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Abstract: Microenvironment modification within nanoconfinement can maximize the catalytic
activity of enzymes. Phospholipase A1 (PLA1) has been used as the biocatalyst to produce
high value L-α-glycerylphosphorylcholine (L-α-GPC) through hydrolysis of phosphatidylcholine
(PC). We successfully developed a simple co-precipitation method to encapsulate PLA1 in a
metal–surfactant nanocomposite (MSNC), then modified it using alkalescent 2-Methylimidazole
(2-Melm) to promote catalytic efficiency in biphasic systems. The generated 2-Melm@PLA1/MSNC
showed higher catalytic activity than PLA1/MSNC and free PLA1. Scanning electron microscopy
and transmission electron microscopy showed a typical spherical structure of 2-Melm@PLA1/MSNC
at about 50 nm, which was smaller than that of 2-Melm@MSNC. Energy disperse spectroscopy,
N2 adsorption isotherms, Fourier transform infrared spectrum, and high-resolution X-ray
photoelectron spectroscopy proved that 2-Melm successfully modified PLA1/MSNC. The generated
2-Melm@PLA1/MSNC showed a high catalytic rate per unit enzyme mass of 1.58 µmol mg-1 min-1 for
the formation of L-α-GPC. The 2-Melm@PLA1/MSNC also showed high thermal stability, pH stability,
and reusability in a water–hexane biphasic system. The integration of alkaline and amphiphilic
properties of a nanocomposite encapsulating PLA1 resulted in highly efficient sequenced reactions
of acyl migration and enzymatic hydrolysis at the interface of a biphasic system, which cannot be
achieved by free enzyme.

Keywords: metal–surfactant nanocomposite; phospholipase A1; microenvironment modification

1. Introduction

L-α-glycerylphosphorylcholine (L-α-GPC) is an important derivative of phosphatidylcholine
(PC) and a promising candidate to treat Alzheimer’s disease [1,2]. Enzymatic preparation of L-α-GPC
has received more and more attention, especially phospholipase A1, due to few side effects and easy
recovery of products [3–5]. However, the slow 30 h reaction time for the preparation of L-α-GPC
via phospholipase A1(PLA1)-catalyzed hydrolysis of PC in n-hexane–water biphasic mediais not
suitable for industrial applications [4]. The low solubility of PC in water and the slow migration rate
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of the acyl group from the sn-2 position to the sn-1 position result in low productivity of L-α-GPC,
limiting the application of PLA1 in industry [6]. A previous study indicated that an alkaline pH
environment can benefit both the acyl migration and hydrolysis process [7]. Therefore, it would be
a promising route to increase the productivity of L-α-GPC if biphasic enzymatic catalysis can be
achieved with PC solubilized in the organic phase and the enzyme connected with a neighboring
alkaline microenvironment.

Enzyme immobilization in biocatalysts shows great advantages including lower risk of product
contamination with enzyme residues and enzymes being easy to recycle [8–10]. Further,
enzyme immobilization on nanomaterials has demonstrated that many unique and advantageous
physicochemical properties of nanostructures can increase catalytic performance and offer new
functionality of enzyme catalysts, in addition to enhancing stability and reusability [11–13]. Inorganic
crystal nanomaterials such as metal-organic frameworks (MOFs), with advantages of high specific
surface area, tunable pores, and diverse functionalities, have shown great potential in enzyme
immobilization. Some examples are: Zeolitic imidazolate framework-8 (ZIF-8) [14,15], Ni-based
metal-organic framework nanorods (Fe3O4/Ni-BTC) [16], Fe-MIL-88 [17],UiO-66 [18], ZIF-67 [19],
MIL-101(Cr) [20],magnetic-MOF [21], Co-TCPP(Fe) nanosheets (Co-FeMOF) [22], PCN-333(Fe), ZIF-90,
ZIF-10, NU-1000, and HKUST-1 [23–25]. The confined encapsulation of enzymes in rigid MOFs
can protect the enzyme from denaturation and degradation in extreme conditions [26]. Therefore,
it is anticipated that immobilizing PLA1 on a specific nanostructure has the potential to address the
above-mentioned challenge of industrial production of L-α-GPC.
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Scheme 1. Schematic synthesis and catalytic performance of a 2-Methylimidazolephospholipase
A1metal–surfactant nanocomposite(2-Melm@PLA1/MSNC).

