATR) $\tilde{\nu} = 2953$, 1606, 1523, 1482, 1351, 1274, 1164, 1021, 867, 840, 743 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =7.82 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.7 Hz, 1 H), 7.47 (ddd, ³*J* = 8.3, 7.4 Hz, ⁴*J* = 1.7 Hz, 1 H), 6.99 – 6.89 (m, 2 H), 4.43 (ddd, ³*J* = 9.3, 3.3 Hz, ⁴*J* = 1.7 Hz, 1 H), 2.40 (ddt, ³*J* = 13.3, 9.2, 3.8 Hz, 1 H), 2.27 (m, 1 H), 1.87 – 1.70 (m, 2 H), 1.46 – 1.21 (m, 2 H), 1.16 (dd, ³*J* = 13.3, 3.4 Hz, 1 H), 0.94 (s, 6 H), 0.93 (s, 3 H); ¹³**C-NMR** (76 MHz, CDCl₃) δ (ppm) = 152.5, 140.1, 133.9, 125.6, 119.5, 115.4, 85.1, 49.8, 47.6, 45.1, 36.6, 27.8, 26.8, 19.6, 18.9, 13.6; **HR-ESI-MS** m/z calc. for C₁₆H₂₁NO₃Na ([M+Na]⁺): 298.1414, found: 298.1418; **optical rotation** $\alpha^{D_{20}} = -136$ ° (c = 0.997, CHCl₃).

3.3.13 2-(((15,2R,4S)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (9a) [7]

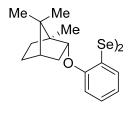

(1*S*)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane
(2.00 g, 7.26 mmol, 1.00 equiv.) was dissolved in ethanol/acetic acid (140 mL, 1:1), treated with iron powder (1.22 g, 21.8 mmol, 3.00 equiv.) and stirred for 3 h at 100 °C. After cooling to rt the mixture was diluted with EtOAc (10 mL) and brought to pH=10 by the addition of aq. NaOH-sol. (1 M). The

phases were separated and the organic phase was washed with sat. aq. NaHCO₃-sol. (3 x100 mL). The combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 30:1 pentane:EtOAc) provided the

title product as a red solid (1.33 g, 5.42 mmol, 75%). (1*S*)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane (222 mg, 806 µmol, 11%) could be reisolated.

TLC: *R*_f = 0.34 (15:1 Hex:EtOAc); **T**_m:66 °C; **IR** (ATR) \tilde{v} = 2951, 1612, 1504, 1457, 1273, 1216, 1114, 1053, 735 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) = 6.81 – 6.63 (m, 4H), 4.34 (ddd, ³*J*_{HH} = 9.2, 3.3 Hz, ⁴*J*_{HH} = 1.9 Hz, 1H), 3.80 (sbr, 2H), 2.39 (dddd, ³*J*_{HH} = 13.6, 9.2, 4.7, 3.3 Hz, 1H), 2.27 – 2.17 (m, 1H), 1.85 – 1.72 (m, 2H), 1.45 – 1.34 (m, 1H), 1.29 (m, 1H), 1.17 (dd, ³*J*_{HH} = 13.4, 3.4 Hz, 1H), 0.95 (s, 3H), 0.95 (s, 3H), 0.92 (s, 3H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) = 146.5, 136.6, 120.6, 118.4, 115.0, 112.5, 83.1, 49.6, 47.6, 45.2, 37.0, 28.0, 27.1, 19.7, 18.9, 13.9; **HR-ESI-MS** m/z calc. for: C₁₆H₂₄NO ([M+H]⁺): 246.1852,found: 246.1860; **optical rotation** $\alpha^{D_{20}}$ = -117 ° (c = 1.00, CHCl₃, 3mm).

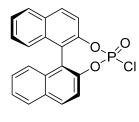
3.3.14 (1S)-1,7,7-Trimethyl-2-(2-selenocyanatophenoxy)bicyclo[2.2.1]-heptane (10a)



BF₃·OEt₂ (796 μ L, 899 mg, 7.14 mmol, 3.50 equiv.) was dissolved in dry THF (15 mL) under argon atmosphere at -30 °C. A solution of 2-(((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (**9a**) (500 mg, 2.04 mmol, 1.00 equiv.) in dry THF (15 mL) and *tert*-butyl nitrite (841 mg, 8.16 mmol, 4.00 equiv.) were slowly added and the

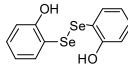
mixture was slowly warmed to rt within 30 min and stirred for further 30 min at rt. The resulting solid was filtered off and washed with diethyl ether until it was completely white (ATTENTION: USE EXPLOSION SHIELD!). The filtrate was treated with pentane (15 mL) and the resulting solid was filtered off. The combined solids were dried *in vacuo* and then dissolved in dry acetonitrile (10 mL). The solution was cooled to -20 °C and potassium selenocyanate (293 mg, 2.04 mmol, 1.00 equiv.) in dry acetonitrile (5 mL) was slowly added. The mixture was slowly warmed to 0 °C (ice-bath) and warmed to rt over 16 h. Then the mixture was diluted with DCM/water (20 mL, 1:1) and the phases were separated. The aqueous phase was extracted with DCM (2 x 20 mL) and the combined organic phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 4:1 Pent/DCM) provided the title product as an brown oil (409 mg, 1.22 mmol, 60%).

TLC: R_f (4:1 Pent:DCM) = 0.15; **IR** (ATR) \tilde{v} = 2953, 1574, 1472, 1446, 1305, 1278, 1245, 1054, 1022, 993, 746 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) = 7.63 (dd, ³*J* = 7.9 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.29 (ddd, ³*J* = 8.2, 7.5 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.00 (ddd, ³*J* = 7.9, 7.5 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.76 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.2 Hz, 1 H), 4.41 (ddd, ³*J* = 9.3, 3.3 Hz, ⁴*J* = 1.9 Hz, 1 H), 2.39 (dddd, ³*J* = 13.7, 9.2, 4.6, 3.3 Hz, 1 H), 2.10 (ddd, ³*J* = 13.4, 9.3, 3.9 Hz, 1 H), 1.91 – 1.71 (m, 2 H), 1.42 (m, 1 H), 1.27 (m, 1 H), 1.13 (dd, ³*J* = 13.5, 3.3 Hz, 1 H), 0.96 (s, 3 H), 0.94 (s, 3 H), 0.93 (s, 3 H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) = 154.9, 129.7, 129.6, 122.4, 113.7, 112.8, 101.6, 84.9, 49.8, 47.7, 45.1, 36.7, 27.8, 27.0, 19.6, 18.9, 13.8; ⁷⁷**Se-NMR** (76 MHz, CDCl₃) δ (ppm) = 281.0; **HR-ESI-MS** m/z calc. for: C₁₇H₂₁NOSeNa ([M+Na]⁺): 358.0681, found: 358.0688.


3.3.15 1,2-Bis(2-(((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2yl)oxy)phenyl)diselenide (11a)^[8]

(1*S*)-1,7,7-Trimethyl-2-(2-selenocyanatophenoxy)bicyclo[2.2.1]-heptane (**10a**) (370 mg, 1.11 mmol, 1.00 equiv.) was dissolved in ethanol (12 mL), treated with aq. NaOH-sol. (2.5 M in water, 221 μ L, 553 μ mol, 0.50 equiv.) and stirred for 1 h at rt. Filtration yielded the title product as a yellow solid (270 mg, 438 μ mol, 79%).

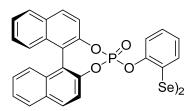
T_m: 162 °C; **IR** (ATR) \tilde{v} = 2951, 2876, 1572, 1466, 1442, 1390, 1364, 1304, 1271, 1238, 1054, 1022, 744 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) =7.53 (dd, ³*J* = 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 7.15 (ddd, ³*J* = 8.1, 7.5 Hz, ⁴*J* = 1.6 Hz, 1 H), 6.84 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.2 Hz, 1 H), 6.68 (dd, ³*J* = 8.1 Hz, ⁴*J* = 1.2 Hz, 1 H), 4.44 (ddd, ³*J* = 9.3, 3.2 Hz, ⁴*J* = 1.6 Hz, 1 H), 2.40 (dddd, ³*J* = 13.5, 9.9, 4.8, 2.5 Hz, 2 H), 1.92 – 1.71 (m, 2 H), 1.50 – 1.30 (m, 2 H), 1.22 (dd, ³*J* = 13.3, 3.3 Hz, 1 H), 1.03 (s, 3 H), 0.97 (s, 3 H), 0.95 (s, 3 H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) =156.0, 130.0, 130.0, 127.7, 127.6, 121.5, 121.4, 119.8, 112.1, 111.9, 84.2, 84.1, 49.9, 47.6, 45.3, 45.2, 37.0, 36.9, 36.8, 27.9, 27.9, 27.8, 27.2, 27.1, 27.1, 19.7, 19.7, 19.0, 19.0, 19.0, 13.9, 13.9, 13.9, 13.8; ⁷⁷**Se-NMR** (76 MHz, CDCl₃) δ (ppm) = 281; **HR-ESI-MS** m/z calc. for C₃₂H₄₂O₂Se₂Na ([M+Na]⁺): 657.1153, found.: 657.1150; **optical rotation** $\alpha^{D_{20}} = -91^{\circ}$ (c = 1.005%, CHCl₃, 3mm).


3.3.16 (*R*)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4-oxide (18)^[11]

(*R*)-BINOL (500 mg, 1.75 mmol, 1.00 equiv.) and triethyl amine (975 μ L, 707 mg, 6.98 mmol, 4.00 equiv.) were dissolved in dry toluene (10 mL), cooled to 0 °C and POCl₃ (175 μ L, 294 mg, 1.92 mmol, 1.10 equiv.) was added slowly. The mixture was stirred for 16 h at 0 °C and the solvent was removed under reduced pressure. Column chromatography (SiO₂, DCM) provided the title compound as colorless solid (484 mg, 1.32 mmol, 75%).

TLC: $R_f = 0.60$ (DCM); **T**_m: 188 °C; **IR** (ATR) $\tilde{v} = 2956$, 2923, 2853, 1591, 1508, 1463, 1227, 1029, 963, 815, 748, 597, 483, 400 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) = 8.13 – 8.04 (m, 2 H), 8.04 – 7.95 (m, 2 H), 7.63 (dd, ³*J* = 8.9, 1.1 Hz, 1 H), 7.59 – 7.48 (m, 3 H), 7.45 – 7.29 (m, 4 H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) =146.6 (d, ³*J*_{CP} = 12.7 Hz), 146.3 (d, ³*J*_{CP} = 11.3 Hz), 132.2 (d, ⁵*J*_{CP} = 1.9 Hz), 132.1 , 132.0 (d, ⁵*J*_{CP} = 1.8 Hz), 131.9 (d, ⁵*J*_{CP} = 1.5 Hz), 131.6 (d, ⁵*J*_{CP} = 1.6 Hz), 128.8 – 128.4 (m), 127.3 – 127.0 (m), 126.3 – 126.3 (m), 121.6 (d, ⁴*J*_{CP} = 3.0 Hz), 121.5 (d, ⁴*J*_{CP} = 2.5 Hz), 120.3 (d, ⁴*J*_{CP} = 2.8 Hz), 119.9 (d, ⁴*J*_{CP} = 3.8 Hz); ³¹**P-NMR** (162 MHz, CDCl₃) δ (ppm) = 10.9; **HR-ESI-MS** m/z calc. for: C₂₀H₁₃O₃PCl ([M+H]⁺): 367.0285, found: 367.0277; the results are in accordance with literature.

3.3.17 2,2'-Diphenol diselenide (19)^[12]

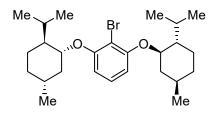

n-Butyllithium (2.5 M in hexan, 21 mL, 52.0 mmol, 1.50 equiv.) was added to dry hexane at -78 $^{\circ}$ C (20 mL) and TMEDA (5.2 mL, 4.03 g, 34.7 mmol, 2.00 equiv.) was added slowly. 2-Bromophenol (2.01 mL,

3.00 g, 17.3 mmol 0.50 equiv.) was then added to the cloudy solution at -78 °C and the mixture was stirred for further 2 h at rt. Selenium (1.38 g, 17.3 mmol, 0.50 equiv.) was added at 0 °C and the mixture was stirred for further 16 h at rt. Aq. HCl (1 M, 10 mL), water (30 mL) and EtOAc (20 mL) were added. The phases were separated, aq. HCl (5 M, 10 mL) was added to the aqueous phase, and it was extracted with EtOAc (3 x 20 mL). The combined org.

phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 15:1 \rightarrow 2:1 Pent:EtOAc) provided the title compound as a red solid (893 mg, 2.58 mmol, 30%) as an inseperatable mixture with 10 mol% 2-bromophenol.

TLC: R_f =0.15 (5:1 Hex:EtOAc); **IR** (ATR) \tilde{v} = 3424, 1574, 1463, 1443, 1334, 1287, 1236, 1180, 1022, 826, 750, 472, 446 cm⁻¹; ¹H-NMR (400 MHz, CDCl₃) δ (ppm) = 7.37 (dd, ³*J* = 7.7 Hz, ⁴*J* = 1.7 Hz, 2 H), 7.32 (ddd, ³*J* = 8.2, 7.3 Hz, ⁴*J* = 1.7 Hz, 2 H), 7.01 (dd, ³*J* = 8.2 Hz, ⁴*J* = 1.4 Hz, 2 H), 6.79 (td, ³*J* = 7.5 Hz, ⁴*J* = 1.4 Hz, 2 H), 6.11 (sbr, 2 H); ¹³C-NMR (101 MHz,CDCl₃) δ (ppm) = 156.7, 137.5, 133.0, 121.1, 115.2; ⁷⁷Se-NMR (76 MHz, CDCl₃) δ (ppm) = 377; HR-ESI-MS m/z calc. for C₁₂H₁₀O₄Se₂Na ([M+Na]⁺): 368.8906, found: 368.8900.

3.3.18 (*R*)-4,4'-((Diseleniddiylbis(2,1-phenylene))bis(oxy))bis(dinaphtho-[2,1-d:1',2'f][1,3,2]dioxaphosphepine 4-oxid) (20)

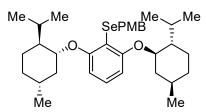


(*R*)-4-Chlorodinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine 4oxide (**18**) (100 mg, 273 μ mol, 2.00 equiv.), 2,2'diphenoldiselenid (**19**) (50 mg, 138 μ mol, 1.00 equiv.) and triethyl amine (152 μ L, 110 mg, 1.09 mmol, 4.00 equiv.) were dissolved in dry DCM (5 mL). The mixture was stirred for 16 h

at rt and sat. aq. NH₄Cl-Lsg. (5 mL) was added. The aqueous phase was extracted with DCM ($3 \times 15 \text{ mL}$) the combined organic phases were dried over Na₂SO₄ and column chromatography (SiO₂, DCM) provided the title compound as yellow oil (37 mg, $28.4 \mu \text{mol}$, 21%).

TLC: *R_f* (DCM) =0.70; **IR** (ATR) \tilde{v} = 1508, 1312, 1200, 1187, 1156, 967, 951, 899, 815, 750 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) =8.07 (d, ³*J*_{HH} = 8.8 Hz, 2 H), 8.03 – 7.89 (m, 6 H), 7.64 (m, 2 H), 7.57 – 7.27 (m, 18 H), 7.23 – 7.13 (m, 2 H), 6.96 (t, ³*J*_{HH} = 7.6 Hz, 2 H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) =148.3 (d, ³*J*_{CP} = 6.0 Hz), 147.3 (d, ²*J*_{CP} = 11.6 Hz), 146.0 (d, ³*J*_{CP} = 8.6 Hz), 132.4 , 132.2 (d, ⁵*J*_{CP} = 1.0 Hz), 132.2 (d, ⁵*J*_{CP} = 1.1 Hz), 132.0 (d, ⁵*J*_{CP} = 1.4 Hz), 131.8 (d, ⁵*J*_{CP} = 1.1 Hz), 129.0 – 128.9 (m), 128.5 (d, ⁴*J*_{CP} = 4.3 Hz), 127.1 (d, ²*J*_{CP} = 9.1 Hz), 126.9 (d, ⁴*J*_{CP} = 2.2 Hz), 126.6, 126.0 (d, ³*J*_{CP} = 6.4 Hz), 121.5 (d, ³*J*_{CP} = 6.3 Hz), 121.1 (d, ⁴*J*_{CP} = 2.2 Hz), 120.5 (d, ⁴*J*_{CP} = 3.0 Hz), 120.2 (d, ⁴*J*_{CP} = 3.4 Hz), 119.3 (d, ⁴*J*_{CP} = 2.0 Hz); ³¹**P-NMR** (203 MHz, CDCl₃) δ (ppm) = -3.75; ⁷⁷**Se-NMR** (95 MHz, CDCl₃) δ (ppm) = 364; **HR-ESI-MS** m/z calc. for Cs₂H₃₂O₈P₂Se₂Na ([M+Na]⁺): 1028.9809, found: 1028.9782. **optical rotation:** α^{D}_{20} = -45.5 (c = 1.44, CHCl₃).

3.3.19 (1*S*,1'*S*,2*R*,2'*R*,4*R*,4'*R*)-2,2'-((2-Bromo-1,3-phenylene)bis(oxy))bis(1-isopropyl-4methylcyclohexane)(13a)^[10]



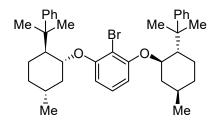
(–)-Menthol (810 mg, 5.18 mmol, 2.00 equiv.) and 1-bromo-2,6-difluorobenzene (189 mg, 1.08 mmol, 0.90 equiv.) were dissolved in dry DMF (10 mL) and sodium hydride (60 w% in mineral oil, 248 mg, 6.22 mmol, 2.40 equiv.) was added to the solution. The mixture was stirred for 19 h at 100 $^{\circ}$ C and

quenched by the addition of aq. sat. NH₄Cl-sol. The mixture was extracted with EtOAc (3 x 20 mL), the combined org. phases were washed with water (2 x 10 mL) and brine (10 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, pentane \rightarrow 143:1 pentane/DCM) provided the title product as a colorless solid (467 mg, 1.12 mmol, 43%).

