Supporting Materials: Segregation of Nickel/Iron Bimetallic Particles from Lanthanum Doped Strontium Titanates to Improve Sulfur Stability of Solid Oxide Fuel Cell Anodes

Patrick Steiger, Dariusz Burnat, Oliver Kröcher, Andre Heel and Davide Ferri*

Denotation	Loading [wt%]	Metal precursor for wet impregnation	Support
LST	-	-	
LST-5Ni	1.6	Ni(NO ₃)₂·6H₂O (Sigma, ≥ 99.999%)	
LST-5Fe	1.5	Fe(NO ₃) ₃ ·9H ₂ O (Sigma, ≥ 99.95%)	
LST-5Cr	1.4	Cr(NO ₃) ₃ ·9H ₂ O (Sigma, 99%)	La _{0.3} Sr _{0.55} ΠO _{3±δ}
LST-5Mn	1.5	Mn(NO ₃)₂ [·] 4H ₂ O (Sigma, ≥ 97.0%)	
LST-5Mo	2.6	(NH₄) ₆ Mo ₇ O ₂₄ ·4H ₂ O (Fluka, ≥ 99.0%)	
LSTN	-	-	
LSTN-5Fe	1.5	Fe(NO₃)₃·9H₂O (Sigma, ≥ 99.95%)	
LSTN-5Cr	1.4	Cr(NO ₃) ₃ ·9H ₂ O (Sigma, 99%)	La _{0.3} Sr _{0.55} Ti _{0.95} Ni _{0.05} O _{3±ð}
LSTN-5Mn	1.5	Mn(NO ₃)₂·4H₂O (Sigma, ≥ 97.%)	(1.6 wt% Ni)
LSTN-5Mo	26	$(NH_4)_{e}MO_7O_{24} \cdot 4H_2O$ (Fluka $\geq 99.0\%$)	. ,

Table S1. Sample denotations and corresponding metal loadings (wt%), metal precursors and support materials used during synthesis.

Figure S1. Nickel speciation obtained from linear combination fit of Ni K-edge (8.333 keV) XANES spectra of calcined, reduced (10 vol% H2/Ar, 800 °C, 15 h) and reoxidized (20 vol% O2/N2, 800°C, 2 h) materials; **a**) LSTN-5Ni, **b**) LSTFN-2Fe5Ni and **c**) LSTFN-5Fe5Ni. Nickel reference spectra for linear combination fits were obtained on Ni foil (Ni⁰), NiO, and LSTN.

Figure S2. Ni K-edge XANES linear combination fit results of calcined, reduced (10 vol% H₂/Ar, 800 °C, 1 h) and reoxidized (20 vol% O₂/N₂, 800 °C, 2 h) LSTN-5Ni, LSTFN-2Fe5Ni and LSTFN-5Fe5Ni. Corresponding compositions are shown in Figure S1. The reference spectra used for the fit correspond to the Ni foil, LSTN (for Niⁿ⁺_{oct}) and NiO and the individual reference spectra contribution are represented by the dashed lines.

Figure S3. EXAFS plots of k³-weighted χ (k) collected around the Ni K-edge (8.333 keV) of **a**) Ni⁰ and NiO reference materials, **b**) LSTN-5Ni, **c**) LSTFN-2Fe5Ni and **d**) LSTFN-5Fe5Ni in their calcined, reduced (10 vol% H2/Ar, 800 °C, 15 h) and reoxidized (20 vol% O2/N2, 800 °C, 2 h) states.

Figure S4. EXAFS plots of k³-weighted $\chi(k)$ collected around the Fe K-edge (7.112 keV) of **a**) Fe⁰ reference, **b**) LSTFN-2Fe5Ni, c) LSTFN-5Fe5Ni and d) LSTF-5Fe in their calcined, reduced (10 vol% H2/Ar, 800 °C, 15 h) and reoxidized (20 vol% O2/N2, 800 °C, 2 h) states.