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Abstract: A technique for direct study of the distribution of the applied voltage within a quantum
cascade laser (QCL) has been developed. The detailed profile of the potential in the laser claddings
and laser core region has been obtained by gradient scanning Kelvin probe force microscopy (KPFM)
across the cleaved facets for two mid-infrared quantum cascade laser structures. An InGaAs/InAlAs
quantum cascade device with InP claddings demonstrates a linear potential distribution across the
laser core region with constant voltage drop across the doped claddings. By contrast, a GaAs/AlGaAs
device with AlInP claddings has very uneven potential distribution with more than half of the voltage
falling across the claddings and interfaces around the laser core, greatly increasing the overall voltage
value necessary to achieve the lasing threshold. Thus, KPFM can be used to highlight design and
fabrication flaws of QCLs.
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1. Introduction

Metalorganic vapour phase epitaxy (MOVPE) of quantum cascade lasers (QCLs) [1,2] is a very
demanding process. The interface abruptness, intentional and unintentional doping, layer thicknesses,
and material compositions may critically affect the performance of any conventional laser diodes.
Taking into account that thicknesses of individual layers in a QCL active region can be just a few
atomic monolayers and the total number of individual layers is typically many hundreds, the control
of the above parameters in QCLs is even more difficult. Various experimental techniques are used
to assess the structural, electrical, optical and thermal properties of the as-grown material and
fabricated devices, e.g., [3–19] in order to help to optimize the QCL design and related epitaxial growth
technologies. In this paper, we present a technique for direct, high-spatial-resolution measurements
of the voltage distribution across all the parts of QCL structures. The technique is based on Kelvin
probe force microscopy (KPFM), which is widely used to study other electrically driven semiconductor
devices [20–23].

It is usually assumed that the whole voltage that is applied to a QCL device is dropped only
across the laser core, with negligible contribution from other parts such as top and bottom claddings or
contact and spacer layers. Despite some agreement between the operating and predicted voltage values
for working QCLs, there is high degree of uncertainty on how exactly the electric field is distributed
across different layers of QCLs. In this study, QCL devices based on InP and GaAs substrates have
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been tested, revealing examples of both almost ideal voltage distribution and the existence of the areas
of excessive parasitic voltage drop.

2. Materials and Methods

GaAs/AlGaAs on GaAs and InGaAs/InAlAs on InP QCL structures were grown by MOVPE
in a horizontal flow reactor. Trimethylaluminium, trimethylgallium, trimethylindium, arsine and
phosphine were used as the precursors of the group III and V atoms. Disilane was used for n-type
doping. Hydrogen was used as a carrier gas. The total reactor pressure was 150 Torr. The orientation
of the epitaxial surface of the InP substrates was (100) on-axis. The orientation of the GaAs substrates
was (100), with a miscut angle of 10o towards <111> A in order to suppress the CuPt-type ordering in
Al(Ga)InP [24,25]. All substrates were n-type doped with n > 1018 cm−3.

λ ≈ 9.7 µm GaAs/AlGaAs QCL wafer (sample MR2790) was grown with a 1 µm thick GaAs
(n = 6 × 1018 cm−3) buffer layer. A 3.04 µm thick GaAs/Al0.45Ga0.55As laser core with 55 cascade
periods and average doping of n = 7 × 1016 cm−3 is surrounded by a 0.2 µm thick top and bottom
GaAs (n = 5 × 1016 cm−3) spacer layers and 3 µm thick top and bottom In0.47Al0.53P (n = 5 × 1016 cm−3)
claddings. Finally, the structure was capped with a 1 µm thick GaAs (n = 6 × 1018 cm−3) top contact
layer. The details of the laser core of this structure can be found in [26].

The design of the active region of the λ ≈ 5.7 µm InGaAs/InAlAs strain-compensated QCL
wafer (sample MR2449) is very similar to that presented in [27]. The structure has a 2.125 µm thick
In0.6Ga0.4As/In0.42Al0.58As laser core with 35 cascade periods and average doping of n = 2 × 1016 cm−3

surrounded by 0.3 µm thick In0.53Ga0.47As (n = 6 × 1016 cm−3) top and bottom spacer layers and 2.3 µm
thick InP (n = 1 × 1017 cm−3) top and bottom claddings. This structure has a 0.8 µm thick highly doped
(n = 7 × 1018 cm−3) InP top contact layer.