TLC: *R_f* (DCM) =0.20 (pentane/DCM, 143:1); **T**_m: 104 °C; **IR** (ATR) \tilde{v} =2954, 2929, 2669, 1582, 1459, 1367,1331, 1249, 1272, 1250, 1183, 1100, 1054, 1035, 981, 946, 923, 878, 844, 756, 703, 664 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =7.12 (t, ³*J* = 8.3 Hz, 1 H), 6.51 (d, ³*J* = 8.4 Hz, 2 H), 4.07 (td, ³*J* = 10.5, 4.1 Hz, 2 H), 2.31 (heptd, ³*J* = 6.9, 2.7 Hz, 2 H), 2.18, 2.09 (m, 2 H), 1.80, 1.58 (m, 6 H), 1.45 (ddtd, ³*J* = 19.3, 9.7, 6.5 Hz, ⁴*J* = 3.3 Hz, 2 H), 1.18, 0.99 (m, 6 H), 0.93 (t, ³*J* = 6.9 Hz, 12 H), 0.76 (d, ³*J* = 7.0 Hz, 6 H); ¹³**C-NMR** (101 MHz,CDCl₃) δ (ppm) =156.3, 127.7, 106.3, 104.3, 79.1, 48.1, 40.5, 34.7, 31.7, 26.2, 23.9, 22.4, 21.1, 16.9; **HR-ESI-MS** m/z calc. for C₂₆H₄₂O₂Br ([M+H]⁺): 465.2363, found: 465.2365; **optical rotation**: α^{D}_{20} = -111° (1.00, CHCl₃).

3.3.20 Bis-2,6-bis(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)benzene diselenide (14a)

(1S,1'S,2R,2'R,4R,4'R)-2,2'-((2-Bromo-1,3-

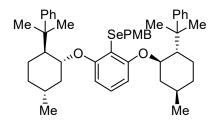

phenylene)bis(oxy))bis-(1-isopropyl-4-methylcyclohexane) (**13a**) (467 mg, 0.32 mmol, 1.00 equiv.) was dissolved in dry diethyl ether (1.1 mL) and cooled to -78°. *t*-Butyllithium (1.9 M in pentane, 425 μL, 820 μmol, 2.52 equiv.) was

slowly added and the mixture was stirred for 1 h at 0 °C. A solution of PMBSeCN (98 mg, 430 µmol, 1.33 equiv.) in THF (2 mL) was added to the solution and the mixture was stirred for further 15 min. Then the reaction is quenched by the addition of sat. aq. NH₄Cl-sol. (4 mL) and extracted with EtOAc (2 x 5 mL). The organic phase was washed with brine (3 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, pentane \rightarrow 50:1 pentane/EtOAc) provided the title product as yellow oil (66 mg, 0.126 mmol, 35%).

TLC: R_f (50:1 Pent/Et₂O) = 0.38; **IR** (ATR) \tilde{v} =2952, 2923, 2867, 1609, 1578, 1509, 1453, 1369, 1299, 1246, 1231, 1173, 1098, 1068, 1053, 829, 764, 741, 712 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) = 7.19 - 7.09 (m, 3 H), 6.78 - 6.73 (m, 2 H), 6.49 (d, ³*J* = 8.4 Hz, 2 H), 4.16 (d, ³*J* = 10.9 Hz, 1 H), 4.11-4.01 (m, 3 H), 3.76 (s,3 H), 2.32 (dqd, ³*J* = 13.7, 6.9, 3.5 Hz, 2 H), 2.16-2.03 (m, 2 H), 1.72 (ddt, ³*J* = 11.1, 8.3, 3.9 Hz, 4 H), 1.65 - 1.56 (m, 2 H), 1.43 (dddd, ³*J* = 15.3, 12.3, 6.3 Hz, ⁴*J* = 3.2 Hz, 2 H), 1.17 - 0.96 (m, 6 H), 0.96 - 0.88 (m, 12 H), 0.75 (d, ³*J* = 6.9Hz, 6 H); ¹³**C-NMR**

(101 MHz, CDCl₃) δ (ppm) =159.4, 158.3, 132.1, 130.1, 128.8, 113.8, 105.5, 78.3, 77.2, 55.3, 48.1, 40.4, 34.7, 31.6, 29.9, 26.1, 23.6, 22.3, 21.1, 16.6; ⁷⁷**Se-NMR** (76 MHz, CDCl₃): δ (ppm) = 231.8; **HR-ESI-MS** m/z calc. for C₅₂H₃₂O₈P₂Se₂Na ([M+Na]⁺): 587.3001, found: 587.2983; **optical rotation**: $\alpha^{D_{20}}$ = 40° (c = 0.37, CHCl₃).

3.3.21 (((1*S*,1'*S*,2*R*,2'*R*,4*R*,4'*R*)-((2-Bromo-1,3-phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-diyl))bis(propane-2,2-diyl))dibenzene (13b)^[10]



(–)-8-Phenylmenthol (1.18 g, 5.01 mmol, 2.56 equiv.) and 1-bromo-2,6-difluorobenzene (376 mg, 1.96 mmol, 1.00 equiv.) were dissolved in dry DMF (7.5 mL) and potassium *tert*-butoxide (1 M in THF, 5 mL, 5.00 mmol, 2.30 equiv.) was added dropwise to the solution. The mixture was stirred for 16 h at 100 °C. After cooling to rt

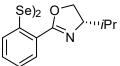
quenched with H₂O (5 mL), the mixture was extracted with Et₂O (3 x 20 mL), the combined org. phases were washed with water (2 x 10 mL) and brine (10 mL), dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, pentane \rightarrow 4:1 pentane:DCM) provided the title product as colorless solid (618 mg, 1.00 mmol, 51%). The mono-substituted product was also isolated (137 mg, 338 µmol, 17%).

TLC: R_f (4:1 Pent/DCM) = 0.71; **T**_m: 209°C; **IR** (ATR) $\tilde{\nu}$ = 2951, 2923, 2869, 1586, 1461, 1251, 1092, 1064, 1034, 907, 760, 734, 700 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) = 7.37 – 7.21 (m, 8H), 7.19 – 7.05 (m, 3H), 6.39 (d, J = 8.4 Hz, 2H), 4.18 (td, J = 10.3, 4.1 Hz, 2H), 2.19 – 1.94 (m, 4H), 1.52 (d, J = 10.4 Hz, 8H), 1.42 (s, 10H), 1.22 – 0.74 (m, 10H); ¹³**C-NMR** (126 MHz,CDCl₃) δ (ppm) = 155.0, 150.0, 127.7, 127.4, 126.2, 125.1, 105.2, 103.9, 78.4, 51.5, 40.8, 40.5, 34.8, 31.5, 31.4, 27.5, 24.5, 21.9; **HR-ESI-MS** m/z calc. for C₃₈H₅₀O₂Br ([M+H]⁺): 617.2989, found: 617.2986; **optical rotation:** α^{D}_{20} = -54° (c = 0.09, CHCl₃)

3.3.22 (2,6-Bis(((1*R*,2*S*,5*R*)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)phenyl)(4methoxybenzyl)selane (14b)

(((1*S*,1'*S*,2*R*,2'*R*,4*R*,4'*R*)-((2-Bromo-1,3-

phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-


diyl))bis(propane-2,2-diyl))dibenzene (13b) (100 mg, 162 μ mol, 1.00 equiv.) is dissolved in dry diethyl ether (2 mL) and *n*-butyllithium (2.5 M in hexane, 71 μ L, 178 μ mol, 1.10 equiv.) was added at rt. The mixture was stirred for 1 h

at 45 °C and a solution of PMBSeCN (68 mg, 243 μ mol, 1.50 equiv.) in dry diethyl ether (1.5 mL) was added to the solution. The mixture was stirred for 16 h at 40 °C. The reaction was quenched by the addition of sat. aq. NH₄Cl, the mixture was extracted with DCM

 $(3 \times 10 \text{ mL})$, the combined org. phases were dried over Na₂SO₄ and the solvent was removed under reduced pressure. Column chromatography (SiO₂, 4:1 pentane/DCM) provided the title product as a yellow oil (27 mg, 36.0 µmol, 22%).

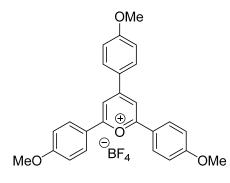
TLC: $R_f = 0.37$ (4:1 Pent:DCM); **IR** (ATR) $\tilde{\nu} = 2953$, 2923, 2869, 2369, 2359, 2342, 1579,1510, 1453, 1246, 1226, 1092, 1061, 1036, 801, 763, 700 cm⁻¹; ¹H-NMR (500 MHz, CDCl₃) δ (ppm) =7.37 -7.31 (m, 4 H), 7.31 – 7.24 (m, 4 H), 7.24 – 7.20 (m, 2 H), 7.19 – 7.11 (m, 3 H), 6.80 (d, ³J = 8.6 Hz, 2 H), 6.43 (d, ${}^{3}I = 8.4$ Hz, 2 H), 4.25 (d, ${}^{3}I = 10.8$ Hz, 1 H), 4.17 (td, ${}^{3}I = 10.3$, 4.0 Hz, 2 H), 4.00 (d, ³*J* = 10.7 Hz, 1 H), 3.77 (s, 3 H), 2.11 – 1.98 (m, 4 H), 1.62 – 1.19 (m, 24 H), 1.13 – 0.74 (m, 16 H); ¹³C-NMR (126 MHz,CDCl₃) δ (ppm) =158.2, 150.1, 131.9, 130.0, 128.7, 127.8, 126.3, 125.2, 113.7, 111.5, 105.2, 78.4, 55.2, 51.6, 40.8, 40.5, 34.7, 31.5, 31.4, 30.2, 27.5, 24.4, 21.8, 1.0; HR-ESI-MS m/z calc. for C₄₂H₅₉O₂Se ([M+H]⁺): 675.3679, found: 675.3671; optical rotation: $\alpha^{D_{20}} = -34^{\circ}$ $(c = 0.53, CHCl_3).$

3.3.23 1,2-Bis(2-((S)-4-isopropyl-4,5-dihydrooxazol-2-yl)phenyl)diselane(4)^[13]

MeO

The compound was synthesized according to literature. The spectroscopic data are in accordance with literature.

IR (ATR) $\tilde{\nu}$ = 2956, 2929, 2872, 1643, 1463, 1354, 1247, 1019, 967, 732 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =7.83 (m, 4 H), 7.24 (m, 4 H), 4.48 (dd, ²*J* = 8.7 Hz, ³*J* = 7.7 Hz, 2 H), 1.86 (hept, ³J = 7.7 Hz, 2 H), 4.22 (m, 4 H), 1.12 (m, 6 H), 1.03 (m, 6 H); HR-ESI-MS m/z calc. for C₂₄H₂₉O₂N₂Se₂ ([M+H]⁺): 537.0558, found: 537.0543.

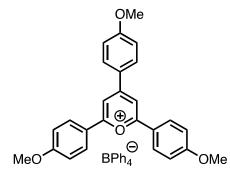

3.3.24 (R)-tert-Butyl((6-methoxy-7-((4-methoxybenzyl)selanyl)-2,2-dimethyl-2,3-dihydro-1H-inden-1-yl)oxy)dimethylsilane (23)^[14]

PMBSe OTBS The compound was synthesized according to the literature: Me spectoscopic data are in accordance with literature Me

TLC: R_f (1:1 DCM:Pent)= 0.65; **IR** (ATR) \tilde{v} = 2953, 2928, 2855, 1609, 1510, 1460, 1434, 1247, 1173, 1063, 1039, 834, 774 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃) δ (ppm) = 7.06 (d, ³*J* = 8.2 Hz, 1 H), 6.96 (d, ³*J* = 8.6 Hz, 1 H), 6.73 (d, ³*J* = 8.1 Hz, 1 H), 6.66 (d, ³*J* = 8.6 Hz, 2 H), 4.40 (s, 1 H), 4.09 (d, ${}^{3}I = 11.5 \text{ Hz}, 1 \text{ H}$), 3.90 (s, 3 H), 3.86 (d, ${}^{3}I = 11.6 \text{ Hz}, 1 \text{ H}$), 3.71 (s, 3 H), 2.95 (d, ${}^{3}I = 14.3 \text{ Hz}, 1 \text{ H}$) H), 2.27 (d, ³J = 14.7 Hz, 1 H), 1.13 (s, 3 H), 0.80 (s, 9 H), 0.50 (s, 3 H), 0.10 (s, 3 H), -0.04 (s, 3 H); ¹³C-NMR (101 MHz,CDCl₃) δ (ppm) = 158.2, 158.1, 152.1, 136.8, 131.9, 129.6, 125.7, 115.4, 113.6, 110.2, 85.2, 56.3, 55.2, 44.8, 44.7, 30.3, 26.2, 26.1, 23.5, 18.6, -3.2, -3.5; ⁷⁷Se-NMR (76 MHz, CDCl₃) δ (ppm) = 269.61; HR-ESI-MS m/z calc for [C₂₆H₃₈O₃SeSiNa]⁺ [M+Na]⁺:529.1649, found: 529.1648. optical rotation $\alpha^{D_{20}} = 155^{\circ}$ (c = 1.01, CHCl₃).

3.4 Photocatalysts

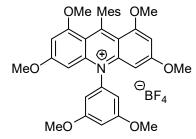
3.4.1 2,4,6-Tris(4-methoxyphenyl)pyrylium tetrafluoroborate (TAPT)^[15]



This compound was synthesized according to literature:

Spectra are in accordance to literature.

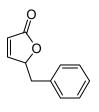
IR (ATR) $\tilde{v} = 2941$, 2841, 1585, 1482, 1457, 1434, 1258, 1235, 1174, 1016, 829, 562, 518 cm⁻¹; ¹H-NMR (300 MHz, DMSO-D₆) δ (ppm) = 8.54 (s, 2 H), 8.43 (d, *J* = 9.1 Hz, 2 H), 8.29 (d, *J* = 9.0 Hz, 4 H), 7.04-7.21 (m, 6 H), 3.94 (s, 3 H), 3.91 (s, 6 H); ¹³C-NMR (101 MHz, DMSO-D₆) δ (ppm) = 167.4, 165.2, 164.4, 161.5, 132.2, 130.4, 124.2, 121.0, 115.2, 115.1, 110.3, 55.9, 55.8; HR-ESI-MS m/z calc for [C₂₆H₂₃O₄]⁺ [M]⁺: 399.1591, found.: 399.1587.


3.4.2 2,4,6-Tris(4-methoxyphenyl)pyrylium tetraphenylborate (TAPTP)

2,4,6-Tris(4-methoxyphenyl)pyrylium tetraphenylborate (300 mg, 617 μ mol, 1.00 equiv.) was dissolved in dry diethyl ether (10 mL), potassium tetraphenylborate was added (321 mg, 617 μ mol, 1.00 equiv.) and the mixture was stirred for 16 h at rt. THF (10 mL) was added and the suspension was filtered. The filtrate was collected and evaporation of the solvent provided the title compound as red solid (391 mg, 544 μ mol, 88%).

T_m= 85.2 °C; **IR** (ATR) $\tilde{\nu}$ = 1584, 1569, 1509, 1478, 1457, 1436, 1304, 1257, 1240, 1171, 1121, 1018, 830, 732, 703 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) = 7.76 (d, ³*J* = 8.8 Hz, 4 H), 7.58 – 7.44 (m, 12 H), 6.96 (t, ³*J* = 7.4 Hz, 12 H), 6.82 (q, ³*J* = 8.2, 7.2 Hz, 6 H), 3.87 (s, 6 H), 3.85 (s, 3 H); ¹³**C-NMR** (75 MHz, CDCl₃) δ (ppm) = 168.0, 165.9, 165.3, 164.6, 163.9, 163.3, 162.4, 136.2, 131.6, 130.2, 128.8, 127.2, 125.7, 125.7, 125.6, 125.6, 124.1, 121.7, 120.6, 115.9, 115.8, 110.3, 56.2, 56.1; ¹¹**B-NMR** (96 MHz, CDCl₃) δ = -6.42; **HR-ESI-MS** m/z Cation: calc for [C₂₆H₂₃O₄]⁺ [M]⁺: 399.1591, found.: 399.1589, Anion: calc for [C₂₄H₂₀B]⁻ [M]⁻: 319.1700, found.: 318.1693.

3.4.3 10-(3,5-Dimethoxyphenyl)-9-mesityl-1,3,6,8-tetramethoxyacridin-10-ium tetrafluoroborate (DMTA)^[16]


This compound was synthesized according to literature:

Spectra are in accordance to literature.

IR (ATR) \tilde{v} = 3030, 2968, 2937, 2878, 2251, 1655, 1461, 1417, 1287, 1072, 969, 907, 865, 793, 730 cm⁻¹; ¹**H-NMR** (300 MHz, CDCl₃) δ (ppm) =6.90 (dd, ³*I* = 1.3, 0.7 Hz, 2 H), 6.83 (t, ³*I* = 2.2

Hz, 1 H), 6.60 (d, ${}^{3}J$ = 2.2 Hz, 2 H), 6.50 (dd, ${}^{3}J$ = 2.3, 0.5 Hz, 2 H), 6.18 (d, ${}^{3}J$ = 2.3 Hz, 2 H), 3.92 (s, 6 H), 3.85 (s, 6 H), 3.53 – 3.45 (m, 6 H), 2.37 (s, 3 H), 1.83 (t, ${}^{4}J$ = 0.6 Hz, 6 H); 13 C-NMR (101 MHz,CDCl₃) δ (ppm) = 168.3, 163.2, 162.3, 160.7, 144.7, 139.8, 137.5, 136.4, 132.0, 127.0, 113.3, 105.6, 102.8, 97.5, 92.8, 57.1, 56.5, 56.2, 21.1, 20.2; HR-ESI-MS m/z calc for [C₃₄H₃₆O₆]⁺ [M]⁺: 554.2537, found.: 554.2538.