The microenvironment in nanostructures plays an important role in enzymatic activity [27–29].
The microenvironmental modification of nanocarriers can enhance the enzymatic catalytic activity
and catalytic performance characteristics, which has received more and more attention [30–33].
ε-Poly-L-lysine (EPL)-modified mesoporous titanium dioxide (M-TiO2) with negative charges for
immobilized enzymes displayed strong storage stability, thermal stability, and good reusability [28].
The enzymeZIF-8 treated with salt ions showed enhanced activity, storage stability, and the ability
to resist against trypsin [29]. We have successfully prepared a novel enzyme–metal–surfactant
nanocomposite, which demonstrated strong catalytic activity, storage stability, thermal stability, and good
reusability in highly polar solvents and deep eutectic solvents [34–36]. Under these considerations,
we proposed using metal ions and organic surfactants to construct a metal–surfactant nanocomposite
capable of simultaneously encapsulating enzymes, followed by subsequent coordinating modification
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of the nanocomposite with alkalescent 2-Methylimidazole (2-Melm). Microenvironment modification
within nanoconfinement can maximize the catalytic activity of enzymes (Scheme 1). We hypothesize
that the nanocomposite made of surfactants has an amphiphilic nature and can localize in the interface
to catalyze a biphasic reaction. At the same time, the presence of 2-Melm in the nanocomposite
would provide an alkalescent microenvironment for facilitating the tandem acyl migration and
hydrolysis process.

2. Results and Discussion

2.1. Effect of 2-Melm on PLA1/MSNC Activity

The catalytic performance of 2-Methylimidazolephospholipase A1metal–surfactant nanocomposite
(2-Melm@PLA1/MSNC) with 50 nm sample size in 5 mL biphasic reaction system containing 50%
(v/v) organic solvents was investigated in the production of L-α-GPC. First, the influence of organic
solvents (including isooctane, heptane, hexane, 1-hexanol, and butanol) in the biphasic enzymatic
catalysis of 2-Melm@PLA1/MSNC and free PLA1was studied (Table 1). No L-α-GPC was produced
in any biphasic systems catalyzed by free PLA1. In contrast, the yields of L-α-GPC catalyzed by
2-Melm@PLA1/MSNC in the water–isooctane, water–heptane, water–hexane, and water–1-hexanol
biphasic systems reached 341.02 ± 11.21, 559.84 ± 16.82, 919.96 ± 35.68, and 239.73 ± 15.79 µmolL−1,
respectively, within 30 min. These results indicated that a water–hexane biphasic system was the best
reaction medium, which is consistent with previously reported results [4].

Table 1. Effects of organic solvents on the L-α-glycerylphosphorylcholine (L-α-GPC) yield catalyzed
by 2-Melm@PLA1/MSNC and freePLA1.

Solvent Log P
Yield (µmolL−1)

Free PLA1 2-Melm@PLA1/MSNC

Isooctane 4.5 0 341.02 ± 11.21
Heptane 4.0 0 559.84 ± 16.82
Hexane 3.5 0 919.96 ± 35.68

1-Hexanol 1.8 0 239.73 ± 15.79
Butanol 0.8 0 0

Footnote: The values were taken from the triplicate samples.

