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Abstract: A core-shell type of Fe3O4/NCS-Mn composite was prepared by pyrolyzing a precursor
fabricated by coating a chitosan-Schiff base Mn complex on Fe3O4 cores. For comparison purposes,
the Fe3O4@NCS sample in the absence of Mn and the Fe3O4@NC sample derived from just chitosan
coating Fe3O4 were also prepared. Among the three catalysts, Fe3O4@NCS-Mn demonstrates the best
electrocatalytic activity compared to commercial Pt/C (20%) for oxygen reduction reaction (ORR).
The average of the transferred electron number (n) approached 3.6 in the range of −0.3 to −0.8 V (vs.
Ag/AgCl). Moreover, the catalyst exhibited high stability and durability against methanol and may
potentially be a promising ORR catalyst for fuel cells.
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1. Introduction

Based on their paramount importance in electrochemical energy conversion and storage devices,
it is essential to develop electrocatalysts with high efficiencies that minimize the overpotential in
the oxygen reduction reaction (ORR) [1,2]. Although it is known to be efficient, the application of
platinum-based catalysts is limited by scarcity, high cost, and poor durability against methanol [3].
Therefore, efforts have been made to develop Pt alternative catalysts for ORR. In alkaline media,
electrocatalysts with various categories have been developed, further, the corresponding mechanisms
have been explored, including nonmetal-doped carbon materials [4–8], carbon-transition metal
hybrids [9–20], metal organic framework-modified nitrogen-doped graphene [21–23], and transition
metal oxides [24–28]. Nonmetal heteroatom doped carbon materials and transition metal oxides have
especially been given attention due to their advantages of high electron conductivity and favorable
redox reversibility, respectively [29,30].

In our previous work, we developed several non-metallic heteroatom-doped carbon catalysts,
including N-doped carbon spheres [31], porous N-doped carbon/carbon nanotube [32], N, S-doped
graphitic carbon [33], and N, P dual-doped graphitic biocarbons [34]. The catalysts demonstrated
comparable ORR activities and higher durability against methanol, especially when compared with
commercial Pt/C (20%) in alkaline media [31–34]. Moreover, spinel transition metal oxides, such
as Fe3O4 and their hybrids with nanocarbon materials, exhibited excellent catalytic activities in
ORR [35–37]. While the spinel structure often provides two or more catalyst surfaces, it makes possible
for the oxygen spill over reaction couple with the reaction path of ORR and therefore enhances the
ORR catalytic activity [38].
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Independent of the materials mentioned above, combining the virtues of the aforementioned
various materials, we designed a core-shell structure of Fe3O4 cores coated with N-doped carbon-Mn
shells derived from a chitosan Schiff-base Mn complex coating on Fe3O4 cores. In the present study, we
expected an enhanced compositional homogeneity, catalytic activity, chemical stability, and methanol
durability for ORR.

2. Results and Discussions

2.1. Catalysts Characterization

The X-ray diffraction (XRD) peaks at 2θ ≈ 30.1, 35.5, 44.6, 47.7, and 56.9◦ can be attributed to (220),
(311), (200), (−210), and (333) plane of Fe3O4 (JCPDS No. 79-0418), respectively. The peak at 2θ ≈ 62.7,
65.0, and 75.6◦ can be attributed to the diffraction of Fe2C (JCPDS No. 03-1022). The diffraction peaks
at 2θ ≈ 41.3, 60.1, and 71.7◦ can be attributed to (201), (311), and (123) plane of Fe2.7Mn0.3C (JCPDS
No. 73-1341), respectively. The results confirm that Fe2C and Fe2.7Mn0.3C is formed by the reaction of
Fe3O4 with the chitosan Schiff-base Mn (II) complex during the pyrolysis process. It is also clearly
shown that the as-prepared catalysts are dominated by Fe3O4 (Figure 1).
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Figure 1. XRD patterns of Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn catalysts. 

The images of transmission electron microscope (TEM) in Figure 2 indicate a rather similar 
morphology between Fe3O4@NC and Fe3O4@NCS-Mn, with a size between 13–27 nm for the cores of 
Fe3O4 embedded in carbon shells. There were also certain aggregations of the particles of Fe3O4 
likely caused by their magnetism. In Figure 3, scan electron microscope (SEM) image reveal a porous 
structure for the sample Fe3O4@NCS-Mn, which was potentially formed in the pyrolysis process due 
to the release of a large amount of gases during the carbonation of chitosan Schiff-base. The 
corresponding energy dispersive X-ray spectroscopy (EDS) images (based on the region of the 
yellow squared area of the SEM image) indicate that C, N, O, Mn, and Fe elements were evenly 
distributed in the sample. 