3.5 Asymmetric lactonization

(*E*)-5-Phenylpent-3-enoic acid (1.00 equiv.), the photocatalyst (0.05 equiv.) and the selenium catalyst (0.05 equiv. for diselenides, 0.10 equiv. for monoselenides) were dissolved in acetonitrile (0.1 M). The mixture was stirred vigorously at rt and irradiated with blue light (465 nm, 4500 lx). The solvent was removed under reduced pressure and column chromatography (SiO₂, 1:2 pentane/DCM) provided the title product as light yellow oil.

entry	Se- catalyst	photocatalyst	solvent	Т	t	yield	ee
1	11b	TAPT	MeCN	35°C	16h	70%	19%
2	11c	TAPT	MeCN	35°C	16h	68%	49%
3	11c	TAPT	acetone	35°C	16h	10%	nd
4	11c	TAPT	DCE	35°C	16h	61%	25%
5	11c	TAPT	MeCN	0°C	20h	65%	47%
6	11d	TAPT	MeCN	20°C	16h	40%	55%
7	11d	TAPT	DCE	20°C	19 h	38%	50%
8	11a	TAPT	MeCN	35°C	16h	81%	5%
9	20	TAPT	MeCN	35°C	16h	78%	10%
10	14b	TAPT	MeCN	35°C	20h	24%	48%
11ª	14b	TAPT	MeCN	35°C	40h	59%	33%
12	14b	-	PhMe	35°C	16h	n.d.	37%
13	14b	DMTA	PhMe	35°C	16h	33%	8%
14	14b	TAPT	MeCN	50°C	96h	99%	24%
15	14b	TAPT	MeCN	35°C	6h	23%	15%

Table 2: Conditions used in the asymmetric aerobic lactonization.

16	14b	TAPT	MeCN	0°C	16h	21%	20%
17	14b	Rhodamin G	MeCN	35°C	16h	0%	nd
18	14b	Rhodamin G	MeCN	35°C	16h	0%	nd
19	14b	Ru(bpz)3PF6	MeCN	45°C	16h	19%	4%
20	14b	TAPTP	MeCN	35°C	18h	10%	12%
21	14b	TAPTP	MeCN	35°C	17h	13%	12%
22	14b	TAPT	MeCN dry	35°C	16h	35%	16%
23	14b	ТАРТ	MeCN/H2O 10:1	35°C	16h	0%	nd
24	14a	TAPT	MeCN	35°C	16h	40%	55%
25	4	TAPT	MeCN	35°C	16h	0%	nd
26	23	TAPT	MeCN	0°C	48h	10%	65%
27	23	TAPT	MeCN	0°C	88h	44%	67%
28	23	DMTA	PhMe	35°C	16h	0%	nd
30	23	NO[BF4]	DCM	25°C	21h	0%	nd
31	23	NO[BF4]	DCM	25°C	21h	12%	0%
32	7a	TAPT	MeCN	35°C	16h	44%	22%
33	7c	TAPT	MeCN	35°C	16h	11%	0%

^aInstead of the respective aryl-PMB-selenide **14b** its butyl-substituted analogue was used.

R_f(Pent:Et₂O)= 0.21; **IR** (ATR): \tilde{v} = 3030, 1748, 1602, 1496, 1455, 1337, 1160, 1099, 1023, 924, 900, 812, 748, 701 cm⁻¹; ¹**H-NMR** (400 MHz, CDCl₃): δ = 7.40 (dd, ³*J* = 5.7 Hz, ⁴*J* = 1.5 Hz, 1 H), 7.37 – 7.24 (m, 3 H), 7.24 – 7.19 (m, 1 H), 6.08 (dd, ³*J* = 5.7 Hz, ⁴*J* = 2.0 Hz, 1 H), 5.27 – 5.20 (m, 1 H), 3.16 (dd, ³*J* = 13.9, 6.4 Hz, 1 H), 2.96 (dd, ³*J* = 13.9, 7.1 Hz, 1 H); ¹³**C-NMR** (101 MHz, CDCl₃): δ = 172.7, 155.5, 134.8, 129.4, 128.7, 127.3, 122.1, 83.4, 39.6; **HR-ESI-MS** (m/z) calculated for C₁₁H₁₁O₂ [M+H]⁺: 175.0754 found: 175.0755; **HPLC:** Daicel OD, 0.9 mL/min, 99:1 Hex:*i*PrOH R_T = 49.160 min, 51.825 min; Daicel ID, 1.0 mL/min, 90.1:9.9 Hex: *i*-PrOH R_T = 16.557 min, 17.644 min; Daicel ID, 0.8 mL/min, 90.1:9.9 Hex: *i*-PrOH RT = 23.469 min, 24.491 min.

4 Literature

[1] I.Cho, L. Meimetis, R. Britton, Org. Lett. 2009, 11, 1903-1906.

[2] K.S. Jeong, Y.S. Kim, Y.J. Kim, E. Lee, J.H. Yoon, W.H. Park, Y.W. Park, S.-J. Jeon, Z.H. Kim, J. Kim, N. Jeong, *Angew. Chem. Int. Ed.* **2006**, *45*, 8134-8138.

[3] W.-D. Lee, K. Kim, G.A. Sulikowski, Org. Lett. 2005, 7, 1687-1689.

[4] M. Lombardo, S.Morganti, C.Trombini, J. Org. Chem. 2000, 65, 8767-8773.

[5] J. Trenner, C. Depken, T.J. Weber, A.Breder, Angew. Chem. Int. Ed. 2013, 52, 8952-8956.

[6] S.M. Altermann, R.D. Richardson, T.K. Page, R.K. Schmidt, A. Holland, U. Mohammed, A.M. Paradine, A.N. French, C. Richter, A.M. Bahar, B. Witulski, T. Wirth, *Eur. J. Org.Chem.* **2008**, 5315-5328.

[7] M. Shen, B. E. Leslie, T.G. Driver, Angew. Chem. Int. Ed. 2008, 47, 5056-5059.

[8] M. Minozzi, D. Nanni, J. C. Walton, J. Org. Chem. 2004, 2056-2069.

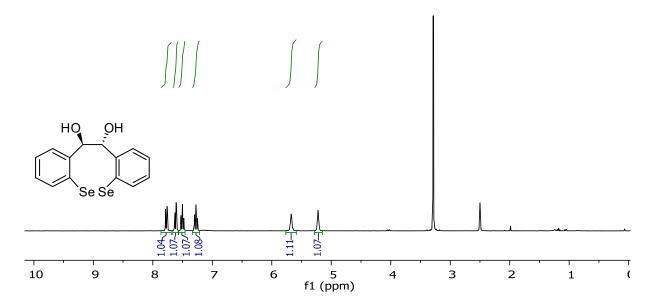
[9] (a) N. Yasukawa, H. Yokoyama, M. Masuda, Y. Monguchi, H. Sajiki, Y. Sawama *Green-Chemistry*, **2018**, *20*, 1213. (b) J. Whitesell, R. Lawrence, H. Chen J.Org.Chem. **1986**, *51*, 4779. (c) M. Murakata, M. Tamura, O. Hoshino, J.Org.Chem. **1997**, *62*, 4428.

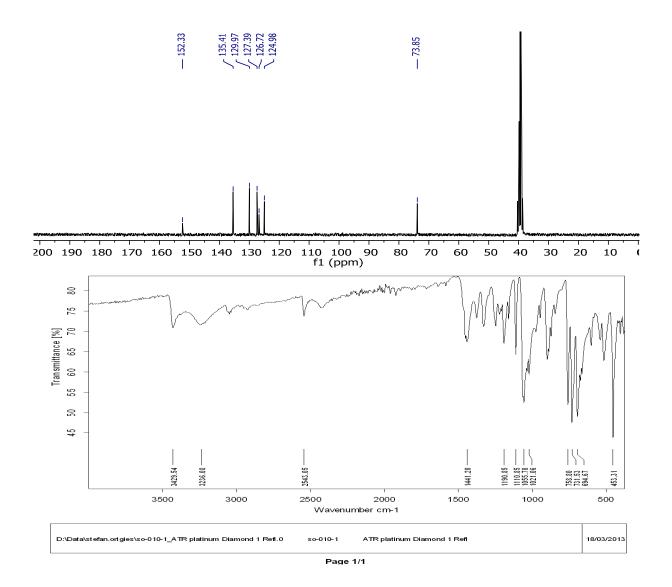
[10] K. Kumazawa, K. Ishihara, H. Yamamoto, Org. Lett. 2004, 6, 2551-2554.

[11] A. Kattuboina, Guigen Li, Tetrahedron Lett. 2008, 49, 1573-1577.

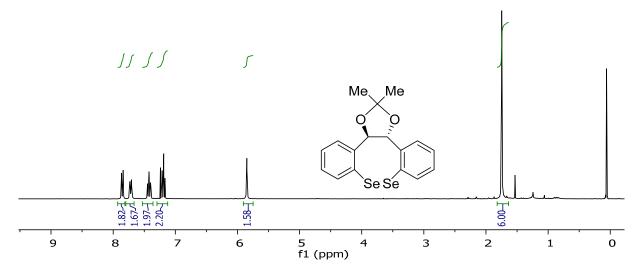
[12] L. Zhao, Z. Li, T. Wirth, Eur. J. Org. Chem. 2011, 35, 7080-7082.

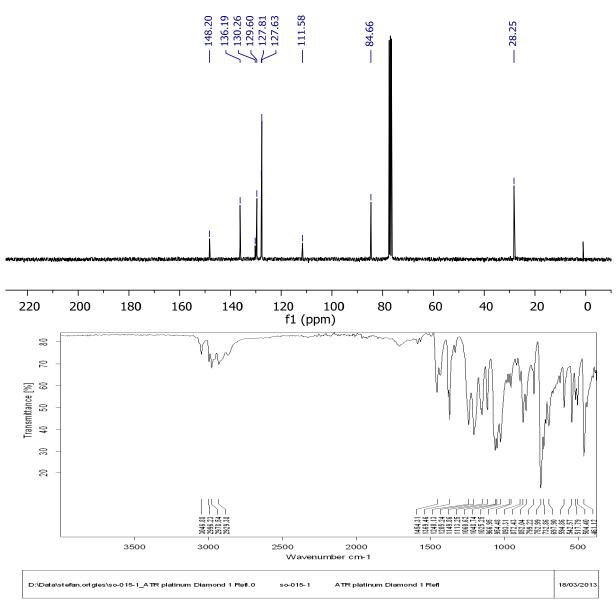
[13] A. L. Braga, S. J. N. Silva, D. S. Lüdtke, R. L. Drekener, C. C. Silveira, J. B. T. Rochaa, L. A. Wessjohann, *Tetrahedron Lett.* 2002, *43*, 7329–7331.

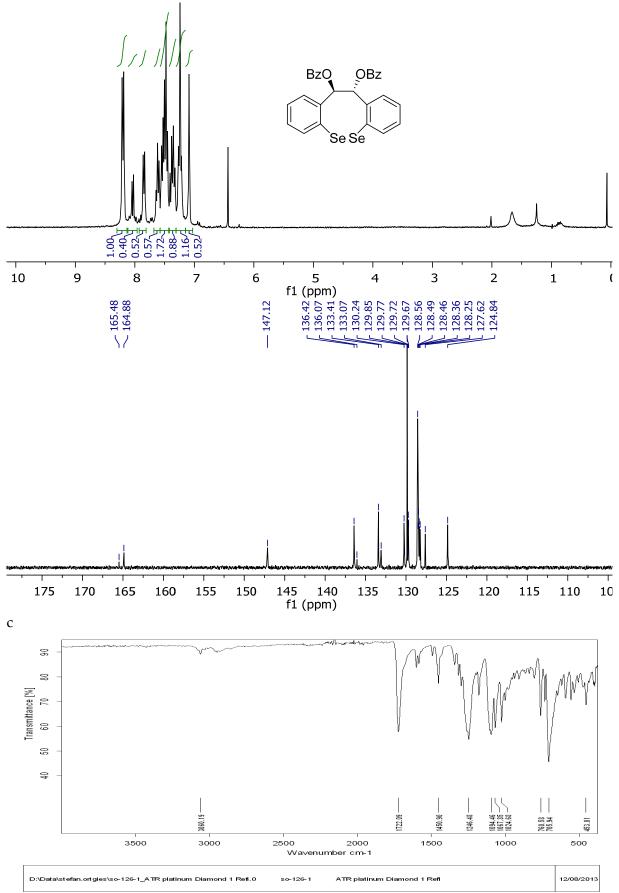

[14] Y. Kawamata, T. Hashimoto, K. Maruoka J. Am. Chem. Soc., 2016, 138, 5206-5209.

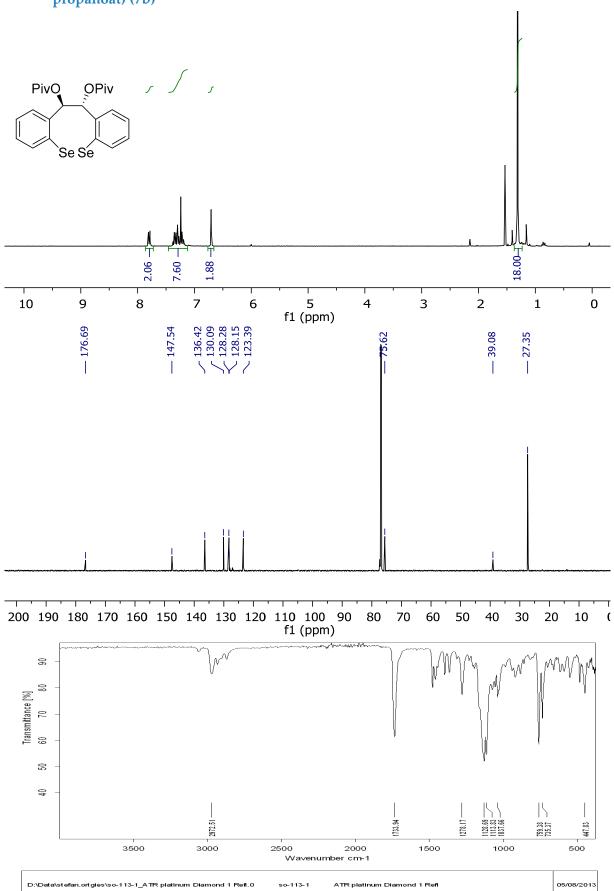

[15] M. Martiny, E. Steckhan, T. Esch, Chem. Ber. 1993, 126, 1671-1682.

[16] A. Joshi-Pangu, F. Lévesque, H.G. Roth, S.F. Oliver, L.-C. Campeau, D. Nicewicz, D. DiRocco, *J.Org.Chem.* **2016**, *81*, 7244-7249.

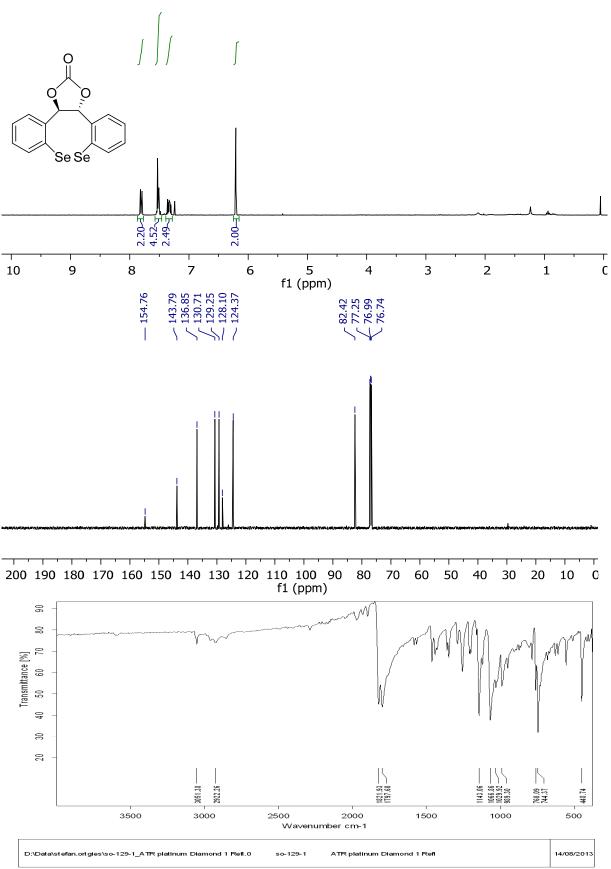

5 NMR Spectra

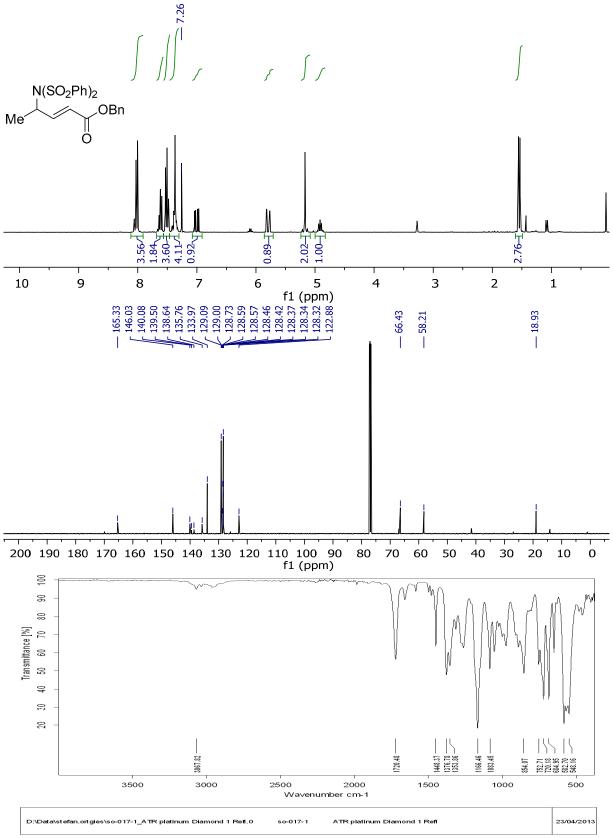

- 5.1 Diselenocine catalysts
- 5.1.1 (11*R*,12*R*)-11,12-Dihydrodibenzo[c,g][1,2]diselenocin-11,12-diol (6)