The yield of L-α-GPC catalyzed by PLA1/MSNC without modification of 2-Melm in the
water–hexane system was 203.86 ± 7.90 µmolL−1 (Figure 1a). A previous study showed that MSNC
is a new kind of surfactant containing two types of metal ions [34], which could both reduce the
interfacial tension of the water–hexane system and increase the solubility of PC. Therefore, after
encapsulation in MSNC, the PLA1/MSNC nanocomposite maintained the surfactant-like property
and was localized at the water–hexane interface, greatly enhancing the accessibility of substrates
solubilized in the organic phase towards the active site of the enzyme [34]. This is one of the reasons
that, after encapsulation, PLA1/MSNC increased apparent activity in the production of L-α-GPC
compared to free PLA1. As another control experiment, the addition of 2-Melm in the reaction
system catalyzed by PLA1/MSNC also contributed to enhanced catalytic activity of PLA1 (Figure 1a).
During the hydrolysis, migration of the acyl group from the sn-2 position to the sn-1 position occurred
due to the lower thermodynamic stability of sn-1-lysophosphatidylcholine(sn-1-LPC) compared to
sn-2-LPC (Scheme 1) [4]. In addition, 2-Melm@PLA1/MSNC had higher catalytic activity than the
mixture of PLA1/MSNC and 2-Melm (Figure 1a), possibly because the modification of 2-Melm in the
nanocomposite resulted in a proximity effect between enzymatic hydrolysis and acyl group migration,
which further improved the catalytic performance of the system [35,37,38].
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Figure 1. (a) Comparison of the yields of L-α-GPC catalyzed by different enzyme samples; (b) the effect
of 2-Melm concentration in self-assembly of the nanocomposite on the yield of L-α-GPC catalyzed by
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The effect of the concentration of 2-Melm in self-assembly of the nanocomposite on the yield of
GPC catalyzed by 2-Melm@PLA1/MSNC and the mixture of 2-Melm@MSNC and PLA1 is displayed
in Figure 1b. The optimal concentration of 2-Melm in self-assembly of the nanocomposite was 70 mM.
The optimal concentration of 2-Melm formed the optimum alkaline catalytic microenvironment in
the nanocomposite. The presence of alkaline groups can catalyze acyl migration [7]. In addition,
2-Melm@PLA1/MSNC had higher catalytic activity than the mixture of 2-Melm@MSNC and
PLA1at the same concentration of 2-Melm. Thus, the addition of 2-Melm in the reaction system
catalyzed the migration of the acyl group and increased productivity. After modification with
2-Melm, 2-Melm@PLA1/MSNC had the two above-mentioned benefits: interfacial catalysis and
facilitated acyl group migration. Microenvironmental modification aimed at enhancing the catalytic
reaction of enzymes in specific reaction media is an important method to improve the activity of
immobilized enzymes [30–33]. The modification of 2-Melm maintained the alkaline microenvironment
of 2-Melm@PLA1/MSNC in the nanostructure, which was more suitable for the catalytic conditions of
PLA1. The coupling of microenvironment and catalytic conditions can maximize the catalytic activity
of the catalyzer [39,40].

2.2. Characterization of 2-Melm@PLA1/MSNC

Scanning electron microscopy (SEM) images, transmission electron microscopy (TEM) images,
and energy disperse spectroscopy (EDS) data revealed differences in morphology and composition
between the nanocomposite with and without enzyme encapsulation.SEM and TEM images showed a
typical spherical structure of 2-Melm@PLA1/MSNC at about 50 nm. The SEM images showed that the
particle size of 2-Melm@PLA1/MSNC was smaller than that of 2-Melm@MSNC (Figure 2a,b), possibly
because the coordination interaction between protein and metal ions resulted in the formation of a
more compact structure in the self-assembly process. In TEM images (Figure 2c,d), the 2-Melm@PLA1/
MSNC displayed more regions with light electron density due to the encapsulation of protein
molecules [41]. Moreover, the EDS data also demonstrated that protein molecules (containing P
and S elements) were successfully embedded in the nanocomposite (Figure 2e,f).