 

Figure 1. XRD patterns of Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn catalysts.

The images of transmission electron microscope (TEM) in Figure 2 indicate a rather similar
morphology between Fe3O4@NC and Fe3O4@NCS-Mn, with a size between 13–27 nm for the cores
of Fe3O4 embedded in carbon shells. There were also certain aggregations of the particles of Fe3O4

likely caused by their magnetism. In Figure 3, scan electron microscope (SEM) image reveal a porous
structure for the sample Fe3O4@NCS-Mn, which was potentially formed in the pyrolysis process due to
the release of a large amount of gases during the carbonation of chitosan Schiff-base. The corresponding
energy dispersive X-ray spectroscopy (EDS) images (based on the region of the yellow squared area of
the SEM image) indicate that C, N, O, Mn, and Fe elements were evenly distributed in the sample.

The specific surface areas and pore size distributions were investigated using N2

adsorption/desorption experiments for the three samples. As depicted in Figure 4, the samples
exhibit type-II isotherms with H4 hysteresis loop. This indicated the coexistence of slit-like pores as
well as irregular mesoporous structure. The Brunauer-Emmett-Teller (BET) surface area/pore volume
were 87/0.11, 214/0.28, and 143/0.17 m2

·g−1/cm3
·g−1 for Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn,

respectively (Table 1). Furthermore, all samples were dominated by the mesopores, which account for
higher than 80% of BET surface areas and 71% for the samples’ pore volumes (Table 1).
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Figure 3. SEM image of Fe3O4@NCS-Mn and corresponding EDS elemental mapping images of C, N,
O, Mn, and Fe based on the selected region.

Table 1. The textural properties of Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn.

Sample Fe3O4@NC Fe3O4@NCS Fe3O4@NCS-Mn

SBET [m2
·g−1]

Total 87 214 143
Microporous 17 36 21
Mesoporous 70 178 122

Pore volume [cm3
·g−1]

Total 0.11 0.28 0.17
Microporous 0.03 0.05 0.02
Mesoporous 0.08 0.23 0.15



Catalysts 2019, 9, 692 4 of 10

Catalysts 2019, 9, x FOR PEER REVIEW 3 of 9 

 

Figure 2. Typical TEM morphology of (a) Fe3O4@NC and (b) Fe3O4@NCS-Mn catalysts. 

 

Figure 3. SEM image of Fe3O4@NCS-Mn and corresponding EDS elemental mapping images of C, N, 
O, Mn, and Fe based on the selected region. 

The specific surface areas and pore size distributions were investigated using N2 
adsorption/desorption experiments for the three samples. As depicted in Figure 4, the samples 
exhibit type-II isotherms with H4 hysteresis loop. This indicated the coexistence of slit-like pores as 
well as irregular mesoporous structure. The Brunauer-Emmett-Teller (BET) surface area/pore 
volume were 87/0.11, 214/0.28, and 143/0.17 m2·g−1/cm3·g−1 for Fe3O4@NC, Fe3O4@NCS, and 
Fe3O4@NCS-Mn, respectively (Table 1). Furthermore, all samples were dominated by the mesopores, 
which account for higher than 80% of BET surface areas and 71% for the samples’ pore volumes 
(Table 1). 

0.0 0.2 0.4 0.6 0.8 1.0

0

10

20

30

40

50

 

Relative Pressure (P/P0)

V
ol

um
e 

ad
so

rb
ed

 (c
m

3 /g
) a

0 20 40 60 80 100
0.0000
0.0025
0.0050
0.0075
0.0100
0.0125

 

 

In
cr

em
en

ta
l p

or
e 

vo
lu

m
e 

(c
m

3 /g
)

Average width (nm)

 
Catalysts 2019, 9, x FOR PEER REVIEW 4 of 9 

 

0.0 0.2 0.4 0.6 0.8 1.0

50

100

150

200

b

Relative Pressure (P/P0)

V
ol

um
e 

ad
so

rb
ed

 (c
m

3 /g
)

0 20 40 60 80 100

0.0000

0.0025

0.0050

0.0075

 

 

In
cr

em
en

ta
l p

or
e v

ol
um

e 
(c

m
3 /g

)

Average width (nm)

 

0.0 0.2 0.4 0.6 0.8 1.0
0

20

40

60

80

100

120

0 20 40 60 80 100

0.0000

0.0025

0.0050

 

 

In
cr

em
en

ta
l p

or
e 

vo
lu

m
e 

(c
m

3 /g
)

Average width (nm)

Relative pressure (P/P0)

V
ol

um
e 

ad
so

rb
ed

 (c
m

3 /g
)

c

 
Figure 4. N2 adsorption/desorption isotherms and the corresponding pore size distribution curves of 
(a) Fe3O4@NC,(b) Fe3O4@NCS, and (c) Fe3O4@NCS-Mn. 