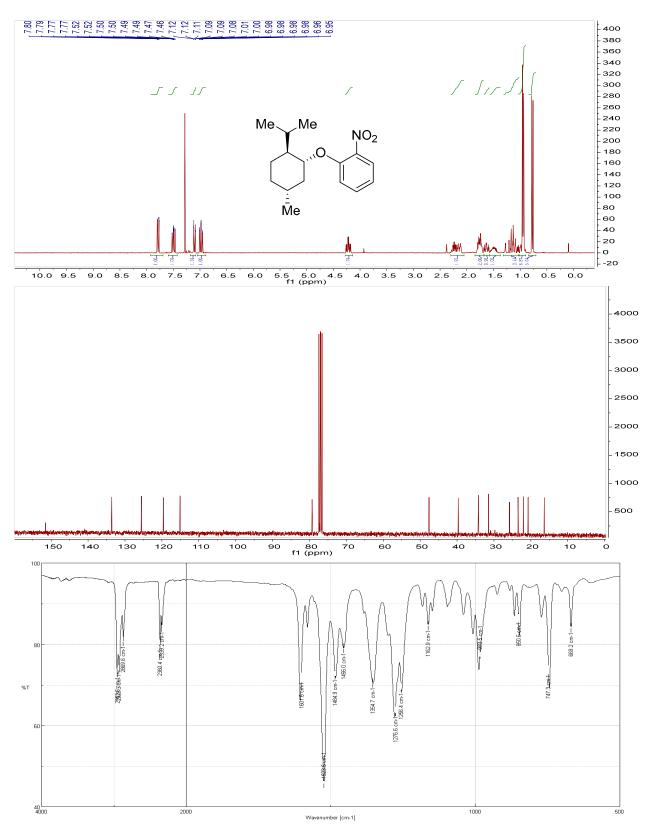

5.1.2 (3a*R*,13b*R*)-2,2-Dimethyl-3a,13b-dihydrodibenzo[3,4:7,8][1,2]diselenocino-[5,6-d][1,3]dioxol (7a)

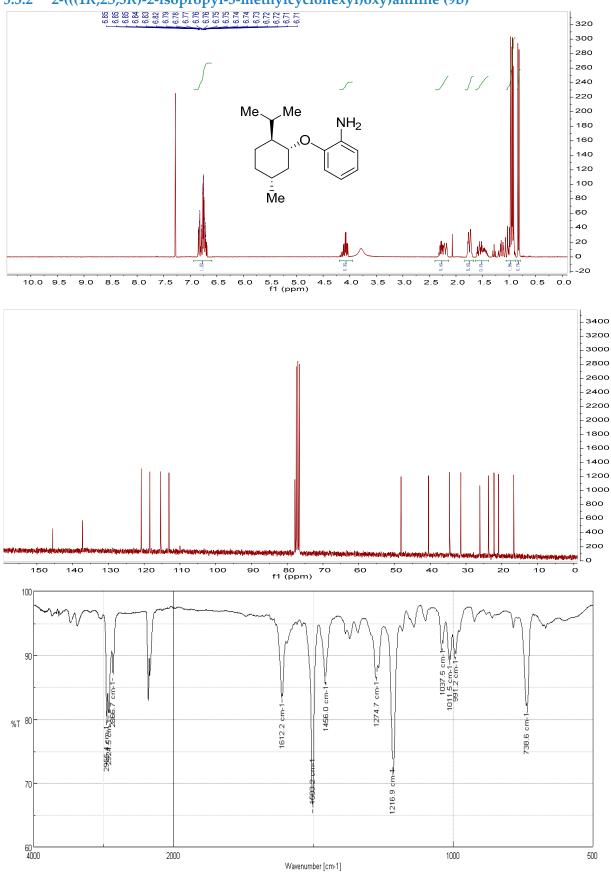
Page 1/1

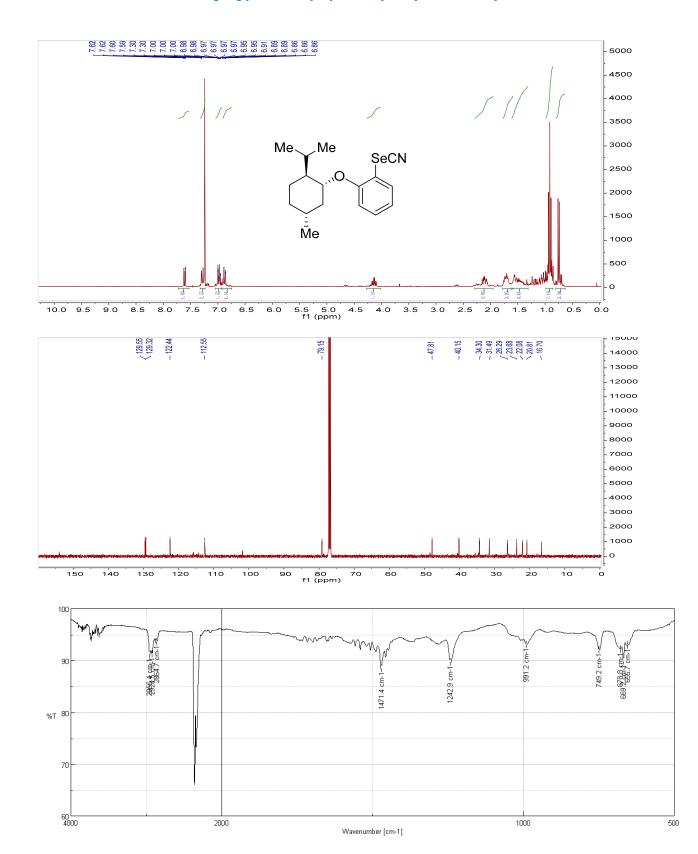



Page 1/1

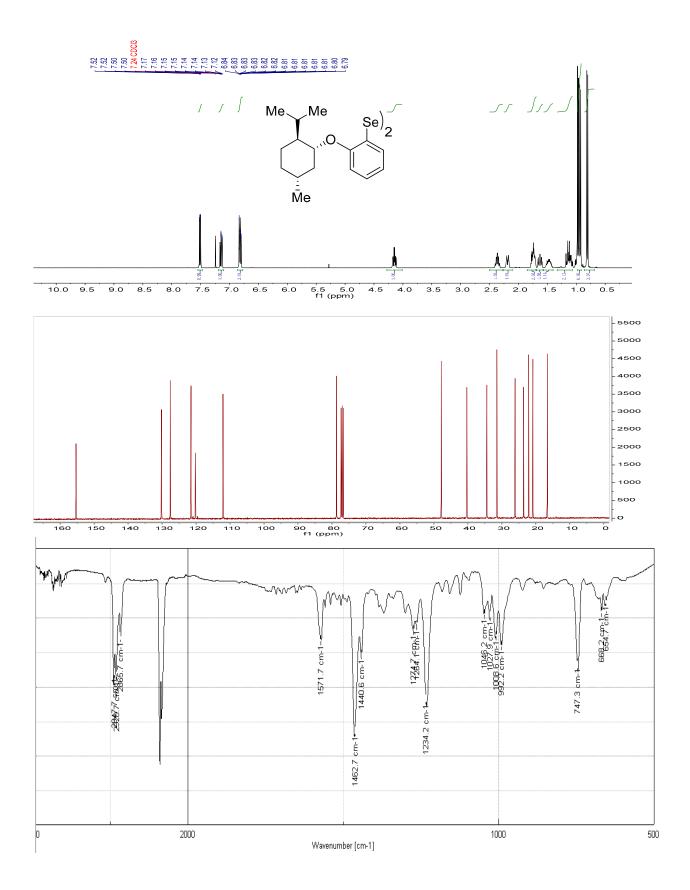
5.1.5 (3a*R*,13b*R*)-3a,13b-Dihydrodibenzo[3,4:7,8][1,2]diselenocino[5,6-d][1,3]dioxol-2-on (7c)


5.2 Imidation

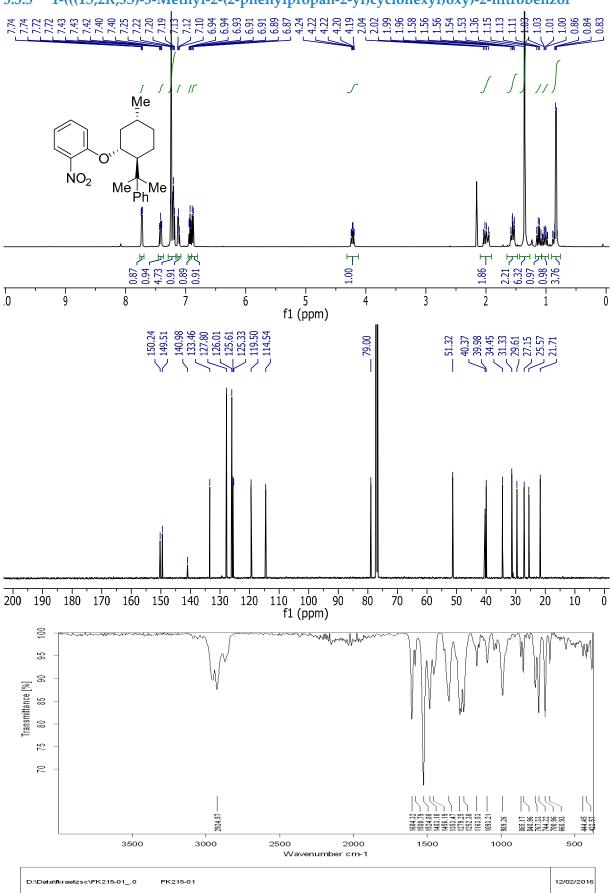

5.2.1 (E)-Benzyl-4-(N-(phenylsulfonyl)phenylsulfonamid)pent-2-enoat (3)


5.3 Alkoxy-catalysts

5.3.1 1-(((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)-2-nitrobenzene

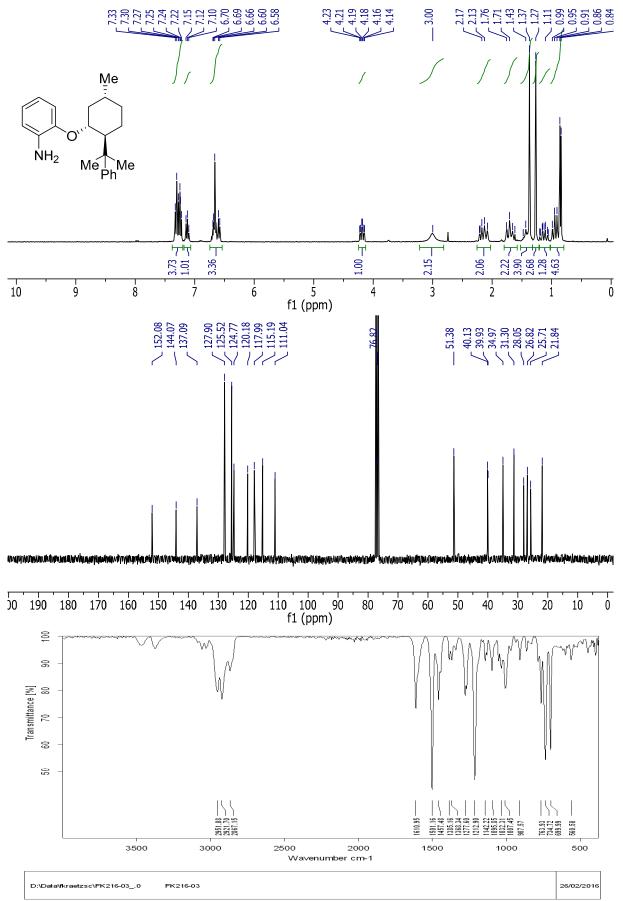


2-(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)aniline (9b) 5.3.2

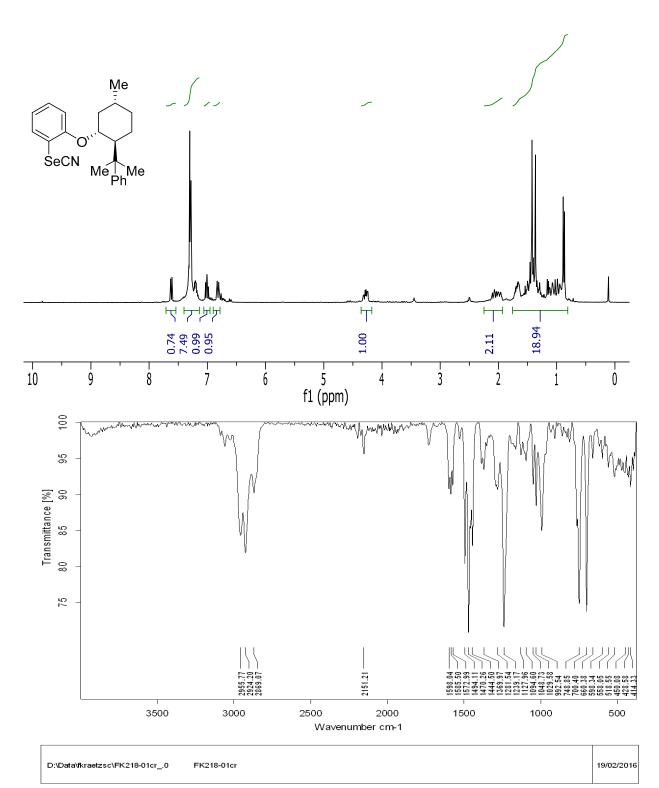


5.3.3 1-(((1*R*,2*S*,5*R*)-2-isopropyl-5-methylcyclohexyl)oxy)-2-selenocyanatobenzene (10b)

5.3.4 1,2-Bis(2-(((1*S*,2*R*,5*S*)-2-isopropyl-5-methylcyclohexyl)oxy)-phenyl)diselane (11b)

