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Abstract: In this study, we review photocatalytic reversible surface catalytic reactions driven by localized
surface plasmon resonance. Firstly, we briefly introduce the synthesis of 4,4′-dimercaptoazobenzene
(DMAB) from 4-nitrobenzenethiol (4NBT) using surface-enhanced Raman scattering (SERS)
technology. Furthermore, we study the photosynthetic and degradation processes of 4NBT to
DMAB reduction, as well as factors associated with them, such as laser wavelength, reaction time,
substrate, and pH. Last but not least, we reveal the competitive relationship between photosynthetic
and degradation pathways for this reduction reaction by SERS technology on the substrate of Au
film over a nanosphere.
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1. Introduction

Surface-enhanced Raman scattering (SERS) and tip-enhanced Raman spectroscopy (TERS) are
widely used in the fields of physics, chemistry, biology, medicine, and materials, and they are highly
sensitive molecular-detection tools that play a significant role in research on the electronic structure and
spectral properties of molecules and plasmon-driven chemical reactions [1–9]. Recently, we studied
the physical mechanism of plasmon-enhanced resonance Raman and fluorescence spectra [10] to
understand the applications and principles of photoinduced charge transfer [11]. Furthermore, SERS
made significant contributions to the study of heterostructures in two-dimensional materials [12],
and significant advances were made in the application of nonlinear optical microscopy [13]. At the
same time, it is a significantly important tool for probing chemical signals about molecules adsorbed
onto metal substrates, such as Au, Ag, and Cu. It is also a promising technology for detecting
plasmon-driven catalytic mechanisms. This technique is extremely sensitive to detecting high
field-enhancement regions on a plasmon substrate. Many research results show that an electromagnetic
field is an important part of the SERS enhancement mechanism, which is generated by the amplification
and localization of incident electromagnetic waves.

A lot of research shows that conversion of 4-nitrobenzenethiol (4NBT) and p-aminothiophenol
(PATP) to 4,4′-dimercaptoazobenzene (DMAB) via reduction and oxidation reactions was achieved
with SERS technology [2–11,14–18]. Theoretical and experimental studies showed that SERS synthesis
of DMAB from PATP is achieved via the selective catalytic coupling of Ag nanoparticles (Ag NPs).
It was concluded that, in the field of electromagnetic fields, the six strong generated vibration modes
are enhanced by the plasmon; this is direct evidence of the reaction of PATP to DMAB on Ag
NPs via selective catalytic coupling [19,20]. Therefore, DMAB is an important topic in the study
of plasmon-assisted catalytic reactions [21–24].

Authors researched the effects of photoreduction-field enhancement from 4NBT to DMAB driven
by plasmon on Au, Ag, and Cu [25–27]. The molecular structure of 4NBT and DMAB are shown in
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Figure 1 [28]. Studies showed that there was a higher active SERS in a diluted HNO3 solution for Cu
substrates by using a 632.8-nm He/Ne laser. However, it could not be ruled out that Cu may also be
an effective photoelectron emitter under a wavelength condition of 632.8 nm. The SERS spectrum
on Cu-adsorbed 4NBT could be significantly converted into an SERS spectrum of another substance,
such as 4-aminobenzenethiol (4ABT). Simultaneously, the authors studied the time-, substrate-, and
wavelength-dependent surface catalysis reduction reaction of 4NBT to DMAB under the assisting
condition of plasmon on Au, Ag, and Cu [29]. In Figure 2, atomic force microscopy (AFM) images of Au,
Ag, and Cu films are displayed. Studies showed that this kind of reduction reaction of 4NBT to DMAB
was significantly dependent on wavelength, substrates, and reaction time. When the wavelength was
632.8 nm, the reaction of 4NBT to DMAB did not occur on the Cu film substrate when the reaction
time exceeded two hours. In contrast, 4NBT was quickly converted to DMAB when the wavelength
was 514.5 nm. Thus, it was rational to control this reduction reaction by adjusting some of the factors
mentioned above. Plasmon hot electrons provide high kinetic energy to overcome the reaction barrier
for dissociation, and the electrons for photodissociation.
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2. Plasmon-Driven Surface Catalysis Reduction Reaction of 4NBT to DMAB