N2 adsorption isotherms measured at 77 K identified differences in porous features between
nanocomposites with and without enzyme encapsulation (Figure 3a). The data showed that the
Brunauer–Emmett–Teller (BET) surface area (81.08 m2 g−1) and pore volume (0.69 cm3 g−1) of
2-Melm@PLA1/MSNC were larger than that of 2-Melm@MSNC (Table 2), demonstrating that
incorporating protein and coordination between the enzyme and Co2+ affected the porous structure of
the nanocomposite [34,35].
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Table 2. Brunauer–Emmett–Teller (BET) surface area, average pore volume, and pore width of
2-Melm@MSNC and 2-Melm@PLA1/MSNC.

Sample BET Surface
Area(m2g−1)

Average Pore
Volume(cm3g−1)

Average Pore
Width(nm)

2-Melm@MSNC 48.76 0.22 25.23
2-Melm@PLA1/MSNC 81.08 0.69 28.69

As observed in the Fourier transform infrared (FTIR) spectrum (Figure 3b), the presence of
C=N stretching vibration at 1560 cm−1 and out-of-plane bending mode at 755 cm−1 (from 2-Melm)
demonstrated that MSNC or PLA1/MSNC was successfully modified by2-Melm [42]. Compared with
2-Melm@MSNC, the FTIR spectra of 2-Melm@PLA1/MSNC displayed an enhanced adsorption peak
at 1654 cm−1 that represented the C=O vibration of the amide I band, and a secondary amine of amide
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N–H stretch based on splitting of the peak between 3250–3500 cm−1 in PLA1 [43], indicating that
PLA1 was successfully immobilized in the nanocomposite. The 2-Melm@PLA1/MSNC also showed
an enhanced peak at 2800–3000 cm−1 of the C–H vibration.Catalysts 2018, 8, x FOR PEER REVIEW  6 of 12 
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Figure 3. (a) N2 adsorption isotherm of 2-Melm@MSNC and 2-Melm@PLA1/MSNC; (b) FTIR
spectra of 2-Melm@MSNC and 2-Melm@PLA1/MSNC; (c) high-resolution XPS spectra of N 1s of
2-Melm@PLA1/MSNC; (d) high-resolution XPS spectra of Co 2p of 2-Melm@PLA1/MSNC.

High-resolution X-ray photoelectron spectroscopy (XPS) revealed composition details of the
nanocomposite. The chemical states of Co and N in the surface of the nanocomposite were measured.
The N 1s spectrum could be deconvoluted into one peak centered at the binding energy of 400.2 eV,
which was assigned to pyrrolic N from 2-Melm, while the predominance of pyrrolic N resulted from
coordination with cobalt ions (Figure 3c) [42]. The XPS spectrum of Co 2p3/2 was characteristic of Co2+

species (Figure 3d). Two major peaks with binding energies of 781.7 eV and 797.5 eV were observed in
the XPS peak for Co 2p, corresponding to Co 2p3/2 and Co 2p1/2. Two small and indistinct peaks at
786.6 and 802.78 eV were typical Co2+ shakeup satellite peaks of Co2+ and the Co–Nx peak existed at
around 788.2 eV [44–46]. The results suggested that 2-Melm was successfully combined with Co2+ via
metal-coordination interactions on the surface of the nanocomposite.

2.3. Enzymatic Activities of 2-Melm@PLA1/MSNC

The effects of temperature, stirring rate, and pH on the yield of L-α-GPC catalyzed by
2-Melm@PLA1/MSNC in a water–hexane biphasic system were investigated in detail. The
optimal temperature for 2-Melm@PLA1/MSNC was 55◦C, which was higher than for free PLA1

according to the literature [4]. The optimal stirring rate was 900 rpm and the optimal pH was 8
(Figure 4a–c). High stirring rate can promote mass transfer in biphasic enzymatic catalysis [47,48].