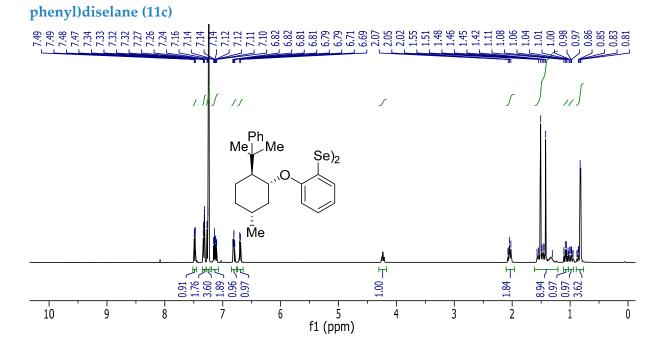


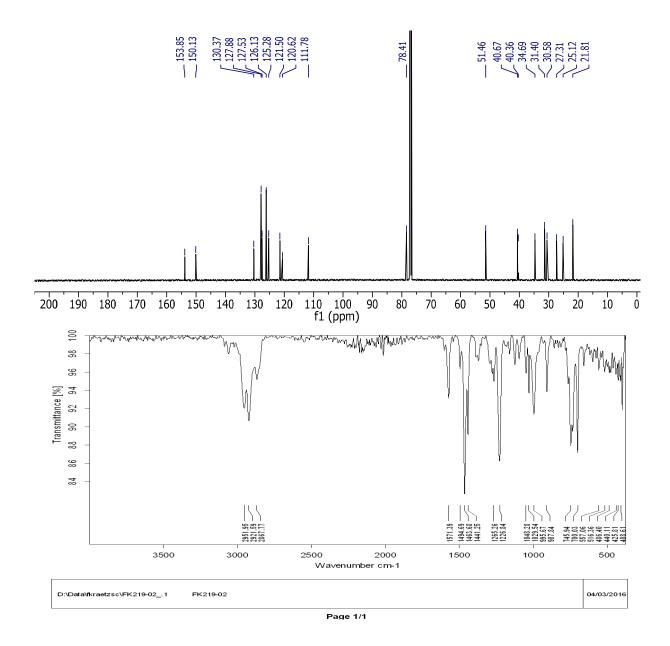
35

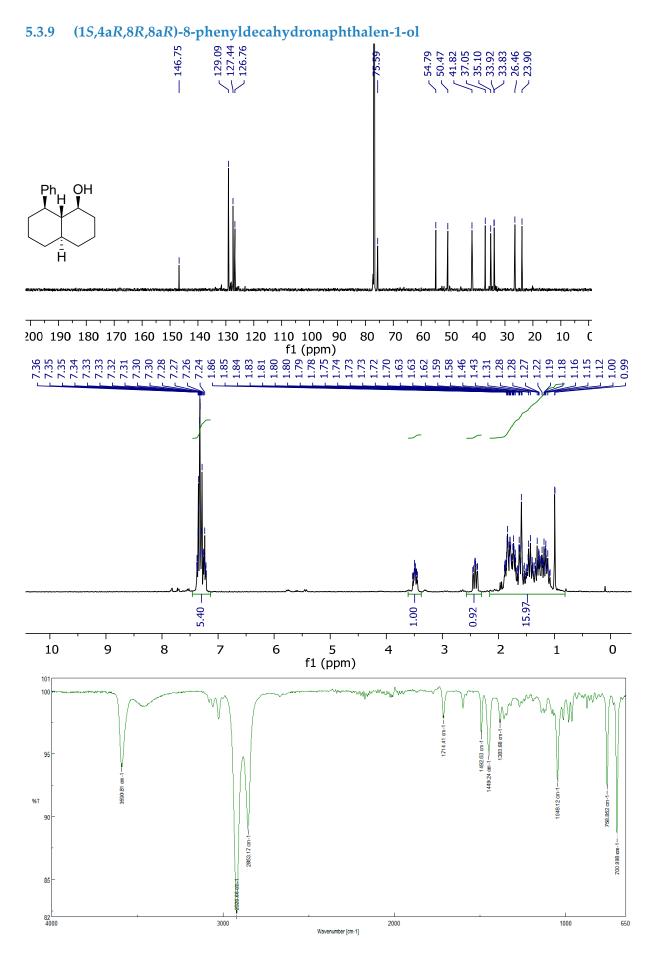

1-(((15,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2-nitrobenzol 5.3.5

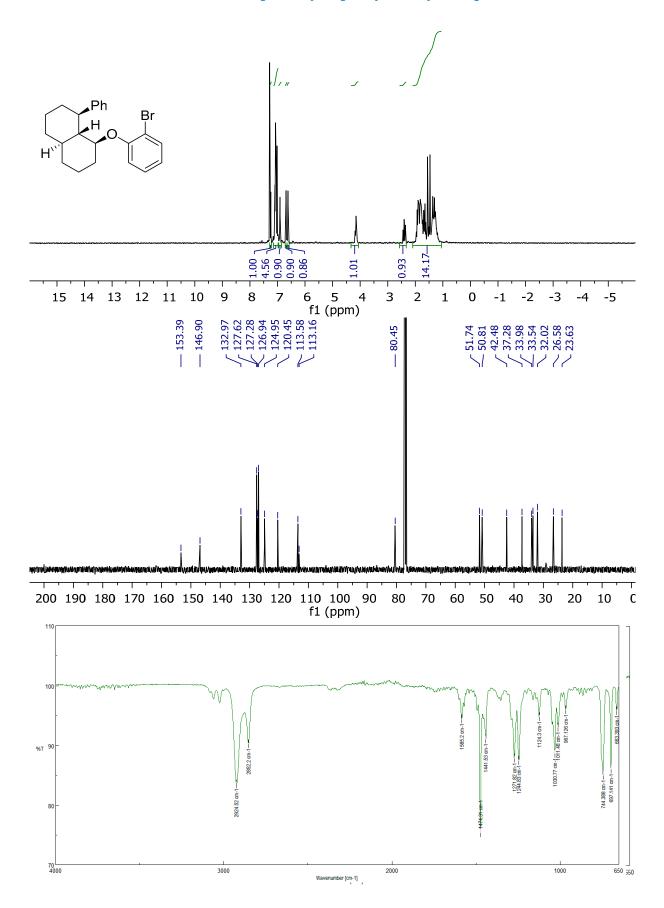
Page 1/1

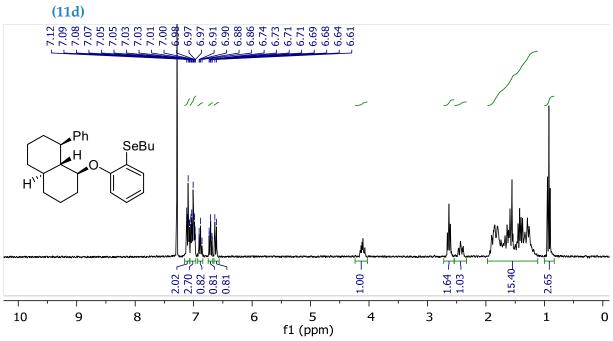
5.3.6 2-(((1S,2R,5S)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)aniline (9c)

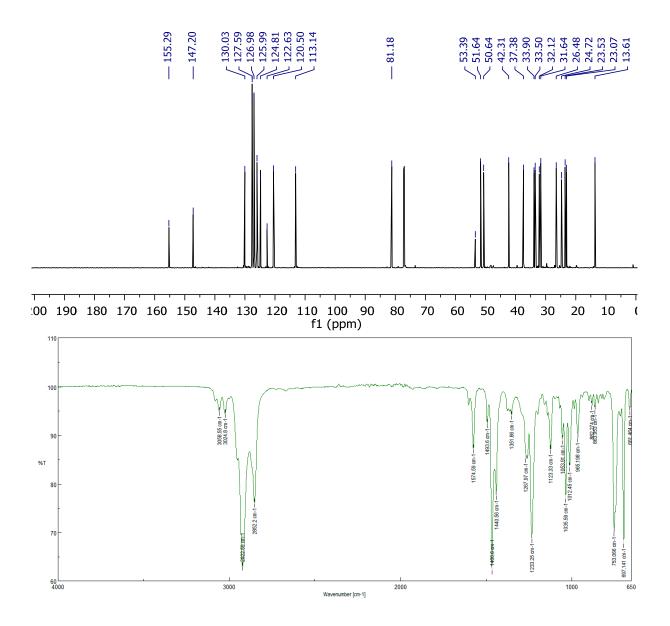

Page 1/1

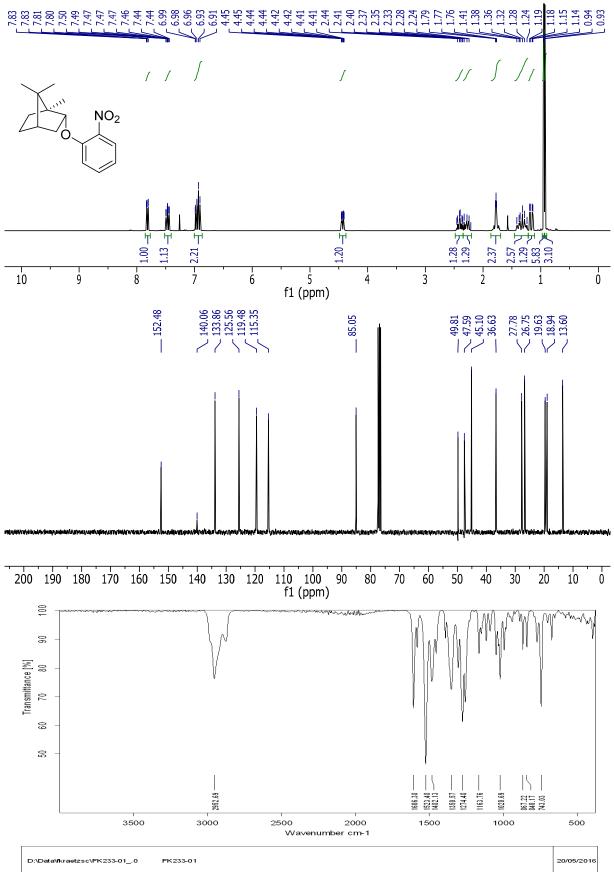

5.3.7 1-(((1*S*,2*R*,5*S*)-5-Methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-2selenocyanatobenzene (10c)


Pa<u>g</u>e 1/1

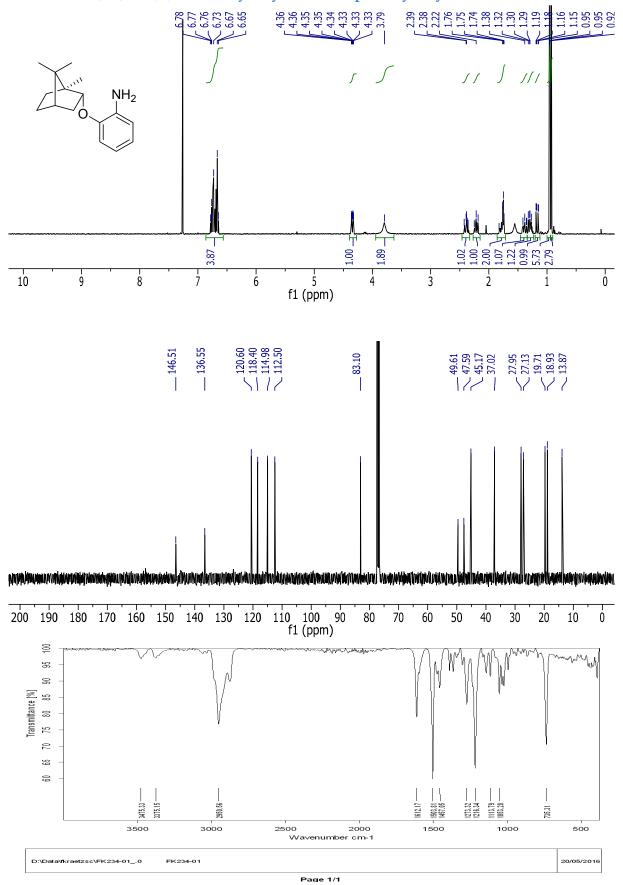

5.3.8 1,2-Bis(2-(((1*S*,2*R*,5*S*)-5-methyl-2-(2-phenylpropan-2-yl)cyclohexyl)oxy)-


39

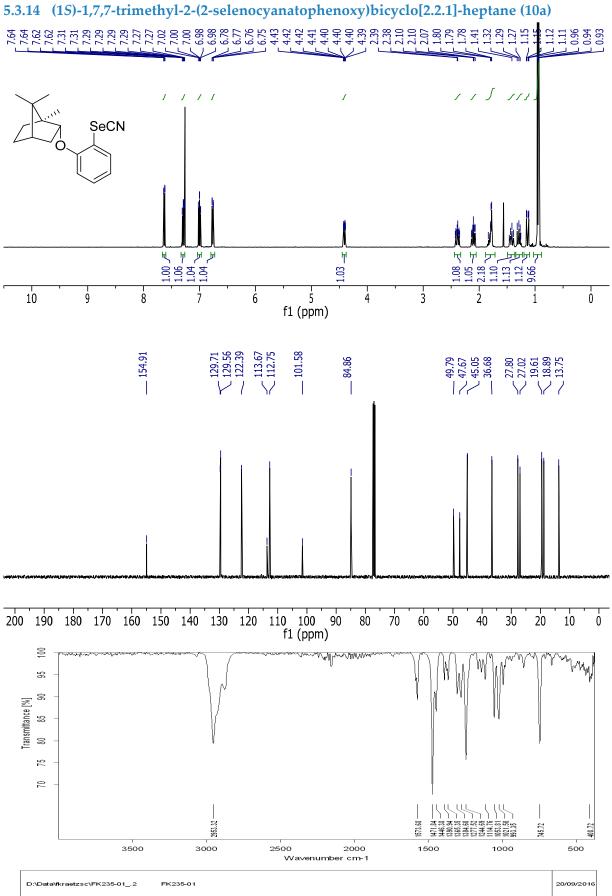


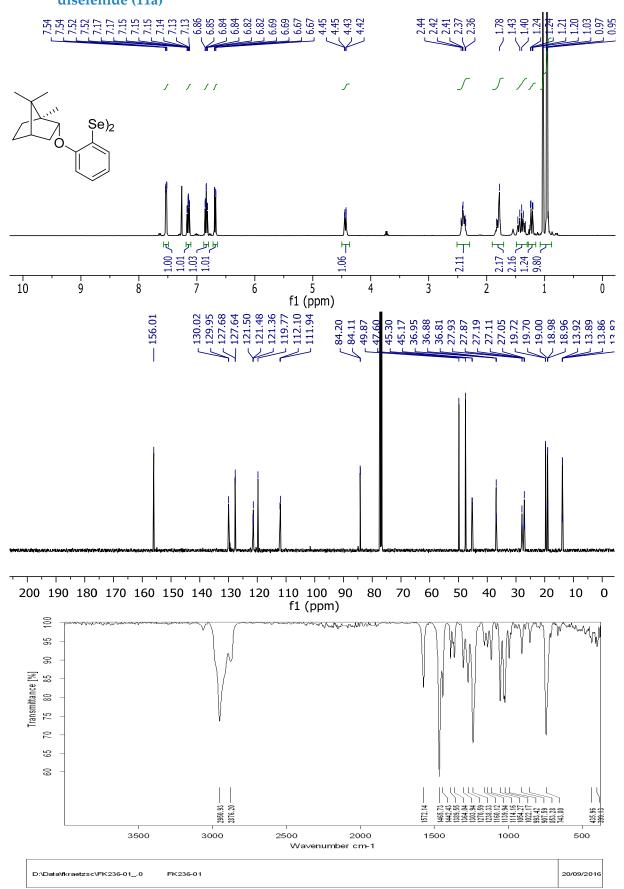


5.3.10 (1*S*,4a*R*,8*R*,8a*R*)-1-(2-bromophenoxy)-8-phenyldecahydronaphthalene (16)

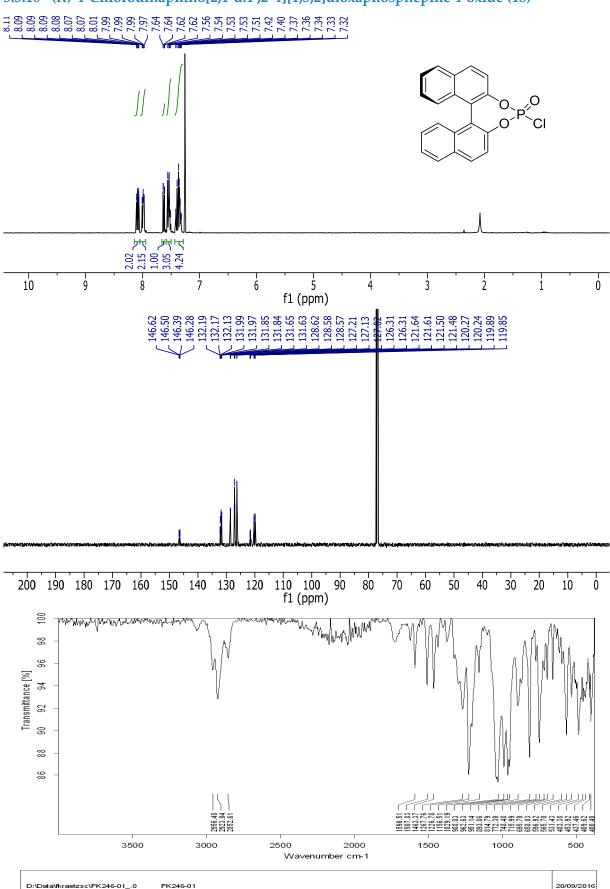


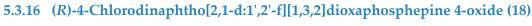
5.3.11 Butyl(2-(((1*S*,4a*R*,8*R*,8a*R*)-8-phenyldecahydronaphthalen-1-yl)oxy)phenyl)selane

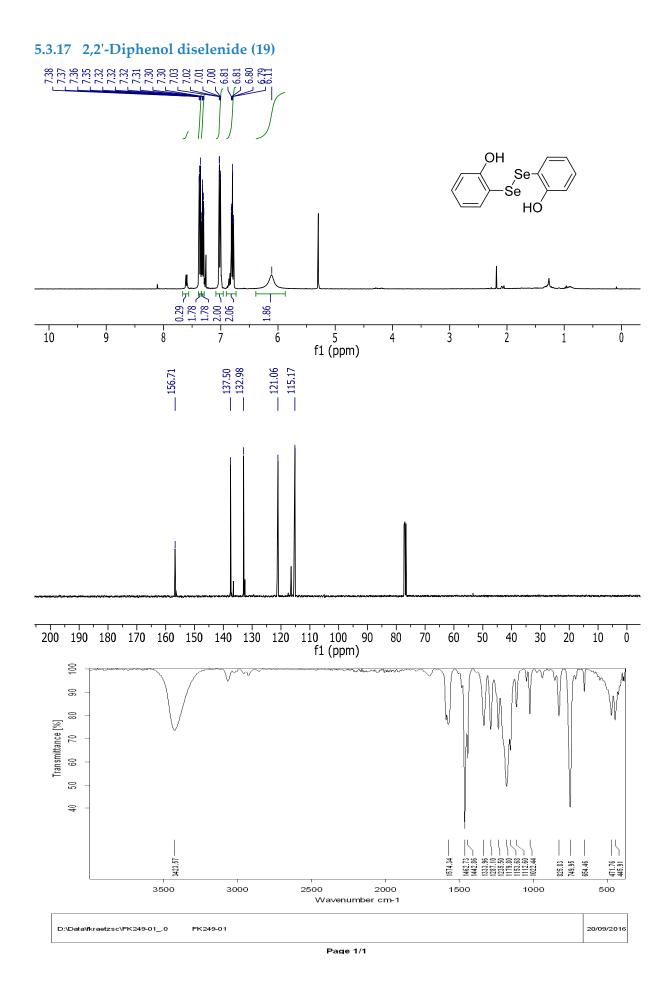


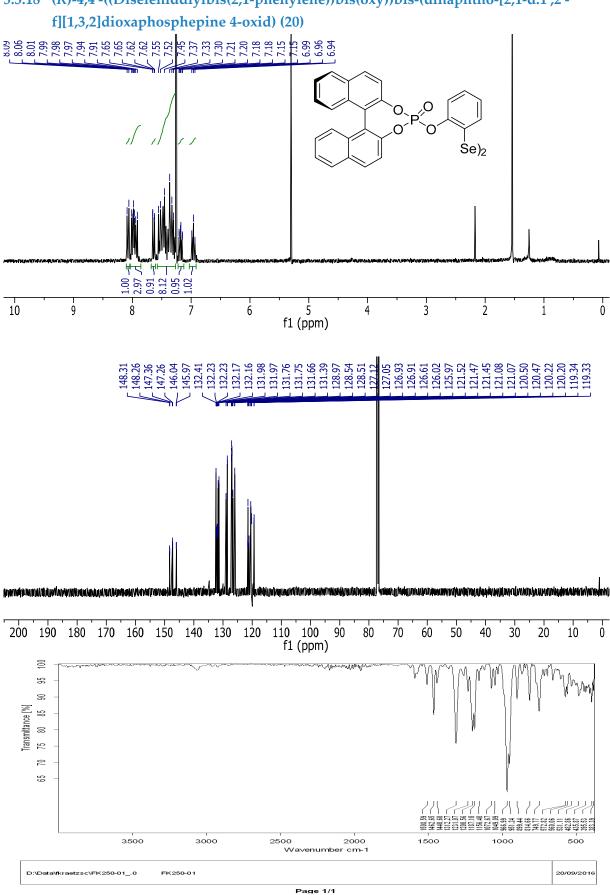

5.3.12 (1S)-1,7,7-Trimethyl-2-(2-nitrophenoxy)bicyclo[2.2.1]heptane

5.3.13 2-(((1*S*,2*R*,4*S*)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-yl)oxy)-aniline (9a)

