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Abstract: We developed a new benzodifuran derivative as the condensation product between 2,6-diamino
-4-(4-nitrophenyl)benzo[1,2-b:4,5-b’]difuran-3,7-dicarboxylate and 3-hydroxy-2-naphthaldehyde.
The intramolecular hydrogen-bond interactions in the terminal half-salen moieties produce a sterically
encumbered highly conjugated main plane and a D-A-D (donor-acceptor-donor) T-shaped structure.
The novel AIEgen (aggregation-induced enhanced emission generator) fulfils the requirement of RIR
(restriction of intramolecular rotation) molecules. DR/NIR (deep red/near infrared) emission was
recorded in solution and in the solid state, with a noteworthy photoluminescence quantum yield
recorded on the neat crystals which undergo some mechanochromism. The crystal structure study of the
probe from data collected at a synchrotron X-ray source shows a main aromatic plane π-stacked in a
columnar arrangement.
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1. Introduction

In recent years, the design and synthesis of organic fluorescent dyes highly performant in the
solid state have received researcher’s widespread attention [1–4]. For some applications, the emission
in neat or aggregate state is a basic requirement. This is the case in most optoelectronic devices and
in fluorescent bioimaging investigation techniques [5–8]. In the organic fluorophores, traditionally
consisting of extended electronic π-systems, a marked fluorescence quenching in the solid state can
occur due to the strong intermolecular interactions. The π−π stacking of planar polycyclic skeletons
and the dipole−dipole interaction of donor−acceptor frameworks [5,9,10] can induce the aggregation
caused quench (ACQ) effect with a significant fluorescent intensity decrease.

Several strategies can be adopted to suppress undesired strong intermolecular interactions.
The fundamental issue is designing a conjugate system depressing the non-radiative deactivation
processes through restriction of intramolecular rotation (RIR), restriction of intramolecular vibrations
(RIV), and restriction of intramolecular motions (RIM) [10,11]. Therefore, the introduction of
sterically encumbered substituents or bulky groups [9,12,13] and the construction of highly twisted
skeleton [14–17] are the possible solutions. Unlike the common π-conjugated fluorogens, this kind of
molecules undergo aggregation-induced enhanced emission (AIE) effect providing photoluminescence
(PL) in the solid state.

Among the AIEgens (aggregation-induced enhanced emission generators) first described by Tang
group in 2001 [18], a special class is represented by the DR/NIR (deep red/near-infrared) fluorophores,
characterized by a strong emission at the 650–900 nm region [19]. According to the energy-gap
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law [20–22] the intrinsic low band-gap of such DR/NIR emitters makes them especially vulnerable to
the ACQ effect [23] due to higher vibrionic coupling between the ground and excited states. Therefore,
most of the AIEgens reported emit blue and green lights. Although they are highly sought after for red
OLEDs (Organic Light Emitting Diodes), night-vision devices, secured displays, optical waveguides
and in the wide field of bio and chemo-sensing [24–28], there are fewer efficient DR/NIR (deep
red/near infrared) materials. Of particular interest are AIE fluorophores with intense emission at
DR/NIR region owing to their deep tissue penetration, photo-stability and minimum interference in
living systems [25,29,30]. Their applications are closely related to cell imaging and DNA and protein
sensing [31–33].

Novel molecular construction of DR/NIR AIEgens can be achieved with electron donor (D) and
electron acceptor (A) blocks connected through π-conjugated frameworks. The most fundamental
phenomenon governing the spectroscopic properties is the intramolecular charge transfer (ICT)
process from the donor to the acceptor in the excited state [34–36]. Intercrossed excited state between
the low-lying local exciton (LE) and charge transfer (CT) exciton results from the D–A interaction.
Obviously, the molecular geometry is crucial for the process.