Fully processed 3 mm long lasers from both wafers operate above room temperature with a
pulsed (50 ns pulse width at 5 kHz repetition rate) threshold current density of 4.4 kA/cm2 and
2.5 kA/cm2 at 300 K for the GaAs- and InP-based QCLs, correspondingly. The current–voltage (IV)
characteristics for both QCL devices are presented in Figure 1. The theoretical operating voltage
(in Volts) at the threshold, assuming that the total voltage drops only across the laser core, can be
estimated as Uth = N(Eem + Einj)/e, where N is the number of cascade periods, Eem is the laser emission
energy in eV, e is the electron charge and Einj is the energy “width” of the miniband in the injector
part of the cascade period at the alignment—often called the voltage defect. The theoretical values
for the voltage at the laser threshold are 14.8 V and 10.6 V for MR2790 and MR2449, correspondingly.
For the MR2449 device, the observed voltage is very similar to the predicted one, while the MR2790
laser requires a much higher voltage (27 V) to achieve lasing. It was suggested [26] that the high
potential barrier in the conduction band offset (up to 0.3 eV) on the GaAs/InAlP interfaces can lead
to an increased resistance and operating voltage. In an attempt to minimise this effect, a transitional
layer between GaAs and InAlP materials is incorporated into the MR2790 QCL structure. The layer
provides a step-wise, less abrupt change in the conduction band profile and consists of 25 nm of
In0.49Ga0.51P followed by 15 nm of In0.49(Ga0.5Al0.5)0.51P in the direction from GaAs to InAlP, while the
layer sequence is reversed for the direction from InAlP to GaAs. However, despite the introduction of
this transitional layer, the operating voltage appears to still be higher than the predicted one.

The measurements of voltage distribution across the cleaved QCL facets were carried out using an
NT-MDT NTegra Aura atomic force microscopy (AFM) setup in the regime of amplitude modulated
gradient scanning Kelvin probe force microscopy (AM-GKPFM) [28–30]. The microscopy head has
a track system based on a λ = 1.3 µm infrared laser. The typical spatial resolution for the measured
potential distributions and topography maps is better than 100 nm. Measurements were carried
out using uncoated highly n-doped silicon NSG11 cantilevers, AM-GKPFM operated in two-pass
lift mode; the amplitude of cantilever mechanical oscillations was 40 nm; lift 30 nm; cantilever bias
voltage amplitude was 0.5 V, see [29] for detailed description of measurement method. The QCL chips
were cleaved at atmospheric pressure outside the vacuum chamber, soldered epi-side up on copper
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submounts and then put under vacuum. The negative cw bias, relative to the earthed submount,
was applied to the top of the laser ridge. The measurements were performed at room temperature and
at reduced pressure (~0.1 mBar). The size of the cleaved ridge devices used in the KPFM experiments
is 0.27 mm long and 20 µm wide for wafer MR2790, and 2 mm long and 20 µm wide for wafer MR2449.
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Figure 1. Current–voltage characteristics for 3 mm long λ ≈ 9.7 µm GaAs/AlGaAs QCL (MR2790) and 
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2.5 kA/cm2 at 300 K, respectively. 
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The topography map of the cleaved facet measured in the tapping mode of AFM [31] is 
obtained along with the voltage dependence. This helps to eliminate the possible features on voltage 
distribution graphs associated with unevenness or foreign particles that have appeared on the 
cleaved surface. The typical topography map of the part of the cleaved facet for the device from 
MR2790 is presented in Figure 2. The highest roughness in the cleaved surface flatness does not 
exceed a few nm. The GaAs/AlGaAs laser core is clearly visible—positioned approximately between 
the 3 and 6 µm marks on the horizontal scale. On both sides around the laser core there are darker 
layers, which are about 200 to 250 nm wide, corresponding to the GaAs spacer layers. The white 
spots are probably related to contaminating foreign particles on the facet surface. The larger spots 
appear along the interface between the core region and the spacers, while the smaller ones are 
distributed across the bottom and top AlInP claddings. The surface of the core region part is clear 
from such particles. Such a distribution is not yet fully understood; however, this can also be of a 
chemical nature, for example, selective oxidation of clusters formed in AllnP material. 
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scale with 0.2 µm thick GaAs spacers and 3 µm wide AlInP claddings surrounding it on both sides. 
The GaAs substrate is on the right. 