In this section, we focus on the time- and wavelength-dependent plasmon-driven surface catalysis
reduction reaction of 4NBT to DMAB on an Au film. Sun et al. conducted some research on Au films
and determined whether the rate and yield of the reaction were related to the wavelength of the used
laser and the reaction time. In Figure 3a,b, SERS spectra of 4NBT are shown at the junction of an Ag
NP on the Au film with the incident wavelength of 514.5 and 632.8 nm, respectively. Studies showed
that, when the incident laser had a wavelength of 632.8 nm and the reaction time reached 2.5 h, 4NBT
did not convert to DMAB, revealed by the Raman intensity of vs(NO2) on 4NBT. When the wavelength
of the incident laser was 632.8 nm, the corresponding local electric-field distribution map of an Ag
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NP–Au film was as displayed in Figure 4. However, when the incident laser wavelength was 514.5 nm,
the Raman signal was hardly detected after 2.5 h, indicating that the Au film was not a reasonable
substrate under the condition of a 514.5-nm laser.
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Here, the authors proposed a reaction mechanism for a surface catalytic reaction when the
4NBT is transformed into DMAB, as displayed in Figure 5. There are many ways to provide energy
for plasmon-driven surface catalytic reactions, such as enhanced thermal surroundings, hot electric
transfer, and increased scattering. Here, the authors mainly studied energy supply by hot electrons.
This mechanism indicates that the conversion of 4NBT to DMAB requires four electrons, and the
required hot electrons were generated by plasmon decay, which had high kinetic energy, and the
generated energy could drive the surface catalytic reaction.

By detecting the Raman signals of different incident-laser wavelengths and reaction times,
the relationship between the surface catalytic reduction reaction of 4NBT to DMAB and the length of
the reaction time was shown. The wavelength of the incident laser was also revealed, thus finding the
optimal incident-laser wavelength and reaction time. Therefore, these two factors can be adjusted to
promote or inhibit the surface catalytic reduction of 4NBT to DMAB on Au substrates. At the same
time, plasmon resonance plays a key role in the surface catalytic reaction, and the energy that drives
the reaction is generated by plasmon decay.
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In a previous study, control of the degradation reaction of DMAB was achieved, the chemical
bond of DMAB was selectively broken using hot electrons as plasmon scissors, and the degradation
process was related to various factors, such as pH. The authors controlled the dissociation products
by pH, attaching hydrogen ions under acidic conditions to produce PATP. Under alkaline conditions,
4NBT was produced by attaching oxygen ions. In the next section, we present an in-depth discussion
on what was more dominant in the synthesis and degradation process under different environmental
conditions, as well as what had a higher conversion rate and a faster response rate.

3. Competition between Reaction and Degradation Pathways in Plasmon-Driven Photochemistry
of 4NBT to DMAB

Plasmon materials are important for driving photochemical reactions. Previous studies showed
that plasmon induced many photochemical reactions, but the corresponding reaction mechanism
was not clear. In this section, the plasmon excitation field effect of plasmon excitation to promote the
conversion of 4NBT to DMAB was investigated. For this reduction reaction, the increase in DMAB and
decrease in 4NBT were related to time [30–32].

Plasmon nanostructures significantly contribute to driving photochemical reactions due to the
powerful ability of plasmon nanostructures to focus and amplify various spectra [33–36]. Therefore,
plasmon materials often act as a photocatalytic platform for inducing a lot of photochemical reactions.
In previous studies, photoreactions were carried out, such as dissociation of H2 [37,38], water
decomposition [39,40], and reduction of CO2 to hydrocarbon compounds [41,42]. This proved that
plasmon-driven photoreactions have great potential. In this section, the authors used a substrate of
Au film over a nanosphere (AuFON) to measure the yield and reaction rate of 4NBT photoreactions.
In general, more field enhancement resulted in higher reaction yields. Unfortunately, this conjecture
was not proven with the current technology. Studies showed that, for molecular degradation reactions,
the reaction yield is highly dependent on electric-field strength.
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To calculate the enhancement factor (EF) of each sampling area of the AuFON substrate,
the specific relationship could be expressed by the following equation (Brooks, J.L., et al.):