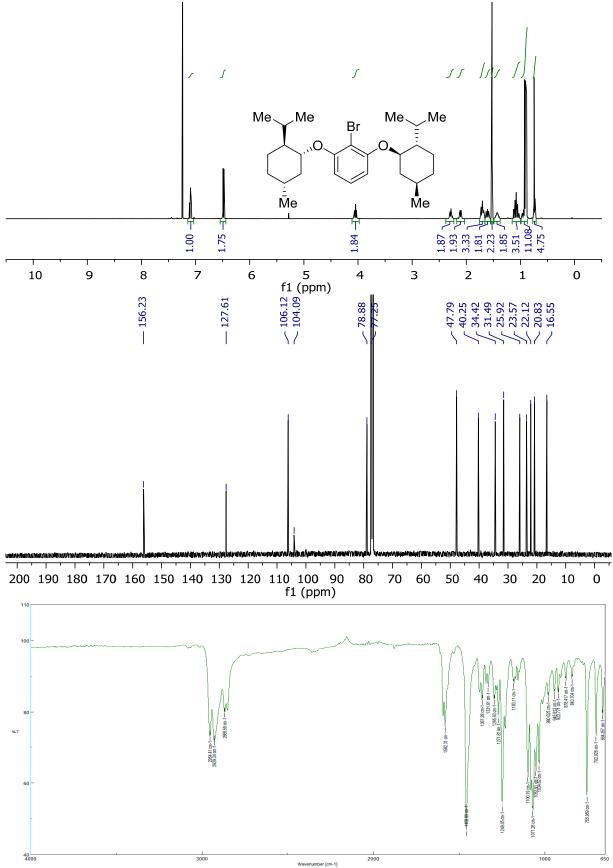


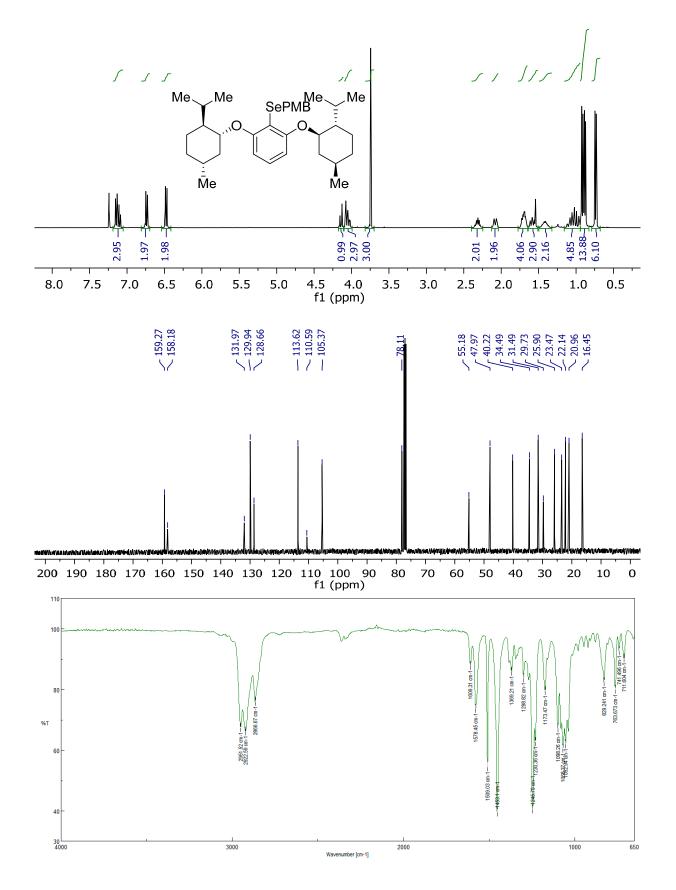

Page 1/1



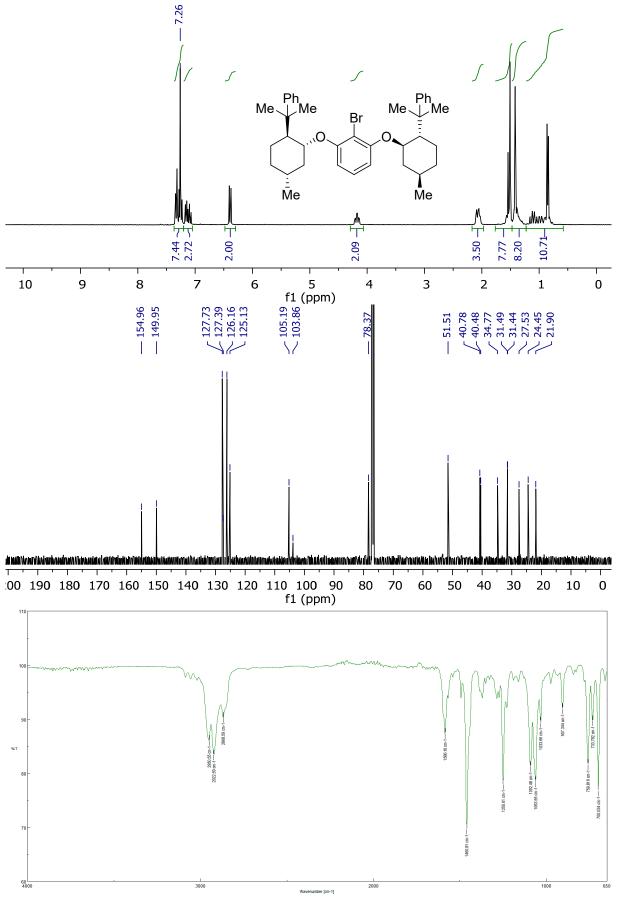

5.3.15 1,2-Bis(2-(((1*S*,2*R*,4*S*)-1,7,7-trimethylbicyclo[2.2.1]heptan-2-yl)oxy)phenyl) diselenide (11a)

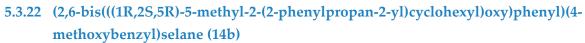
Page 1/1

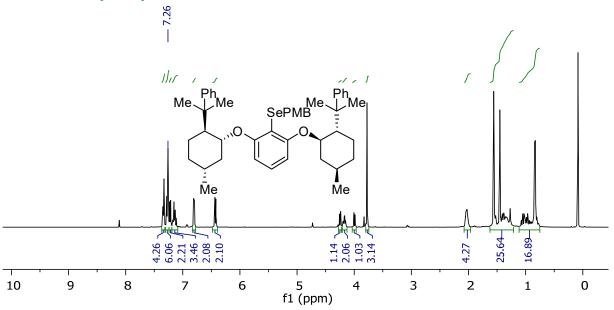


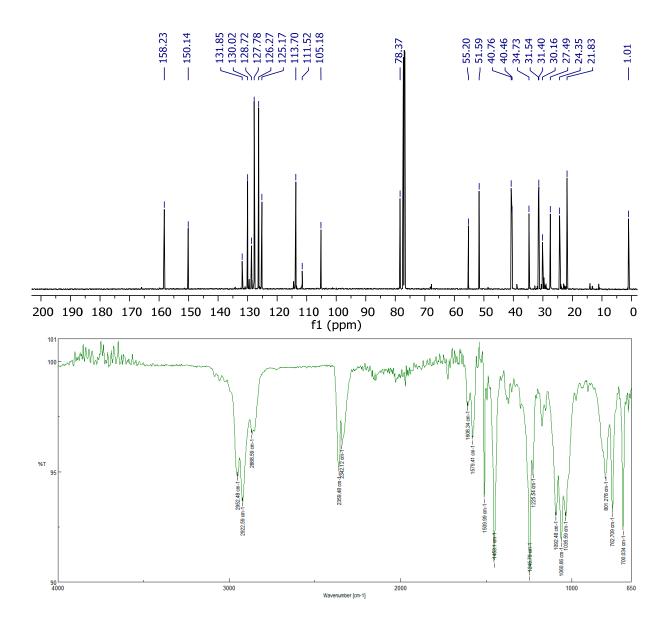

5.3.18 (R)-4,4'-((Diseleniddiylbis(2,1-phenylene))bis(oxy))bis-(dinaphtho-[2,1-d:1',2'-

51

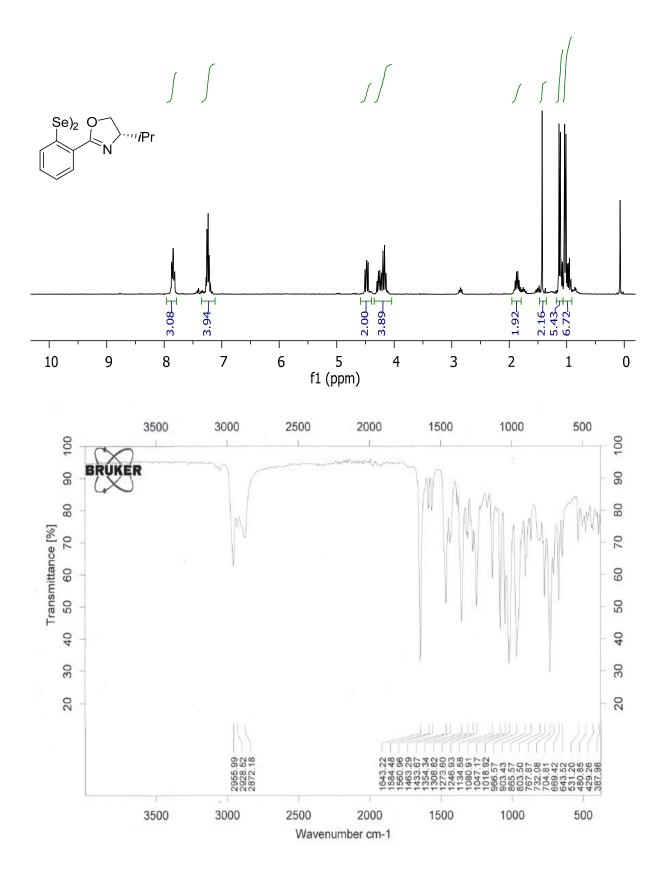


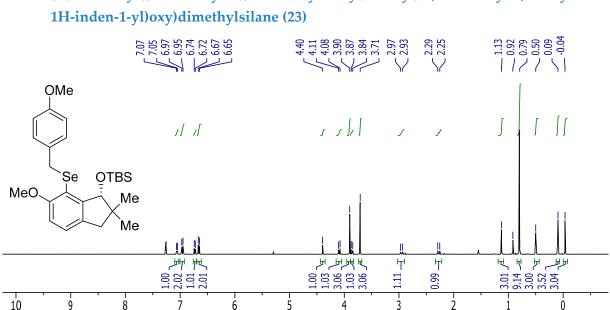


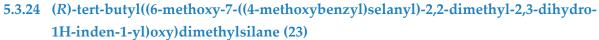

5.3.20 Bis-2,6-bis(((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)benzene diselenide (14a)

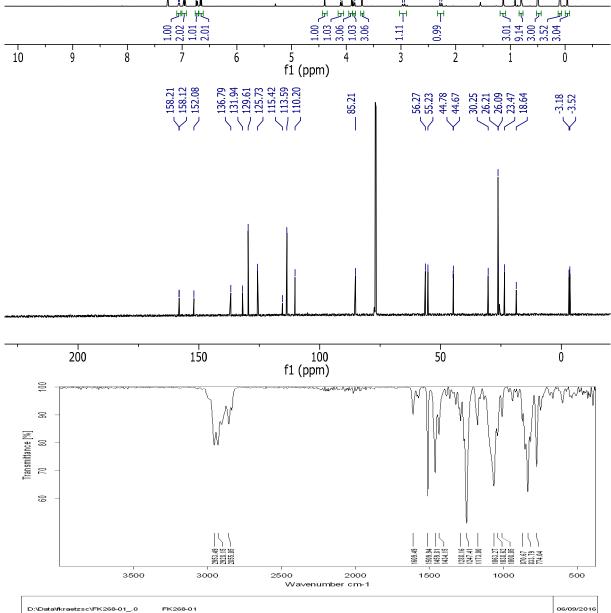


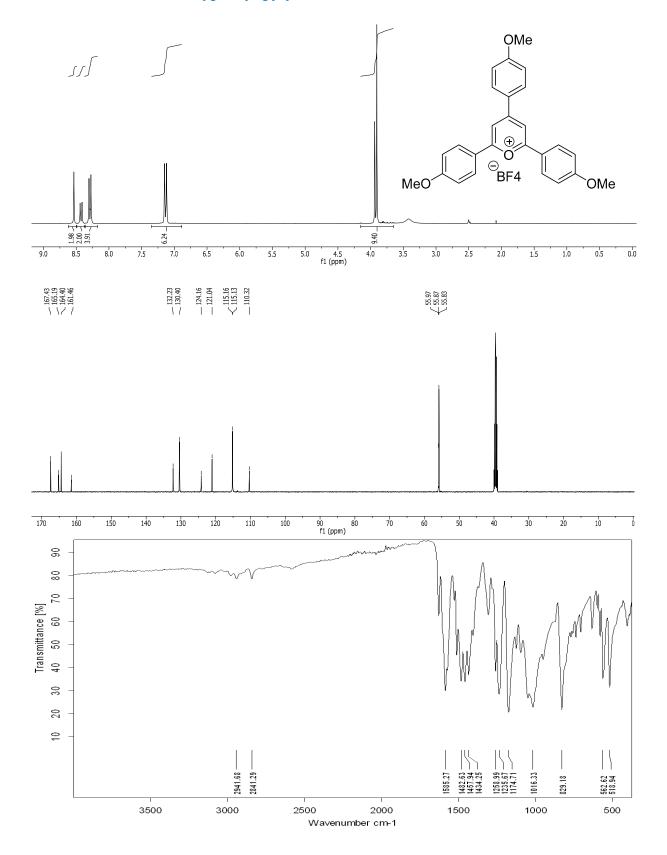
5.3.21 (((1*S*,1'*S*,2*R*,2'*R*,4*R*,4'*R*)-((2-bromo-1,3-phenylene)bis(oxy))bis(4-methylcyclohexane-2,1-diyl))bis(propane-2,2-diyl))dibenzene (13b)