Table 1. The textural properties of Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn. 

Sample Fe3O4@NC Fe3O4@NCS Fe3O4@NCS-Mn 

SBET [m2·g−1] 
Total 87 214 143 

Microporous 17 36 21 
Mesoporous 70 178 122 

Pore volume [cm3·g−1] 
Total 0.11 0.28 0.17 
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Mesoporous 0.08 0.23 0.15 

2.2. Electrochemical Tests 

The catalytic activities of the as-prepared catalysts for ORR were tested in O2 saturated 0.1 M 
KOH. The commercial Pt/C (20 wt%) was used as a control catalyst. The linear sweep voltammetry 
(LSV) plots of different catalysts for ORR are displayed in Figure 5 and the characteristic parameters 
for ORR activity evaluation are listed in Table 2. As can be seen, the Fe3O4@NCS-Mn catalyst showed 
the highest onset potential and limiting current density of −0.02 V (vs. AgCl) and 3.8 mA/cm2, which 
is almost the same with the corresponding ones of commercial Pt/C (20%). The catalyst also 
exhibited the most positive half-wave potential of −0.205 V (vs. AgCl), which is only 66 mV more 
negative than that of Pt/C (20%). The results confirm that the addition of Mn can enhance the 
catalytic activity. 

-0.8 -0.6 -0.4 -0.2 0.0 0.2

-4

-3

-2

-1

0

E / V(vs. Ag/AgCl)

J 
/m

A
⋅cm

-2

 Pt/C

 Fe3O4@NC

 Fe3O4@NCS

 Fe3O4@NCS-Mn

 

Figure 5. Polarization curves of Pt/C (20%), Fe3O4@NC, Fe3O4@NCS, and Fe3O4@NCS-Mn. Scan rate: 
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Figure 4. N2 adsorption/desorption isotherms and the corresponding pore size distribution curves of
(a) Fe3O4@NC, (b) Fe3O4@NCS, and (c) Fe3O4@NCS-Mn.

2.2. Electrochemical Tests

The catalytic activities of the as-prepared catalysts for ORR were tested in O2 saturated 0.1 M
KOH. The commercial Pt/C (20 wt%) was used as a control catalyst. The linear sweep voltammetry
(LSV) plots of different catalysts for ORR are displayed in Figure 5 and the characteristic parameters
for ORR activity evaluation are listed in Table 2. As can be seen, the Fe3O4@NCS-Mn catalyst showed
the highest onset potential and limiting current density of −0.02 V (vs. AgCl) and 3.8 mA/cm2, which
is almost the same with the corresponding ones of commercial Pt/C (20%). The catalyst also exhibited
the most positive half-wave potential of −0.205 V (vs. AgCl), which is only 66 mV more negative than
that of Pt/C (20%). The results confirm that the addition of Mn can enhance the catalytic activity.

The kinetics of ORR that employed Fe3O4@NCS-Mn as a catalyst were further investigated.
The LSV curves at different rotation speeds are shown in Figure 6. As can be seen, the limiting current
density increased with the increase in the rotating speeds due to the enhanced oxygen flux to the
electrode surface [38]. Figure 7a shows the plots of j−1 versus ω−1/2 at different potentials in the range
of −0.3~−0.55 V. A great linear correlation between j−1 andω−1/2 confirms that the reaction is first-order
with regard to the concentration of dissolved oxygen. Based on the Koutecky-Levich (K-L) equation,
Figure 7b presents the transferred electron number (n) in ORR under different potentials. The average
n was found to be 3.6 in the potential range of −0.30 V to −0.60 V, which indicates an approximate 4e−

ORR process. This is considered to be the most efficient ORR pathway.
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2.2. Electrochemical Tests 
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Table 2. Comparison of catalytic activity of the catalysts towards oxygen reduction reaction (ORR).

Sample Onset Potential
(V vs. Ag/AgCl)

Half-Wave Potential
(V vs. Ag/AgCl)

Limiting Current
Density (mA·cm−2)

Pt/C −0.02 −0.139 3.8
Fe3O4@NC −0.21 −0.561 2.0

Fe3O4@NCS −0.02 −0.292 2.8
Fe3O4@NCS-Mn −0.02 −0.205 3.8
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Figure 7. (a) Koutecky-Levich (K-L) plots of Fe3O4@NCS-Mn catalyst for ORR; (b) the dependence of 
the transferred electron number (n) on the potential. 