Figure 1. Current–voltage characteristics for 3 mm long λ ≈ 9.7 µm GaAs/AlGaAs QCL (MR2790) and
λ ≈ 5.7 µm InGaAs/InAlAs QCL (MR2449) with a pulsed threshold current density of 4.4 kA/cm2 and
2.5 kA/cm2 at 300 K, respectively.

3. Results and Discussion

The topography map of the cleaved facet measured in the tapping mode of AFM [31] is obtained
along with the voltage dependence. This helps to eliminate the possible features on voltage distribution
graphs associated with unevenness or foreign particles that have appeared on the cleaved surface.
The typical topography map of the part of the cleaved facet for the device from MR2790 is presented
in Figure 2. The highest roughness in the cleaved surface flatness does not exceed a few nm.
The GaAs/AlGaAs laser core is clearly visible—positioned approximately between the 3 and 6 µm
marks on the horizontal scale. On both sides around the laser core there are darker layers, which are
about 200 to 250 nm wide, corresponding to the GaAs spacer layers. The white spots are probably
related to contaminating foreign particles on the facet surface. The larger spots appear along the
interface between the core region and the spacers, while the smaller ones are distributed across the
bottom and top AlInP claddings. The surface of the core region part is clear from such particles. Such a
distribution is not yet fully understood; however, this can also be of a chemical nature, for example,
selective oxidation of clusters formed in AllnP material.
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Figure 2. Topographic map for the cleaved facet of the GaAs/AlGaAs quantum cascade laser obtained
in the tapping regime of AFM. The laser core is between ~3 and ~6 µm on the horizontal scale with
0.2 µm thick GaAs spacers and 3 µm wide AlInP claddings surrounding it on both sides. The GaAs
substrate is on the right.
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The scanning time for one line in the KPFM regime is just above 3 minutes, where half of this is
spent for the actual measurement and another half for the back sweep. The contact potential difference
profile under zero bias (CPD(0)) is recorded first. This CPD(0) value is then subtracted from the CPD(V)
values measured at non-zero applied bias. The subtraction of CPD(0) values recorded at zero bias
from all CPD(V) curves measured subsequently is used to partly eliminate the contribution from the
static surface effects. However, if the charging/discharging of surface states have a relatively long-term
dependence, then these effects should be studied separately and in much more detail. For each
given applied voltage, just one CPD(V) scan was used. The voltage and the current values in these
experiments are controlled with precision greater than 1 mV and 0.1 mA, correspondingly.

The ∆CPD = CPD(V)−CPD(0) profiles for the device from wafer MR2790 are presented in Figure 3
for the bias values up to 7 V (compare with IV curve for this laser in Figure 1). These ∆CPD scans have
been taken at the position on the facet close to the top of the topographic image in Figure 2. The relative
layout of the AlInP claddings, GaAs layers and the laser core in this figure is given as a reference.
It should be noted that for the maximum applied bias used in these experiments, the detected shift of
the sample mounted on the copper holder due to thermal expansion was around 6 µm (the temperature
increased up to 30 K). Because of this temperature shift, all ∆CPD scans have been adjusted (with
accuracy better than 0.1 µm) to be at the same position on the sample facet.
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Figure 3. Contact potential difference profiles for the GaAs-based QCL with AlInP claddings measured
on the cleaved laser facet by KPFM technique for various applied bias.