Benzodifuran derivatives have drawn attention for a wide range of biological and pharmacological
applications, including antimicrobial, antiviral, analgesic and antitumor [37–40] activity. This class
of heterocyclic compounds are also employed in dyes industry as pigments and in different fields of
optoelectronics and photonics. Due to the excellent semiconducting properties [41,42], benzodifuran
scaffolds are used as nonlinear optical materials [43], for dye sensitized solar cells [44] and in organic
solar cell and transistors. Finally, as electron-rich building blocks they have a potential in the
constructing of photoluminescent materials [45–47]

Herein, we developed a new benzodifuran derivative from 2,6-diamino-4-(4-nitrophenyl)
benzo[1,2-b:4,5-b’]difuran-3,7-dicarboxylate [40] (BDF moiety in Scheme 1). Keeping in mind the
ability of nitrophenyl ring to twist respect to BDF plane in similar molecules [43], herein, we designed
a new T-shaped twisted molecule. The reaction of the precursor BDF (shown in Scheme 1) with the
highly fused naphthol rings of 3-hydroxy-2-naphthaldehyde produced terminal Schiff bases moieties
and an extended D-A-D T-mode conjugation.

The novel AIEgen NBDF (reported in Scheme 1) fulfils the requirement of RIR molecules.
We investigated its photophysical properties and correlated the data to its single crystal structure
resolved from data collected at synchrotron source.
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Scheme 1. Synthetic route to the target compound NBDF. D-A-D T-shaped molecule schematically
represented. M is the plane containing the diamino-benzodifuran rings condensed with the two
3-hydroxy-2-naphthaldehyde moieties, i.e., the fragment depicted in red.

2. Experimental

Commercially available starting products were supplied by Sigma Aldrich. PVK was molecular
weight 1100 Da. 2,6-diamino-4-(4-nitrophenyl)benzo[1,2-b:4,5-b’]difuran-3,7-dicarboxylate (BDF) was
obtained as described in [48]. 1H NMR spectra were recorded in 1,1,2,2-tetrachlorethane-d2 with a



Crystals 2020, 10, 269 4 of 15

Bruker Advance II 400MHz apparatus (Bruker Corporation, Billerica, MA, USA). Mass spectrometry
measurements were performed using a Q-TOF premier instrument (Waters, Milford, MA, USA) with
an electrospray ion source and a hybrid quadrupole-time of flight analyzer.

Optical observations were performed by using a Zeiss Axioscop polarizing microscope (Carl Zeiss,
Oberkochen, Germany) equipped with an FP90 Mettler microfurnace (Mettler-Toledo International
INC MTD, Columbus, OH, USA). The decomposition temperatures (5 wt.% weight loss) and phase
transition temperatures and enthalpies were measured under nitrogen flow by employ of a DSC/TGA
Perkin Elmer TGA 4000 (PerkinElmer, Inc., Waltham, MA, USA), scanning rate 10 ◦C/min. Absorption
and UV-Visible emission spectra were recorded by JASCO F-530 and FP-750 spectrometers (scan rate
200 nm min−1, JASCO Inc., Easton, MD, USA) and on a spectrofluorometer Jasco FP-750 (excitation
wavelengths set at the absorption maxima of the samples, scan rate 125 nm min−1, JASCO Inc., Easton,
MD, USA). Thin films of the neat samples and of the polymeric blends (20% wt. in PVK, molecular
weight 1100 Da) were prepared using a SCS P6700 spin coater operating at 600 RPM for 1 min.

Photoluminescence quantum efficiency values were recorded on quartz substrates by a Fluorolog
3 spectrofluorometer (Horiba Jobin Instruments SA), within an integrating sphere provided by an
optical fiber connection.

2.1. Synthesis of NBDF

To 0.453 g (1.00 mmol) of BDF dissolved at 70 ◦C in 20 mL of glacial acetic acid 0.688 g (4.00
mmol) of 3-hydroxy-2-naphthaldehyde was added under stirring. After 1 hour at boiling temperature,
the crude product precipitated. The compound was recovered from the hot solution and washed in
hot ethanol twice. Tm = 330 ◦C; Td = 340 ◦C. 1H NMR (500 MHz, 1,1,2,2-tetrachlorethane (TCE)-d2,
25 ◦C, ppm): 0.87 (t, 3H), 1.08 (t, 3H), 3.93 (q, 2H), 4.54 (q, 2H), 7.15 (t, 2H), 7.44 (m, 2H), 7.63 (m, 2H),
7.74 (m, 2H), 7.85 (d, 2H), 7.88 (d, 2H), 7.92 (d, 1H), 8.18 (s, 1H), 8.25 (s, 1H), 8.45 (d, 2H), 9.47 (s, 1H).
9.76 (s, 1H). Elemental analysis calculated (%) for C44H31N3O10: C, 69.38; H, 4.10; N, 5.52; found: C,
69.30; H, 4.98; N, 5.58. MALDI-TOF of A1 m/z: 762.69 (M + H).