EF =
ISERS/Nsurf
INRS/Nvol

, (1)

where ISERS is the Raman intensity of 4NBT when wavenumber position is 1074 cm−1 on the AuFON
substrate, and the corresponding Raman intensity in the solution is INRS. Nsurf is the number of
molecules that are adsorbed onto the substrate of AuFON, and Nvol is the number of molecules in the
sample collected by normal Raman scattering spectroscopy. The Raman cross-section of cyclohexane
and 4NBT was collected in previous experiments [43,44].
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The AuFON substrate used here has many advantages because it was spherical, its random
variation changed the detected SERS EF, and the resulting value was the enhanced average in the
selected region. The authors schematically illustrated the reaction of field-enhancement effects for
plasmon-driven photoreaction on 4NBT transfer to DMAB, as shown in Figure 6a. It is shown in
Figure 6b that defects in the spherical fill might cause a change in the local surface plasmon resonance
(LSPR) of the detection region, thereby increasing/decreasing extinction and widening at the position
of the excitation wavelength. In addition, Figure 6b displays the wavelength of the 785-nm laser and the
scattering wavelengths of the two important vibration modes detected during the photoreactions [45].
With the red-shift of laser wavelength, the Raman peaks at 1338 and 1433 cm−1 also changed, which
revealed the relationship of surface catalytic wavelength reactions.

In Figure 7 [45], we can see the time-resolved Raman spectroscopy of 4NBT plasmon-driven
photocatalytic reactions. At the beginning, the vibration pattern appeared at 1338 cm−1, as shown in
the red part of the figure, indicating that 4NBT corresponds to NO2 symmetric stretching vibration [46].
During laser irradiation, new Raman peaks appeared at 1140, 1388, and 1434 cm−1, as shown in
the green portion of the figure. This demonstrated DMAB generation, but it could be seen from the
spectrum that no intermediate was produced. As reaction time increased, the DMAB peak increased
and the 4NBT peak decreased. Among them, the Raman peak appearing at a 1434 cm−1 was selected as
symbolic of the growth kinetics of the reaction product because the vibration mode of such a peak was
found to be a symmetric azo bond in the DMAB spectrum [47]. The authors could calculate the yield
and average kinetic energy of the 4NBT-to-DMAB reduction reactions. Here, the authors estimated
plasmonic-field enhancement by using SERS enhancement factors (SERS EFs) [48,49]. With the increase
in radiation time, the Raman peak at 1338 cm−1 was significantly reduced, while the Raman peak at
1433 cm−1 increased, which demonstrated surface catalytic reactions.
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Figure 8 displays the variation in Raman peak amplitude during growth and decay, and plots
the SERS EF function. It can be seen from the figure that the amplitude of the Raman peak during the
growth process was positive, and the amplitude of the Raman peak corresponding to the attenuation
process was negative. Figure 8 displays an amplitude plot of the Raman peaks of the reactants and
products as a function of SERS EF. Studies showed that the change in peak amplitude of reactants and
products was related to SERS EF. The Raman signal amplitude of the reactants and products increased
with the increase of SERS EF when the molecule was bound to the Au surface.Catalysts 2019, x, x FOR PEER REVIEW  8 of 14 
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EF [45].

In order to further investigate the difference in reactant reduction and product increase in plasmon
excitation reactions, reaction conversion efficiency and yield are proposed here. The reaction yield of
the system is shown in Figure 9a, defining the ratio of the ending Raman amplitude of a product to a
reactant. In fact, this was the percentage of the number of remaining 4NBT molecules on the surface
when reactions were finished. There was no effect on the conversion efficiency of the SERS EF function.
In this section, conversion efficiency is defined as the quotient of total product growth to total reactant
reduction, where increase or decrease is expressed by the amplitude of the corresponding Raman peak.
In contrast to the end-reaction yield, conversion efficiency concentrated on how intensely the reactant
signal was lost, rather than recording the end amplitude. It can be observed from Figure 9b that, as the
SERS EF increased, conversion efficiency gradually decreased. When the intensity of SERS EF was
less than 107, conversion efficiency was between 20% and 100%; when the electric field was enhanced,
conversion efficiency was generally low. Figure 9b displays that, when the intensity of the SERS EF
was small, for example, less than 107, the conversion rate dropped significantly.
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can be seen that the resulting kinetics vary extensively in different areas of the substrate. 
Furthermore, in Figure 10a,b, product growth increased significantly within 10 s before the 
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produced at a slower rate. It is, therefore, concluded that there was significant loss of reactant signal 
during product formation. 

Figure 9. (a) Final reaction yield, which is the ratio between product final amplitudes and reactant
amplitudes of photoreactions and dependence on SERS EF. As localized field enhancement increased,
the reaction yield stayed between 10% and 40%; (b) dependence of conversion efficiency, defined as the
ratio between the amplitude changes of the product and reactant amplitudes on the SERS EF. As field
enhancement increased, the reactant peak (1338 cm−1) decayed more significantly than the product
peak formed (1434 cm−1) [45].

