

Influence of the Framework Topology on the Reactivity of Chiral Pyrrolidine Units Inserted in Different Porous Organosilicas

Sebastián Llopis, Alexandra Velty and Urbano Díaz *

- ¹ Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Avenida de los Naranjos s/n, E-46022 Valencia, Spain
- * Correspondence:udiaz@itq.upv.es; Tel.: +34963877811

Figure S1. Thermogravimetrical curves (TGA) and corresponding derivatives (DTA) of (**a**) NOH-Pyr, (**b**) as-synthesized M41S-Pyr, (**c**) extracted M41S-Pyr, (**d**) as-synthesized SBA-15-Pyr and (**e**) extracted SBA-15-Pyr materials with different content of bis-silylated pyrrolidine fragments.

Figure S2. ¹³C MAS NMR spectra of (a) NOH-Pyr, (b) M41S-Pyr and (c) SBA-15-Pyr materials containing different content of bis-silylated pyrrolidine fragments, obtained after extraction processes.

Figure S3.²⁹Si CP/MAS NMR spectra of (a) NOH-Pyr, (b) M41S-Pyr and (c) SBA-15-Pyr materials, containing different content of bis-silylated pyrrolidine fragments, obtained after extraction processes, with assignment of T- and Q-type silicon atoms.

Figure S4.²⁹Si BD/MAS NMR spectra of (a) NOH-Pyr, (b) M41S-Pyr and (c) SBA-15-Pyr materials, containing different content of bis-silylated pyrrolidine fragments, obtained after extraction processes, with assignment of T- and Q-type silicon atoms.

Figure S5. FTIR spectra of as-synthesized (a) M41S-30% and (b) SBA-15-Pyr-30% hybrid materials.

Figure S6. N_2 adsorption isotherms of (a) NOH-Pyr, (b) M41S-Pyr and (c) SBA-15-Pyr materials, containing different content of bis-silylated pyrrolidine fragments, obtained after extraction processes.

Figure S7.¹³C NMR spectra of the different hybrid materials after four/five uses.

Catalyst	\mathbf{T}^{1}	T ²	T ³	Q^2	Q ³	Q^4
NOH-Pyr-5%	0.00	0.01	0.03	0.04	0.37	0.56
NOH-Pyr-10%	0.01	0.02	0.07	0.04	0.27	0.54
NOH-Pyr-30%	0.02	0.07	0.22	0.03	0.23	0.45
M41S-Pyr-5%	0.00	0.01	0.03	0.03	0.30	0.54
M41S-Pyr-10%	0.00	0.01	0.03	0.01	0.28	0.79
M41S-Pyr-30%	0.02	0.09	0.20	0.04	0.24	0.41
SBA-15-Pyr-	0.00	0.01	0.02	0.01	0.35	1.05
5%						1.05
SBA-15-Pyr-	0.01	0.02	0.07	0.01	0.21	0 52
10%						0.53
SBA-15-Pyr-	0.01	0.05	0.28	0.02	0.17	0.47
30%						0.47

Table S1. Integration of T-type and Q-type silicon atoms into the different catalysts obtained after extraction processes.

Table S2. Catalytic results achieved in the presence of the different hybrid materials during several reaction cycles for the enantioselective Michael addition.

Run	Yield(%)	ee%	dr
NOH-Pyr-5%			
1	96	82%	92:8
2	90	82%	92:8
3	87	82%	90:10
4	89	82%	90:10
5	83	82%	90:10
M41S-Pyr-5%			
1	90	78%	91:9
2	86	78%	91:9
3	82	76%	91:9
SBA-15-Pyr-			
10%			
1	90	78%	91:9
2	86	78%	91:9
3	82	76%	91:9
4	70	78%	91:9

Run	Catalyst	C%	N%	C/N
0	M41S-Pyr-5%	6.1	1.4	5.0
1	M41S-Pyr-5%	7.1	1.4	5.7
2	M41S-Pyr-5%	7.5	1.4	6.4
3	M41S-Pyr-5%	8.0	1.4	6.7
0	SBA-15-Pyr-10%	10.6	2.6	4.8
1	SBA-15-Pyr-10%	10.7	2.5	5.0
2	SBA-15-Pyr-10%	12.6	2.5	6.0
3	SBA-15-Pyr-10%	13.3	2.4	6.6
0	NOH-Pyr-5%	5.1	1.3	4.6
1	NOH-Pyr-5%	4.9	1.2	4.8
2	NOH-Pyr-5%	6.7	1.5	5.1
3	NOH-Pyr-5%	7.6	1.6	5.5
4	NOH-Pyr-5%	6.8	1.3	6.6

Table S3. Elemental analysis and C/N molar ratios for NOH-Pyr, M41S-Pyr and SBA-15-Pyr hybrid materials after extraction process and each run.

HPLC data

High performance liquid chromatography (HPLC) was performed on an Agilent Technologies chromatograph (1220 Series), using Daicel Chiralpak IC column (4.6 x 250mm).

Product	n-Hexane/ <i>i-</i>	Flow rate	λ[nm]	tr[min]
	PrOH	[mL/min]		
	90:10	1.0	210	anti:18.3,27.0 syn: 31.2,35.0

Racemic and chiral HPLC chromatogram for Michael adduct

(2R,3S)-2-ethyl-4-nitro-3-phenylbutanal

¹H NMR (300 MHz, CDCl₃) δ 9.65 (d, *J* = 2.6 Hz, 1H), 7.31 – 7.18 (m, 3H), 7.11 (m, 2H), 4.70 (dd, *J* = 10.8, 5.4 Hz, 1H), 4.60 (dd, *J* = 12.9, 9.3 Hz, 1H), 3.72 (dt, *J* = 9.6, 5.2 Hz, 1H), 2.61 (dddd, *J* = 9.9, 7.6, 5.3, 2.6 Hz, 1H), 1.54 – 1.37 (m, 3H), 0.76 (t, *J* = 7.5 Hz, 1H).

¹³C NMR (75 MHz, CDCl₃) δ 203.1, 136.9, 129.1 (x2), 128.1, 128.00 (x2), 78.5, 55.1, 42.8, 20.4, 10.7.

 ${}^{\odot}$ 2018 by the authors. Submitted for possible open access publication under the terms and BY conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).