Catalysts 2019, 9, 237 7 of 12

However, the further increase of stirring rate from 900 to 1000 rpm could result in fracture of the
nanocomposite [36,49] and the dissociation of 2-Melm or PLA1, resulting in a significant reduction of
catalytic activity. A weakly alkaline environment (pH 8) can promote the catalytic activity of PLA1 and
result in higher L-α-GPC yield. Compared with published studies, the catalytic rate per unit enzyme
mass of the formation of L-α-GPC was 1.58 µmol mg−1 min−1, which was faster than the previously
reported result (0.89 µmol mg−1 min−1) [4].Catalysts 2018, 8, x FOR PEER REVIEW  7 of 12 
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Figure 4. (a) The effect of temperature on the yield of L-α-GPC catalyzed by 2-Melm@PLA1/MSNC;
(b) the effect of stirring rate on the yield of L-α-GPC catalyzed by 2-Melm@PLA1/MSNC; (c) the
effect of pH on the yield of L-α-GPC catalyzed by 2-Melm@PLA1/MSNC; (d) the thermal stability of
2-Melm@PLA1/MSNC on the yield of L-α-GPC; (e) the pH stability of 2-Melm@PLA1/MSNC on the
yield of L-α-GPC; (f) the reusability of 2-Melm@PLA1/MSNC on the yield of L-α-GPC.

The thermal stability and pH stability of 2-Melm@PLA1/MSNC on the yield of L-α-GPC are
shown in Figure 4d,e. Higher catalytic temperature (60◦C) for a long time led to lower catalytic activity
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of 2-Melm@PLA1/MSNC, while lower catalytic temperature (50◦C) was more conducive to long-term
catalysis of 2-Melm@PLA1/MSNC in the biphasic enzymatic catalysis. In acidic environments (pH
6), acid ions neutralized the alkalinity of 2-Melm, resulting in a decrease in catalytic activity of PLA1.
In neutral (pH 7) and alkaline (pH 8) environments, the alkalinity of 2-Melm increased the activity
of PLA1, resulting in an increase in L-α-GPC yield. Compared with unmodified nanocomposite,
modification of 2-Melm in the nanocomposite increased the structural strength, organic solvent
tolerance, and alkali resistance. After ten reuses, 2-Melm@PLA1/MSNC still maintained high catalytic
activity and L-α-GPC yield. The reusability of 2-Melm@PLA1/MSNC showed high stability and
structural strength (Figure 4f), indicating high potential for industrial applications [50,51].

3. Materials and Methods

3.1. Materials

Phospholipase A1 was purchased from Novozymes (Durham, NC, USA). Sodium deoxycholate
(NaDC) was obtained from Sinopharm Chemical Reagent Company (Shanghai, China). Cobalt
chloride was purchased from Guangdong Chemical Reagent Engineering-technological Research
and Development Center (Guangzhou, China). 2-Methylidazole was obtained from Sigma-Aldrich
(St. Louis, MO, USA). Food-grade egg-yolk lecithin powder (~70% phosphatidylcholine) was purchased
from Meryas limited company (Beijing, China). Other chemicals were of analytical grade.

3.2. PLA1/MSNC,2-Melm@MSNC, and 2-Melm@PLA1/MSNCSynthesis

The preparation of 2-Melm@PLA1/MSNC is shown schematically in Scheme 1. In a typical
experiment, 10 mL aqueous solution containing 10 mM sodium deoxycholate (NaDC) and 0.75 mgmL−1

(protein concentration) PLA1 was added to 10 mL water solution containing 20 mM cobalt chloride.
After stirring at 300 rpm for 30 min at 25 ◦C, 10 mL aqueous solution containing different concentrations
(10, 30, 50, 70, and 90 mM) 2-Melm was added. After stirring for another 30 min at 25 ◦C, the mixture
was centrifuged at 7000× g for 10 min and washed with water twice to obtain the PLA1/MSNC
(without 2-Melm),2-Melm@MSNC (without PLA1), and 2-Melm@PLA1/MSNC. The loading amount
of PLA1 in 2-Melm@PLA1/MSNC and PLA1/MSNC was determined by the Bradford method to
measure the concentration of protein remaining in the supernatant after encapsulation.