Since the ability of the AuFON substrate was significantly improved, a large amount of the
product could quickly be collected at the beginning; thus, the authors focused on average reaction
kinetics. Figure 10 displays three independent kinetic measurements of the plasmon-induced reactions
of 4NBT to DMAB, with different local field enhancements. Comparing Figure 10a–c, it can be seen that
the resulting kinetics vary extensively in different areas of the substrate. Furthermore, in Figure 10a,b,
product growth increased significantly within 10 s before the reactions, as indicated by the broken
green line. In Figure 10c, we can see that the product was produced at a slower rate. It is, therefore,
concluded that there was significant loss of reactant signal during product formation.
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Figure 10. Reaction kinetics of 4NBT to DMAB plasmon-induced photoreactions. (a) The 4NBT reactant
amplitude rapidly decreases with concurrent growth of product amplitude. At longer times, reactant
peak experiences additional decay, while product amplitude remains constant; (b) similar to (a), but
with a slight decrease in product amplitude at longer times; (c) in a weakly enhancing environment,
reactions occur more slowly [45].

From Figure 10a,b, it can be found that 4NBT amplitude gradually decreased, and a strange
phenomenon occurred after reactions proceeded for approximately 30 s. The 4NBT amplitude
quickly decreased, but the DMAB amplitude was substantially unchanged. As demonstrated in
Figure 10b, the authors detected minor decrease in the signal of DMAB amplitude, indicating a similar
degradation-reaction process. However, it can be seen in Figure 10c that 4NBT signal amplitude did
not significantly decrease, and exhibited a lower mean field enhancement. In this region, the rate of
4NBT reduction was very slow and consistent with DMAB product-formation kinetics.

Figure 11a displays the relationship between the photoreaction rate constant and the field
enhancement. This was achieved by measuring product increase and reactant reduction. In general,
the rate constant for reactant loss was generally higher compared to the rate constant of product
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increase, although the two constants were independent of the SERS EF. Thus, the rate-limiting stage of
the photoconversion of the 4NBT molecule to DMAB reduction was independent of plasmon-field
enhancement. In addition, the hydration layer was the root cause of the difference in photoreaction
rate constants of the reactants and product. Studies showed that, in order for the reaction to better
proceed, the nitro 4NBT group should be reduced, and protonation is needed to produce reaction
intermediates [50–54]. In addition, the protons that came from the hydration layer on the Au surface
were needed to limit the photoreaction rate [35–39].

Figure 11b displays the relationship between the rate constant of 4NBT degradation and
photoreactions and field enhancement. Similarly, there was no significant relationship between
field enhancement and rate constant for the scope of observed SERS EFs. Studies showed that, for
other detection areas, the photoreaction rate constant was significantly higher than the degradation
rate constant. This indicated that the reaction process was generally much quicker than degradation,
which resulted in loss of light due to prolonged light exposure.
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Figure 11. Rate constants for plasmon-induced processes. (a) Comparison of photoreaction rate
constants with the loss of the 4NBT reactant (red), and formation of the DMAB product (green);
(b) comparison of the photoreaction rate for 4NBT (red) and the photodegradation rate of 4NBT (blue).
All observed ensemble-averaged rates are independent of field enhancement for the range of probed
EFs [45].
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4. Conclusions

In this review, we described plasmon catalyzed applications, such as plasmon-driven dissociations
of hydrogen, nitrogen, water, and carbon dioxide. Photoreaction and degradation processes dominated
under different environmental conditions. Therefore, in order to improve the rate of plasmon-driven
processes for different chemical reactions, we should carefully consider a variety of photoinduced
correlation rates.

In this work, we briefly introduced two ways to synthesize DMAB, and studied the photosynthetic
reduction reaction and degradation process of 4NBT to DMAB, as well as the competitive relationship
between reaction and degradation pathways. Note that the rate constant during competition is
important because the degradation effect is usually more pronounced in a high field-enhancement
region. The photosynthetic reaction was faster than the degradation process. However, in all regions,
reactants were continuously reduced due to the progress of the degradation reaction, so a method of
optimizing the process is to cause the photosynthetic reaction to occur before the degradation reaction,
which effectively avoids the above problems.

In the future, plasmon–exciton interaction can promote efficiency and probability for plasmon-driven
chemical reactions. Detailed information can be obtained from References [8,14,18,19,53–55].
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