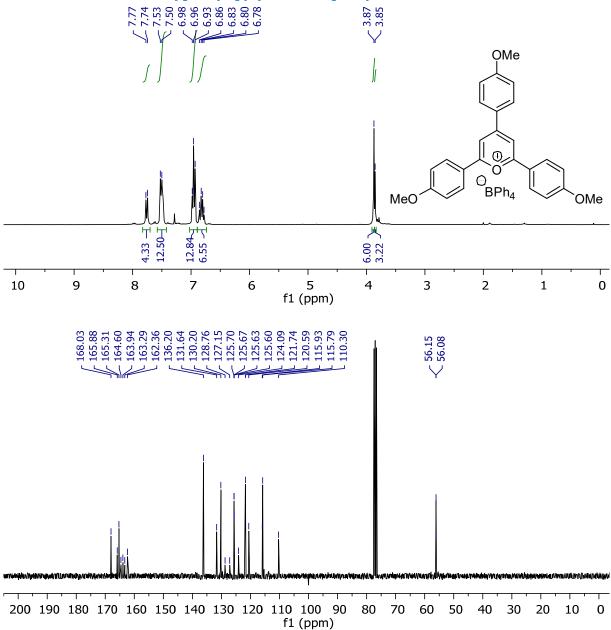




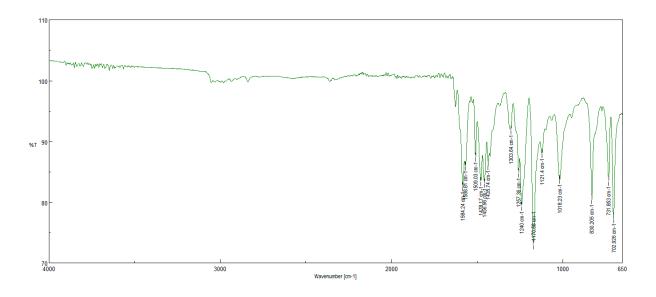


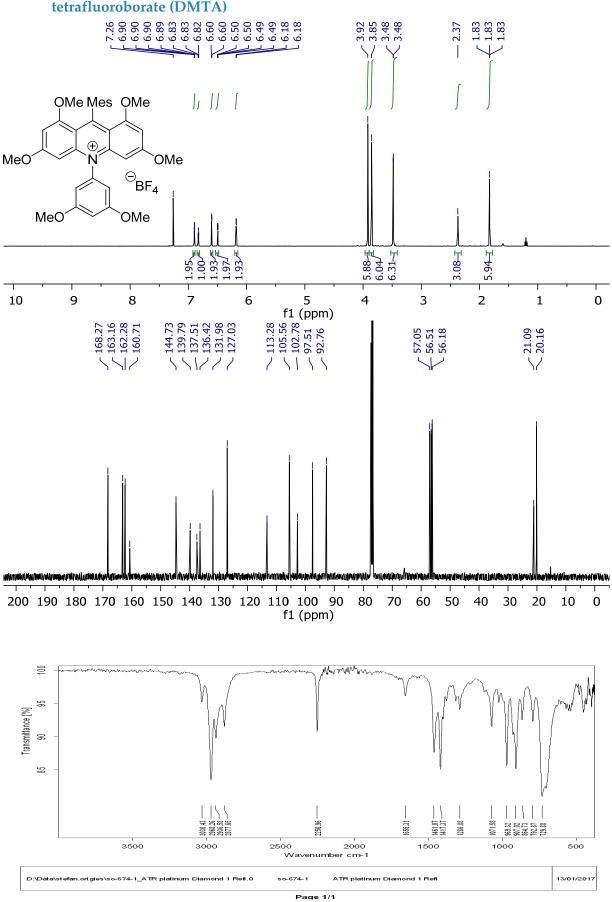


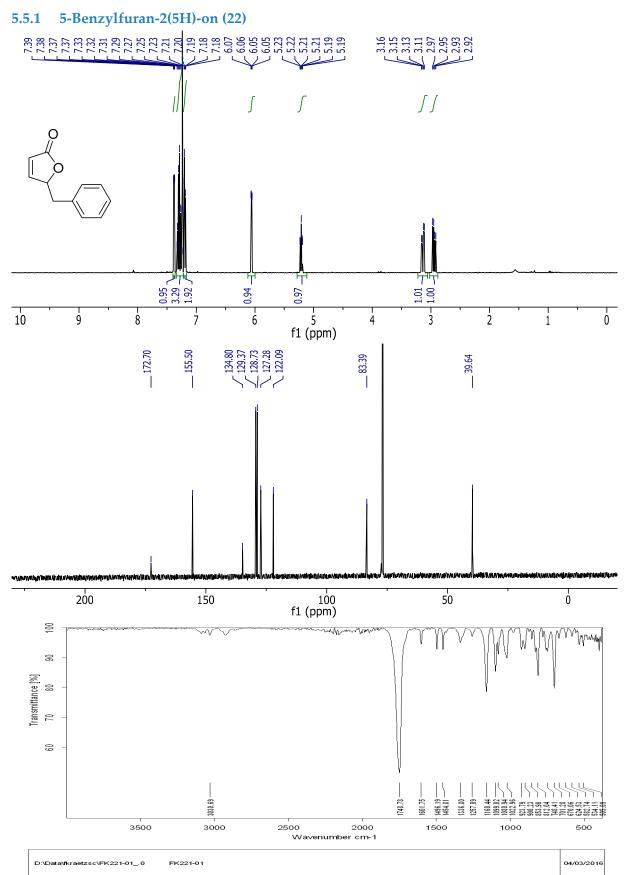


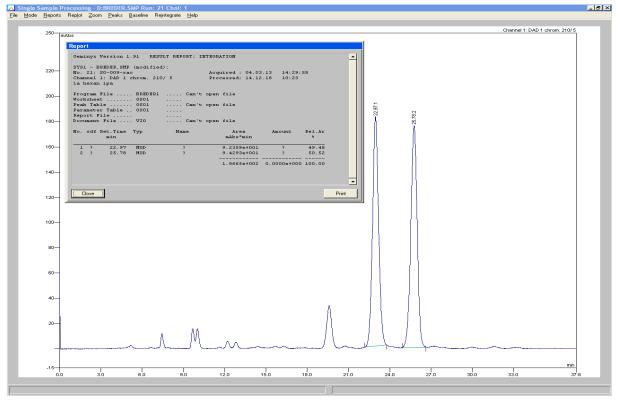


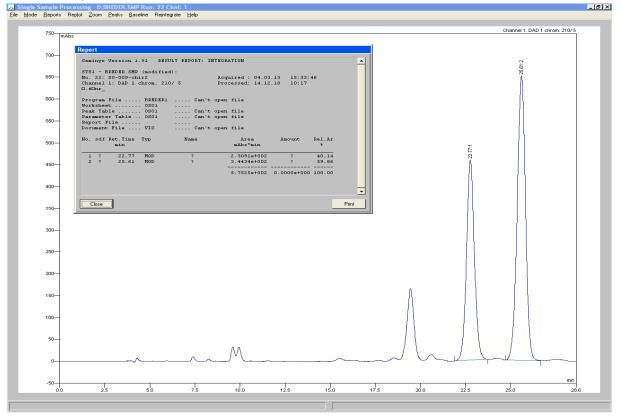
Page 1/1


5.4 Photocatalysts

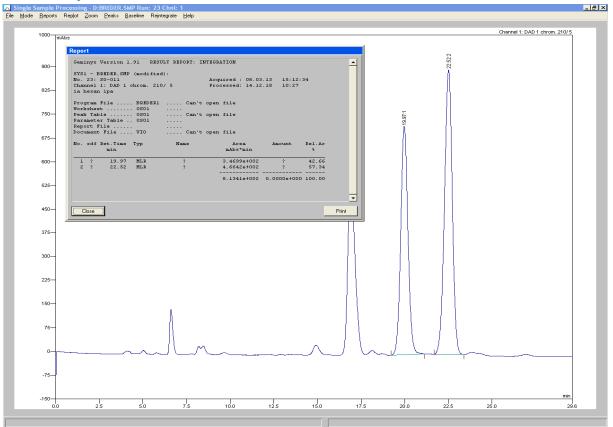

5.4.1 2,4,6-tris(4-methoxyphenyl)pyrylium tetrafluoroborate (TAPT)

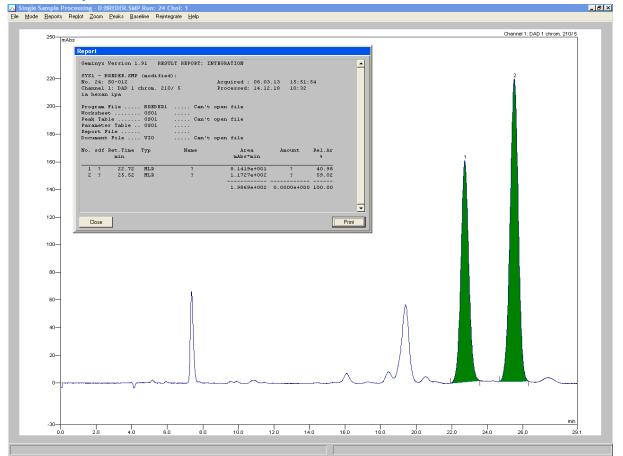

5.4.2 2,4,6-tris(4-methoxyphenyl)pyrylium tetraphenylborate (TABTP)

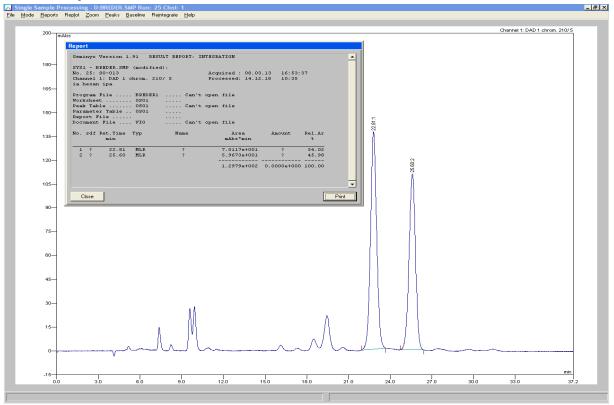

5.5 Asymmetric lactonization

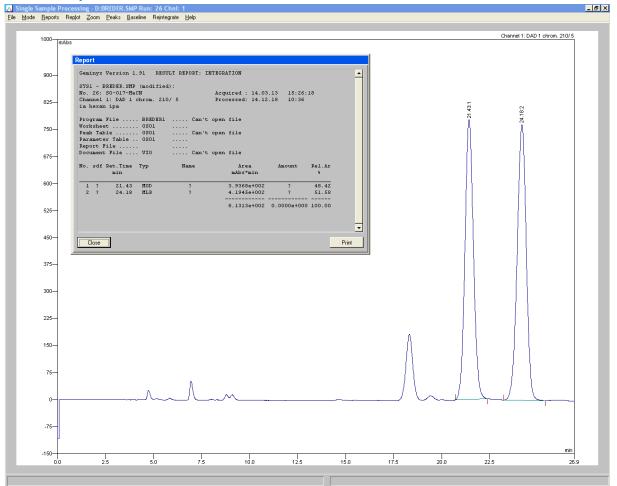

6 HPLC Chromatograms

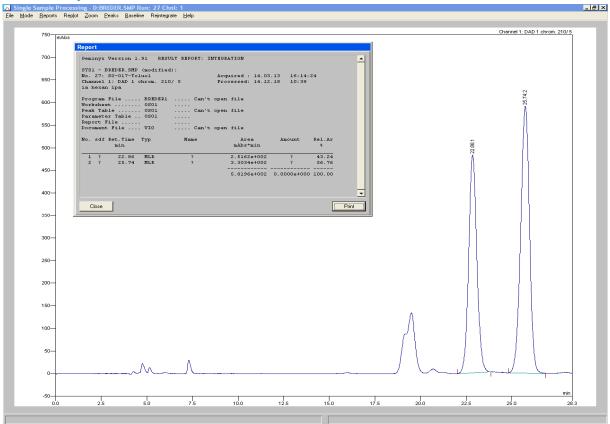
6.1 Imidation

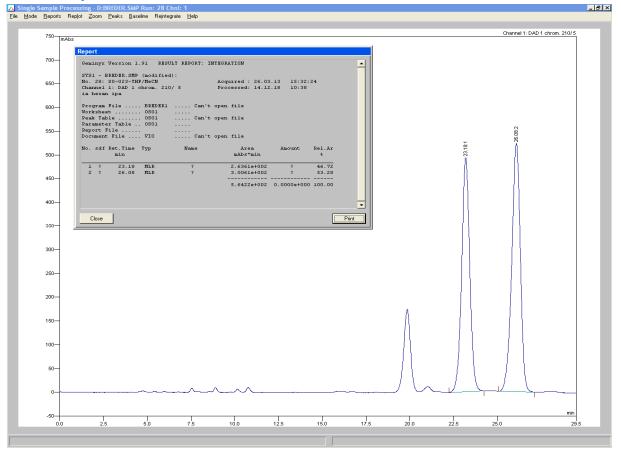

6.1.1 Racemate

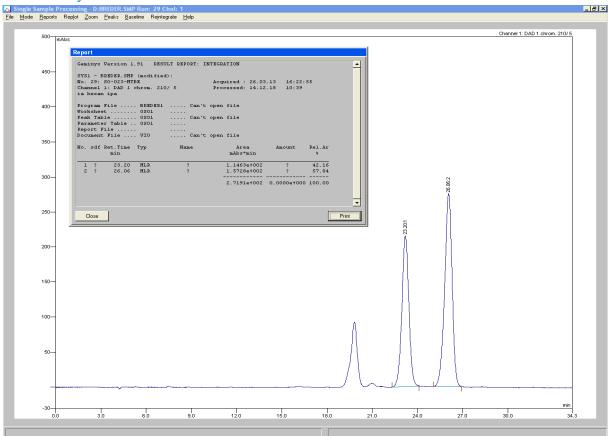

6.1.2 Entry 1

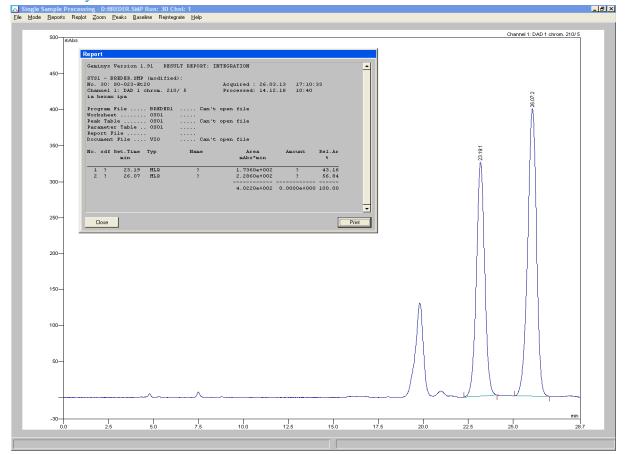

6.1.3 Entry 2

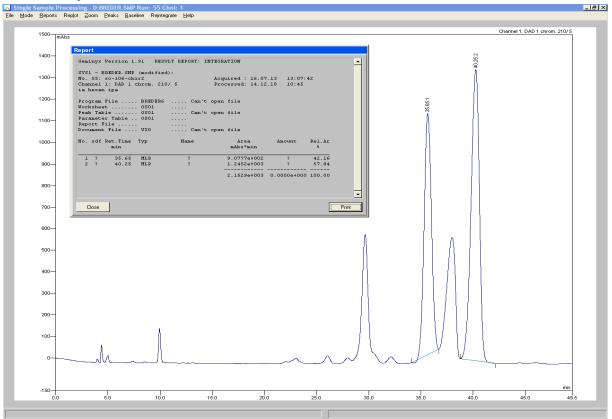

6.1.4 Entry 3


6.1.5 Entry4

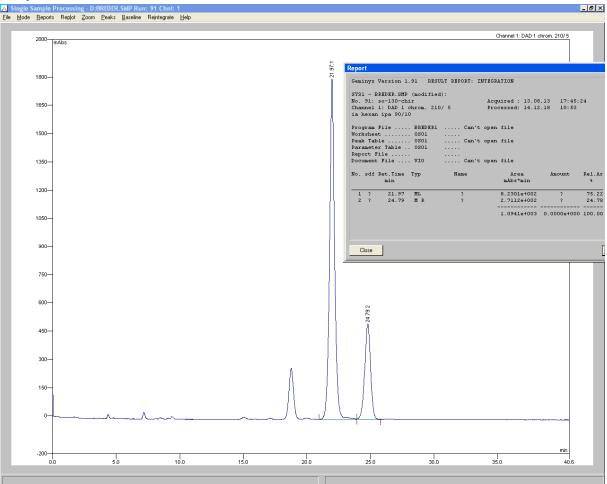

6.1.6 Entry 5


6.1.7 Entry 6

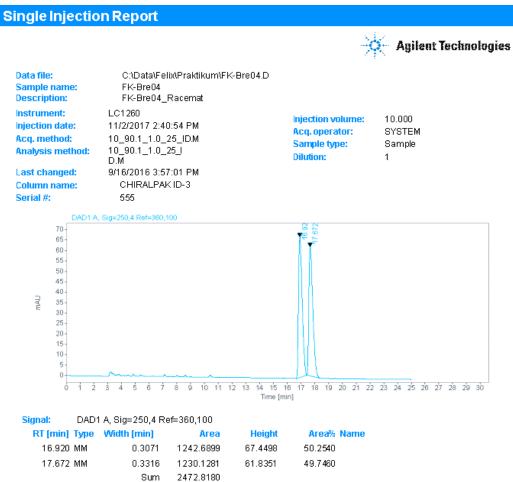

6.1.8 Entry 7


6.1.9 Entry 8

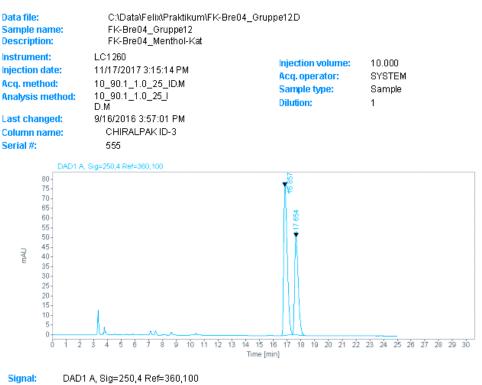
6.1.10 Entry 9


6.1.11 Entry 11

6.1.12 Entry 12

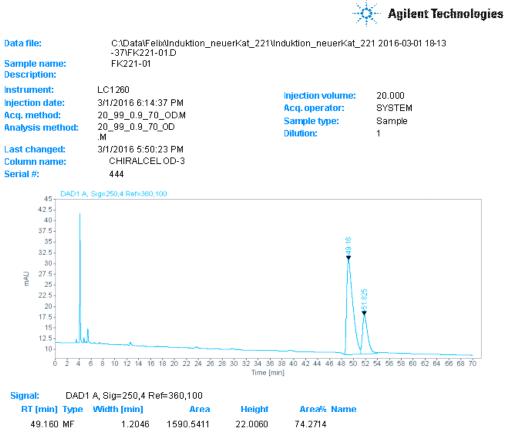

6.1.13 Entry 13

Single Sample Processing - D:BREDER.SMP Run: 91 Chnl: 1 <u>File Mode Reports Replot Zoom Peaks Baseline Reintegrate Help</u>


6.2 Lactonisation

6.2.1 Racemate

6.2.2 Entry 1



RT [min]	Туре	Width [min]	Area	Height	Area% Name
16.857	MM	0.2969	1362.2036	76.4608	59.6493
17.654	MM	0.3042	921.4839	50.4820	40.3507
		Sum	2283.6875		

6.2.3 Entry 2

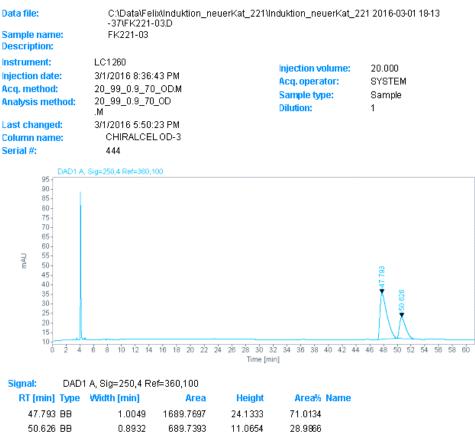
Single Injection Report

1090.0411	22
550.9844	8

2141.5256

1.0229

Sum


2.0060	74.2714
3.9779	25.7286

KathaTest1.rdl [Rev. 6]

51.825 FM

6.2.4 Entry 4

Sum

2379.5090

6.2.5 Entry 5

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerKat_ FK221-15_Ph-Menth_0*C 10_90.1_1.0_25_ID FK221-15_Pf LC1260 9/16/2016 6:03:34 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555 A. Sig=250.4 Ref=380.100		°C.D 10.000 SYSTEM Sample 1
150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 0 12 0 0 12 0 0 12 0 10 0 12 0 10 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	2 3 4 5 6 7 8 9 10 11 12 13 14	6 15 16 17 18 19 20 21 22 Time [min]	23 24 25 26 27 28 29 30
Signal: DAD	01 A, Sig=250,4 Ref=360,100		

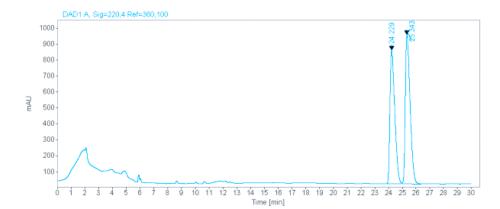
RT [min] Type	Width [min]	Area	Height	Area% Name
17.369 BV	0.3374	2534.8894	112.2577	73.2480
18.377 VB	0.3059	925.8031	46.5747	26.7520
	Sum	3460.6925		