The applied voltage for the MR2790 device does not drop only across epitaxial layers. Up to 5% of
the total bias has been found to fall outside of them, probably on the electrical contacts or the GaAs
substrate. Almost half of the total voltage drops on the bottom AlInP cladding, while the drop on the
top AlInP cladding is less; however, it is still excessive. Note, that top and bottom claddings were
designed and specified during the growth process to have the same composition and doping level;
however, KPFM measurements show that the voltage drop across the top and bottom claddings is
different. This can be caused by the different concentration of localized defects and provides a new
topic for future investigation. The voltage distribution across the laser core is not precisely linear,
resulting in the cascade periods having different levels of alignment at any given bias. We note that
some unevenness in the surface topography might contribute to the appearance of a slightly non-linear
voltage distribution in the laser core. However, it is unlikely as the position of the “inflection” point
on this dependence is shifting with bias increase from being closer to the top cladding towards the
bottom cladding.
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After the ∆CPD scan was completed under the applied bias of 7 V, the voltage was decreased
back to 4 V. Surprisingly, the re-measured potential profile does not exactly follow the one obtained
for the same 4 V bias but from when the bias value had increased from zero volts (see Figure 4).
Such a hysteresis might indicate that the charge accumulated near the GaAs/AlInP interface at higher
voltage and was still not dissipated when the voltage had dropped. Another indication of a slow
discharge process in the area of the bottom cladding is the ∆CPD dependences (see Figure 4) taken at
zero bias straightaway after the main series of ∆CPD measurements had been finished. The ∆CPD
graphs have been obtained in 3, 6 and 9 minutes after the bias was switched-off. Such extremely
long relaxation time is very unlikely to be defined only by the processes happening in the volume of
the semiconductor structure but also by kinetics of the surface states. On the other hand, deep traps
for the electrons which might be formed in the energy gap of the Al-rich AlInP claddings and high
conduction band discontinuity on GaAs/AlInP interfaces might contribute to such slow-discharging
surface states. The charge accumulation is observed mainly in the bottom cladding and closer to
the interface with the core. This behaviour can be explained partly by the different conditions on
the interfaces between GaAs and AlInP in different parts of the epitaxial structure. It should not
be an obstacle for the electrons to fall from the higher conduction band of AlInP when they move
through AlInP/GaAs interfaces. To move through GaAs/AlInP interfaces is much harder even with the
incorporated transitional layer. The higher doping level on the interface between the top contact GaAs
layer and the top AlInP cladding should help to reduce the band offset by “levelling” the bottoms of
their conduction bands. However, the conduction band profile on the GaAs/AlInP interface between
the laser core and the bottom cladding may not be smooth enough because the doping level in this
area is intentionally kept low to reduce possible free-carrier absorption, which can result in higher
waveguide losses. The actual doping level in the AlInP claddings, which might end up being lower
than intended due to possible formation of the deep traps, may also be the reason for an excessive
voltage drop across the claddings. We believe that more growth runs and further optimization of the
structural design are needed to reduce the voltage drop in the GaAs-based QCLs with AlInP claddings.
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Figure 4. Contact potential difference profiles for the GaAs-based QCL with AlInP claddings measured
on the cleaved laser facet by the KPFM technique. The observed hysteresis (the voltage was increased
from 0 to 4 V for the first measurement and the voltage was decreased from 7 to 4 V for the second one)
and a very slow time dependence (measured in 3, 6 and 9 minutes) after switch-off might indicate the
existence of charge that has accumulated around the bottom AlInP cladding.



Crystals 2020, 10, 129 6 of 8

The observed voltage distribution across the MR2449 device is much more predictable (see
Figure 5) compared with the MR2790 device. Almost all the applied voltage is dropped linearly across
the laser core, demonstrating equal level alignment for all cascade periods. There is negligible voltage
drop across the cladding and spacer layers. The difference between the predicted (10.6 V) and the
observed (10.8 V) voltage at the threshold is minimal and depends on the slight variation in the level
alignment and band bending due to charge redistribution in the active and injector regions, which
was not included in the voltage calculations. Neither hysteresis nor slow time evolution of ∆CPD
dependences have been observed for the MR2449 device.
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4. Conclusions

We have presented a technique for the detailed study of the spatial distribution of the applied
voltage across the epitaxial structure of mid-infrared QCLs. The GaAs-based QCL with AlInP
waveguides demonstrates an uneven potential drop across its laser core and very high parasitic voltage
drops across the cladding layers. The developed method can be very valuable for the optimization of
the QCL design as well as the epitaxial growth technology of QCLs. The detailed knowledge of the
voltage distribution might be particularly important for the broadband QCLs, where all sections in the
laser core designed for different wavelengths should achieve optimum alignment at the same applied
bias values.
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