Figure 6. Polarization curves of Fe3O4@NCS-Mn catalyst at different rotation speeds. Scan rate:
10 mV·s−1.

In methanol-based fuel cells, one important feature for ORR catalyst is its durability and tolerance
toward methanol. The durability of Fe3O4@NCS-Mn against methanol was tested using cyclic
voltammetry (CV) measurements. Figure 8a indicates that there was no significant change in the
CV curve upon the addition of 3 M CH3OH to O2 saturated 0.1 M KOH, except for a slight decrease
in reduction current and peak potential. Within the entire scanning range, there was no observable
current for the oxidation of methanol. Comparatively, CV curve for Pt/C (20%) electrode shows a peak
identified as the oxidation current of methanol, and the O2 reduction peak completely disappeared
under the same conditions (Figure 8b). Therefore, Fe3O4@NCS-Mn is a more selective ORR catalyst
than Pt/C (20%) with much stronger durability against methanol.
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The traditional ORR catalysts have been challenged in their stabilities, which is another important
feature for ORR catalyst with great quality. The relative current was measured for both Fe3O4@NCS-Mn
and commercial Pt/C (20%) at −0.3 V (vs. Ag/AgCl) in an O2 saturated 0.1 M KOH solution. Figure 9
indicates that the relative current of Fe3O4@NCS-Mn shows a decay of 53.2%, whereas the Pt/C (20%)
catalyst exhibits a decay of 58.5% after a 36,000 s chronoamperometric test. Therefore, Fe3O4@NCS-Mn
is more stable than the Pt/C (20%) catalyst in the alkaline medium.
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3. Experimental Methods

3.1. Materials and Instruments

Iron(II) chloride tetrahydrate, chitosan, salicylaldehyde and manganese nitrate (50 wt% aqueous
solution) were supplied by Sinopharm Chemical Reagent Co. Ltd (Shanghai, China). Pt/C (20 wt%
Pt on carbon black) and Nafion (5 wt%) were supplied by Alfa Aesar (Haverhill, MA, USA). All
reagents were of analytical grade and were used as received. A field-emission scanning electron
microscope (JSM-6701F, FEOL, Japan), a transmission electron microscope (JEM-2010, Japan), a
XRD-6000 diffractometer with Cu Kα radiation (λ = 1.54178 Å) (Shimadzu, Japan) and an ASAP2020
Micromeritics Instrument (TriStar II, USA) were used for characterization of the catalysts. A 760E
electrochemical workstation (CH Instruments, Shanghai, China) was used for electrochemistry tests.

3.2. Preparation of the Catalysts

The Fe3O4@chitosan Schiff-base Mn (II) complex was prepared as described in our previous
work [39]. The catalyst Core-shell Fe3O4@NCS-Mn was prepared by pyrolyzing Fe3O4@chitosan
Schiff-base Mn (II) complex at 800 ◦C in N2 for 2 h with a heating rate of 5 ◦C/min. For comparison
purpose, the other two catalysts were derived from different precursors and also prepared under the
same conditions. One was derived from the precursor of Fe3O4@chitosan (denoted as Fe3O4@NC),
while the other was derived from the precursor of Fe3O4@chitosan Schiff-base in the absence of Mn
(denoted as Fe3O4@NCS).

3.3. Electrochemistry Tests

The electrocatalytic performances of the as-prepared samples were tested on the electrochemical
workstation using an Ag/AgCl (in 3 M KCl) as the reference electrode and a graphite rod as the counter
electrode and a 3 mm glassy carbon as the working electrode. A catalyst suspension to be tested was
prepared using ultrasonically dispersed 2.5 mg of the catalyst into a mixture solvent of 980 µL ethanol
and 20 µL water. The electrode to be tested was prepared by depositing 7 µL of the above suspension
onto the working electrode and dried at 40 ◦C for 2 h with a catalyst loading of 0.25 mg·cm−2. Before
the test, the electrolyte solution was saturated using O2. The working electrode was activated using
the cyclic voltammetry (CV) method at 50 mV·s−1 for several cycles.

4. Conclusions

Combining the advantages of transition metal oxide and nitrogen-doped carbon material,
the present work developed a feasible strategy to synthesize a core-shell structure based on a
chitosan-Schiff base Mn complex coating on Fe3O4 cores (Fe3O4@NC-Mn). Used as the ORR catalyst,
Fe3O4@NCS-Mn achieved nearly equivalent onset potential and maximum current density to the
commercial Pt/C (20%) catalyst. Moreover, it demonstrated impressive chemical stability and stronger
durability against methanol. Along with an average number of the transferred electron of 3.6,
Fe3O4@NCS-Mn can be potentially used as the ORR catalyst in methanol based fuel cell.
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