3.3. Protein Encapsulation Ratio

The protein contents in the enzyme solutions and encapsulated enzyme preparations were
determined according to the Bradford method, using bovine serum albumin as the standard. The assay
mixture consisted of 4 mL of Bradford reagent and 1 mL of test solution. The absorbance was
read after 3 min at 25 ◦C standing at 595 nm. The protein encapsulation ratio of the PLA1/MSNC
or 2-Melm@PLA1/MSNC preparations was calculated indirectly from the difference between the
amount of enzyme introduced into the reaction mixture and the amount of enzyme in the filtrate
after encapsulation.

3.4. Characterization

The morphologies of the samples were characterized by SEM (S-3400 II; Hitachi, Tokyo, Japan)
using an accelerating voltage of 30 kV with fit magnification. For TEM, sample preparation
was accomplished by dispersing the composite in ethanol with ultrasound and then placing a
well-dispersed droplet on a copper grid. Samples were then dried and analyzed on a JEM-2010
transmission electron microscope (Tokyo, Japan). Analysis of the chemical functional groups of
2-Melm@MSNC and 2-Melm@PLA1/MSNC were conducted by means of FTIR spectroscopy (Nicolet
Is5; Thermo Fisher Scientific). Each sample was ground thoroughly with potassium bromide, and
the resulting powder was pressed to form a transparent pellet using a hydraulic press. FTIR spectra
were collected in transmission mode between 500 cm−1 and 4000 cm−1 at a resolution of 2 cm−1.
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The binding energies between atoms of 2-Melm@PLA1/MSNC were measured by high-resolution
X-ray photoelectron spectroscopy (ESCALAB 250 Xi).

3.5. PLA1-Catalyzed Synthesis of L-α-GPC

An enzymatic reaction was performed using 1.5 g egg-yolk lecithin powder and 100 µL free PLA1

or an equivalent quantity (in terms of protein) of 2-Melm@PLA1/MSNC (15 mg) or PLA1/MSNC
(7.5 mg) in 2.5 mL phosphate buffer and 2.5 mL organic solvent in a tightly closed 10 mL plastic tube.
The tube was incubated in a water bath at 35–60◦C, agitated with mechanical stirring at 400–1000 rpm,
and pH at 5–9 with 0.1 M phosphate buffer for 30 min.

3.6. High-Performance Liquid Chromatography (HPLC) Analysis

Quantitative analyses of the reactants and products were conducted using a HPLC system
from Agilent Technologies (Santa Clara, CA, USA). A reversed-phase column (Zorbax Rx-SIL;
250 mm × 4.6 mm, 5-µm diameter) was used, and the reactants and products were detected by
ELSD detector (Agilent 1260). A mixture of methanol/water [90/10 (v/v)] was used as an eluent at
25 ◦C, with a flow rate of 1 mL min−1.

4. Conclusions

In summary, we successfully synthesized a new type of phospholipase A1-encapsulated
metal–surfactant nanocomposite modified by 2-Melmwith both an alkaline and amphiphilic nature.
The nanocomposite2-Melm@PLA1/MSNC displayed higher catalytic efficiency than PLA1/MSNC in
sequenced reactions of acyl migration and enzymatic hydrolysis at the interface of a biphasic system.
Modification of 2-Melm enhanced the catalytic activity of PLA1 in nanocomposite and resulted in
high L-α-GPC yield in a water–hexane biphasic system. Due to the high thermal stability, pH stability,
and reusability in a biphasic system, the 2-Melm@PLA1/MSNC showed high potential for industrial
applications. This study gives an example of the potential of using nanomaterials to re-engineer the
capability of an enzyme for industrial applications.
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