6.2.6 Entry 6

bescription: Instrument: Injection date: Incq. method: Inalysis method:	FK221-40 Decalinol Kat LC1260 11/2/2018 4:29:30 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M	Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1
ast changed: Column name:	6/5/2018 5:13:20 PM CHIRALPAK ID-3		
Serial #:	555		
1500 - 1400 - 1300 - 1200 - 1000 - 1000 - 900 - 800 - 700 - 600 -			23 208

RT [min]	Туре	Width [min]	Area	Height	Area% Name
23.508	MM	0.3921	14020.5664	595.9428	22.7235
24.431	MM	0.5080	47680.1875	1564.3646	77.2765
		Sum	61700.7539		

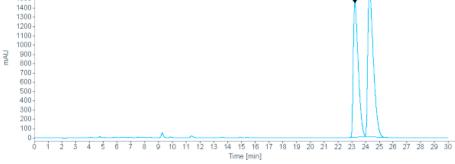
6.2.7 Entry 7


nstrument: njection date: loq. method: unalysis method: ast changed: column name: Serial #:	LC1260 11/8/2018 10:59:48 AM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1
DAD1	A, Sig=220,4 Ref=360,100		~
1200 -			N
1100-			6
1000 -			
900 -			
800-			
Tel 600-			23.303
500-			- N
400-			
300-			
200 -			
100-			

RT [min] Type	Width [min]	Area	Height	Area% Name
23.303 BV	0.3480	10534.7627	472.6717	25.0152
24.263 VB	0.4141	31578.7324	1180.6094	74.9848
	Sum	42113.4951		

6.2.8 Entry 8

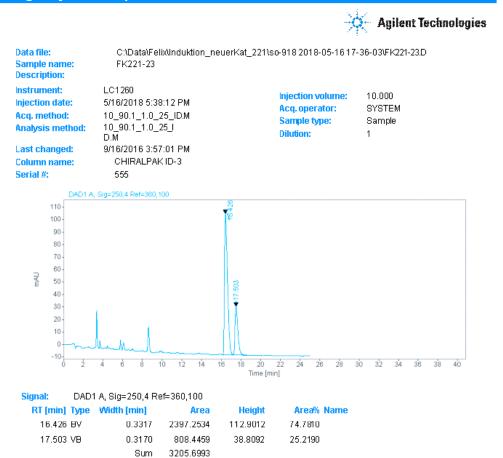
Data file: Sample name: Description: Instrument:	C:\Data\Felix\Induktion_neu FK221-46 FK221-46 Borneol Kat. entsp LC1260	-		
Injection date: Acq. method: Analysis method:	12/17/2018 5:03:16 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M	Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1	
Last changed: Column name: Serial #:	6/5/2018 5:13:20 PM			


Signal:	DAD1 A, Sig=220,4 Ref=360,100
Signal.	DADT A, BIG-220,4 KEI-300,100

RT [min] Type	Width [min]	Area	Height	Area% Name
24.229 MM	0.4034	20262.0078	837.0413	47.2880
25.343 MM	0.4032	22586.0664	933.6463	52.7120
	Sum	42848.0742		

6.2.9 Entry 9

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerKa FK221-45 FK221-46 BINOL-Kat. LC1260 12/17/2018 6:15:56 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM	t_221\FK221-45.D Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1	
DAD1 A	Sig=220,4 Ref=360,100		58 58 58	
1600 - 1500 - 1400 -				

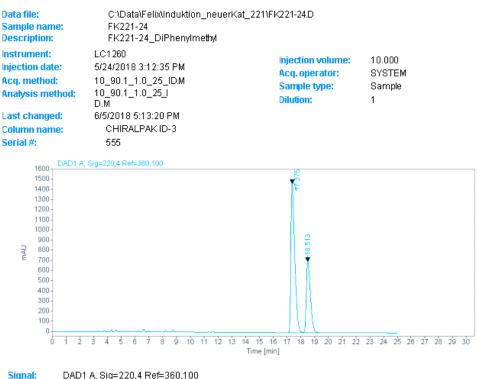


Signal: DAD1 A, Sig=220,4 Ref=360,100

RT [min] Type	Width [min]	Area	Height	Area% Name
23.235 MM	0.4202	36434.2930	1445.1360	44.9293
24.295 MM	0.4658	44658.2227	1597.7968	55.0707
	Sum	81092.5156		

6.2.10 Entry 10

Single Injection Report



KathaTest1.rdl [Rev. 6]

Printed: 12/16/2018 11:25:06 AM

6.2.11 Entry 11

Signal:	DAD1	A, Sig=220,4 F	Ret=360,100	
RT [min]	Type	Width [min]	Area	

RT [min]	Туре	Wie
17.375	ΒV	
18.513	VB	

,,	
h [min]	Area
0.2983	28718.0859
0.3197	14489.4551
Sum	43207.5410

 Height
 Area% Name

 1467.6029
 66.4654

 699.3735
 33.5346

6.2.12 Entry 12

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerk FK221-25 FK221-25_DiPhenyImethyl_Ma LC1260 5/25/2018 5:02:13 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_J D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	-	10.000 SYSTEM Sample 1
DAD1 A 260 240 200 200 180 160 140 120 100 80 60 - 0 0 1 2 0 1 2 100 100 - - - - - - - - - - - - -	Sig=220.4 Ref=380,100	8 14 15 18 17 18 19 20 21 22 Time [min]	23 24 25 26 27 28 29 30

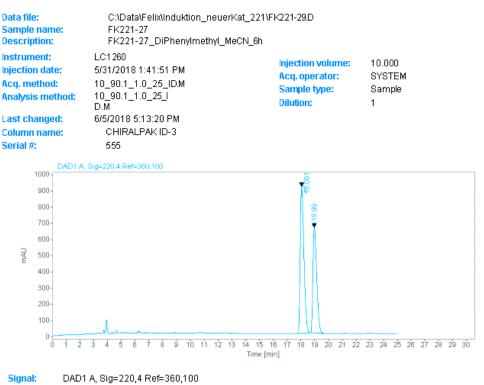
RT [min]	Туре	Width [min]	Агеа	Height	Area% Name
18.629	MM	0.2907	4160.9102	238.5581	68.2703
19.598	MM	0.3081	1933.8499	104.6171	31.7297
		Sum	6094.7600		

6.2.13 Entry 13

Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	LC1260 5/25/2018 3:21:05 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1
DAD1 /	A, Sig=220,4 Ref=360,100	8	
1100-		Nº x	
1000 -		19.4	
900 -		1	
800 -			
700-			
Pe 600-			
500-			
400-		0.11	
300-			
200-			
100-	And Annual and Annual Annua		
0			

RT [min] Type	Width [min]	Area	Height	Area% Name
18.492 MM	0.3337	22314.7383	1114.5094	53.7668
19.468 MM	0.3526	19188.0918	906.8666	46.2332
	Sum	41502.8301		

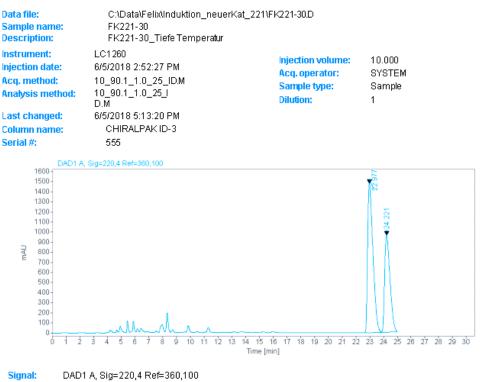
6.2.14 Entry 14



34D4 A. Sig=220 & Def=260 400			
DAD1 A, Sig=220,4 Ref=360,100		0	
		T ²	
		155.0	
		Ť	
		11	
	11 12 13 14 15 1	8 17 18 19 20 24 2	2 23 24 25 26 27 28 29 3
	1 2 3 4 5 6 7 8 9 10		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 2 Time [min]

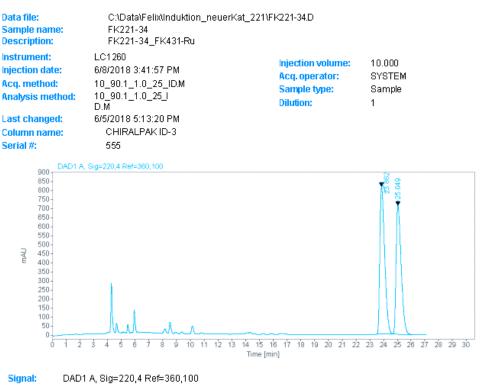
RT [min] Type	Width [min]	Area	Height	Area% Name
18.303 MM	0.3625	38601.9414	1774.8201	62.1891
19.331 MM	0.3560	23469.9395	1098.8024	37.8109
	Sum	62071.8809		

6.2.15 Entry 15



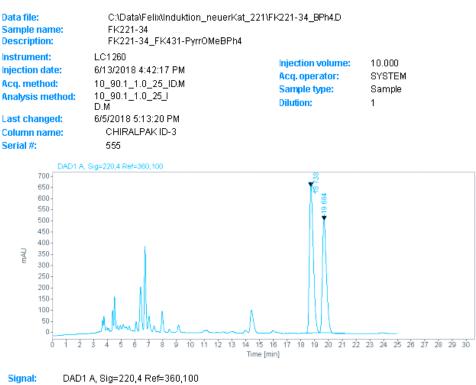
RT [min]	Туре	Width [min]	Агеа	Height	Area% Name
18.061	MM	0.3098	16799.9395	903.8807	57.3758
18.990	MM	0.3194	12480.6104	651.3352	42.6242
		Sum	29280.5498		

6.2.16 Entry 16



		1,013		0, 0001,000			
RT [min]	Туре	Width	[min]	Area	Height	Area%	Name
22.977	BV		0.4129	39589.2891	1475.9030	60.4868	
24.221	VBA		0.4172	25861.8711	957.3465	39.5132	
			Sum	65451.1602			

6.2.17 Entry 19



Width [min]	Area	Height	Area% Name	
0.4080	19926.8262	813.9940	52.1906	
0.4278	18254.0508	711.2316	47.8094	
Sum	38180.8770			
	0.4278	Width [min] Area 0.4080 19926.8262 0.4278 18254.0508 Sum 38180.8770	0.4080 19926.8262 813.9940 0.4278 18254.0508 711.2316	0.4080 19926.8262 813.9940 52.1906 0.4278 18254.0508 711.2316 47.8094

6.2.18 Entry 20

RT [min]	Туре	Width [min]	Area	Height	Area% Name	
18.738	MM	0.3314	13023.4590	654.9884	55.8723	
19.684	MM	0.3406	10285.8906	503.2816	44.1277	
		Sum	23309.3496			

6.2.19 Entry 21

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	FK221-35 FK221-35_FK431-Pyrrd LC1260 6/13/2018 5:28:30 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	neuerKat_221\FK221-35_BPh4_dryD DMeBPh4_dry Injection volume: Acq. operator: Sample type: Dilution:) SYSTEM Sample 1
DAD1 A 800- 750- 700- 650- 550- 500- 550- 500- 350- 200- 150- 200- 150- 200- 150- 0- 100- 50- 200- 150- 200- 150- 200- 12	Sig=220,4 Ref=360,100	1 12 13 14 15 16 17 18 19 20 21 22 Time [min]	2 23 24 25 26 27 28 29 30
Signal: DAD' RT [min] Type	I A, Sig=220,4 Ref=360,100 Width [min] Area	Height Area% Name	

756.3871

579.9187

55.7442

44.2558

18.709 BV

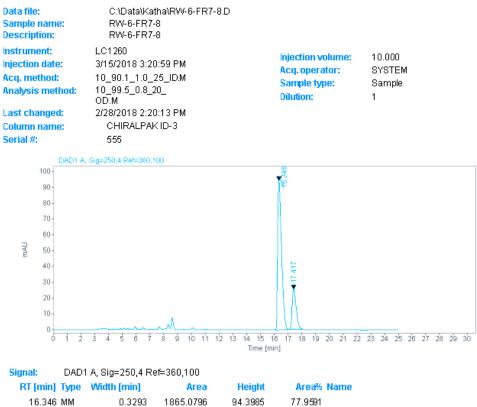
19.660 VBA

0.3018 14767.6328

0.3119 11724.1719

Sum 26491.8047

6.2.20 Entry 22



Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerk FK221-36 FK221-36_FK431_dry_conditio LC1260 6/14/2018 3:13:10 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	-	10.000 SYSTEM Sample 1
DAD1 A, 1800-	Sig=220,4 Ref=360,100	-8	
1600 -		¢	
1400 -		19.52	
1200 -			
1000- Pe			
- 800 - 600 -			
400-			
200 -			
0 0 1 2	3 4 5 6 7 8 9 10 11 12 13	14 15 16 17 18 19 20 21 22 Time [min]	2 23 24 25 26 27 28 29 30

RT [min] Type	Width [min]	Area	Height	Area% Name
18.542 MM	0.3844	39879.4492	1729.0916	57.8361
19.530 MM	0.3840	29073.1152	1261.9829	42.1639
	Sum	68952.5645		

6.2.21 Entry 24

527.3024 25.5813 22.0409

KathaTest1.rdl [Rev. 9]

17.417 MM

0.3435

Sum

2392.3820

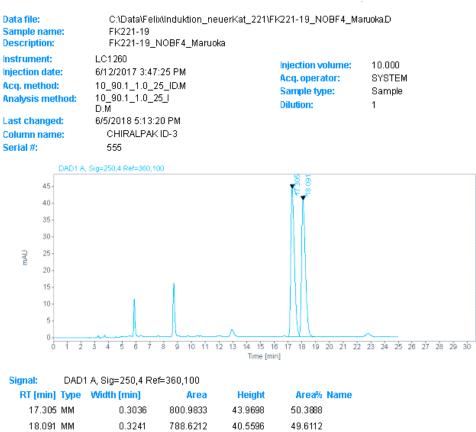
6.2.22 Entry 26

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerKat_221\FK221-13_Maruoka_0"CD CD-329OJ-III 10_90.1_1.0_25_IDFK221-13_Maruoka_0"C LC1260 9/16/2016 3:59:29 PM 10_90.1_1.0_25_IDM 10_90.1_1.0_25_IDM Sample type: Sample DILUTION: 1 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555 Stg=250.4 Ref=300,100					
350 325 300 275 250 225 220 175 150 125 100 75 50 25 0 0 1 2	3 4 5 6 7 8 9 10 11 12 13 14 15	5 18 17 18 19 20 21 22 [min]	23 24 25 28 27 28 29 30			

Signal: DAD1 A, Sig=250,4 Ref=360,100

RT [min]	Туре	Width [min]	Area	Height	Area% Name
17.337	MM	0.4216	3744.0320	148.0126	82.5616
18.480	MM	0.3366	790.8032	39.1546	17.4384
		Sum	4534.8352		

6.2.23 Entry 27


						1 ()
Data file: Sample na Descriptio		FK221-14_	ix\Induktion_ne Maruoka_0°C 0_25_IDFK221		221-14_Maruoka_O ඊC	°C.D
Instrumen Injection d Acq. meth Analysis n	late: iod:	LC1260 9/19/2016 4:00 10_90.1_1.0_2 10_90.1_1.0_2 D.M	25_ID.M		Injection volume: Acq. operator: Sample type: Dilution:	10.000 SYSTEM Sample 1
Last chan Column na Serial #:		6/5/2018 5:13: CHIRALPAk 555				
	DAD1 A	, Sig=250,4 Ref=360,1	00			
12 111 10 9 8 9 7 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9	30 - 20 - 10 -	3 4 5 6 7		12 13 14 15 16 Time [min		2 23 24 25 26 27 28 29 30
Signal:	DAD	1 A, Sig=250,4 Re	ef=360,100			
RT [m	in] Type	Width [min]	Area	Height	Area% Name	
17.4	101 BV	0.3529	3043.9487	128.2518	83.1920	
18.4	154 VB	0.3006	614.9948	31.6648	16.8080	

Sum 3658.9435

KathaTest1.rdl [Rev. 9]

6.2.24 Entry 31

Sum

1589.6045

6.2.25 Entry 32

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Induktion_neuerKat_22 FK221-43 FK221-43 Diselenocin Acetal LC1260 12/14/2018 4:28:34 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_J D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	1\FK221-43.D Injection volume: 10.000 Acq.operator: SYSTEM Sample type: Sample Dilution: 1
1500 1400 1200 1200 1000 900 800 600 500 400 200 100 0 0 0 0 0 0 0 0 0 0 0 0	Sig=220,4 Ref=360,100	
		s 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 [min]
RT [min] Type	Width [min] Area Height	t Area% Name

RT [min]	Туре	Wi
23.469	MM	
24.491	MM	

g=220,4 Rei=300,100					
Area	Height				
26266.6113	1035.7816				
41866.8594	1430.5667				
68133.4707					
	Area 26266.6113 41866.8594				

Area% Na 38.5517 61.4483

KathaTest1.rdl [Rev. 9]

6.2.26 Entry 33

Data file: Sample name: Description: Instrument: Injection date: Acq. method: Analysis method: Last changed: Column name: Serial #:	C:\Data\Felix\Indukt FK221-44 FK221-44 Diseleno LC1260 12/14/2018 5:12:58 PM 10_90.1_1.0_25_ID.M 10_90.1_1.0_25_I D.M 6/5/2018 5:13:20 PM CHIRALPAK ID-3 555	cin Carbonat	FK221-44.D Injection volume: Acq.operator: Sample type: Dilution:	10.000 SYSTEM Sample 1			
	, Sig=220,4 Ref=360,100						
1100-				2 4 42 B			
1000 - 900 -				[™] 1			
	1						
800 - 700 -							
000- ₩ 500-							
400 -							
300-							
200-							
100-							
0	h	Luma	~~~~~				
0 1 2	34567891	0 11 12 13 14 15 Time[m	16 17 18 19 20 21 22 nin]	23 24 25 26 27 28 29 30			
Signal: DAD1 A, Sig=220,4 Ref=360,100							
RT [min] Type	· - · ·	rea Height	Area% Name				

RT [min] Type	Width [min]	Area	Height	Area% I
23.369 BV	0.3969	26648.8867	1040.2244	49.2414
24.452 VB	0.4365	27470.0293	963.8536	50.7586
	Sum	54118.9160		