2.2. X-Ray Crystallography

Red needles of NBDF were obtained by slow evaporation (~2−3 days) from a solution of TCE
and acetic acid (1.5 mM of 1% solution of acetic acid). Crystals grew with morphology of long slender
needles and dimensions of 0.07 × 0.1 × 0.6 mm. Crystals required data to be collected with synchrotron
radiation (wavelength, λ = 0.7000 Å) from XRD2 beamline at the Elettra Synchrotron Light Source,
Trieste Italy. NBDF crystals undergoing solvent loss required quick harvesting in mother liquor.
By using a small loop of fine rayon fiber, the selected crystal was dipped in the cryoprotectant Fomblin
oil and flash-frozen in a stream of nitrogen at 100 K. Several crystals were scanned in order to find the
most suitable for data collection. For the best diffracting crystal, a total of 400-degree crystal rotation
data were collected from two hundred images using an oscillation range of 2◦. No crystal decay was
detected. Data were processed using XDS (X-ray Detector Software) for processing single-crystal
monochromatic diffraction data recorded) with the data collection statistics reported in Table 1 [40,49].
The crystal gave a primitive monoclinic cell of a = 16.41 Å, b = 4.78 Å, c = 25.89 Å, b=91.2◦, V = 2030 Å3

and P 1 21/m 1 symmetry was confirmed by Laue group analysis from unmerged intensity using
POINTLESS 1.11.21 [50] and no data twinning was detected. Data diffraction resembles that of a tiny
protein crystal as only the most intense reflections could be collected, especially at low resolution
(Rmerge = 0.070). Despite data completeness being only 77% (I/σ(I) = 2.3) at resolution of 0.93 Å
structure solution was quickly found by direct methods using SIR2019 [51] and revealed most of the
expected NBDF atoms connectivity. The structure solution by direct methods was possible in the space
groups P 1 21 1, P 1 21/n 1 or P 1 n 1 and revealed an equivalent and unique solution. Final refinement
was performed in centrosymmetric space group P 1 21/n 1 in order to achieve better refinement
statistics and better ratio of refinement parameters versus number of unique reflections. Structure
was anisotropically refined by using full matrix least-squares methods on F2 against all independent
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measured reflections using SHELXL [52] run under WinGX suite for small molecule single crystal [53].
All the hydrogen atoms were introduced in calculated positions and refined in agreement with a
riding model as implemented in SHELXL. Restraints were introduced at last stage of refinement using
FRAG, DFIX, and SIMU instructions as implemented in SHELXL [54]. Nitrophenyl group, ester groups
and TCE solvent are disordered and refined as mutually exclusive by introducing free variables as
implemented in SHELXL. Thermal motion of disordered solvent and the nitro-phenyl group results in
somehow high values of refinement parameters (see Table 1). The figures were generated using Mercury
CSD 3.6 [55]. Crystallographic data for NDBF were deposited with the Cambridge Crystallographic
Data Centre and can be obtained via https://www.ccdc.cam.ac.uk/structures/.

Table 1. Crystal data and structure refinement details for NBDF.

NBDF

CCDC number 1988060

Formula probe and solvent C44H31N3O10·C2H2Cl4

Temperature (K) 100

Wavelength (Å) 0.7000

Crystal system Monoclinic

Space group P 1 21/n 1

a (Å) 16.413(6)

b (Å) 4.779(1)

c (Å) 25.891(4)

β (◦) 91.172(11)

R-merge (last shell: 0.87−0.82 Å) 0.070 (0.559)

CC(1/2) 0.998 (0.895)

I/σ(I) 8.4 (1.3)

Completeness (%) 71.9

Estimated mosaicity (◦) 0.25

Volume 2030.4 Å3

Z 2

Calculated density 1.519 g/cm3

θ range for data collection (◦) 1.550 to 25.397

Reflections collected / unique 18565/2855

R(int) 0.0643

Data / restraints / parameters 2855/70/381

R1 indices (I > 2σ(I), 1913) 0.1275 (0.1538, all data)

wR2 0.345 (0.371, all data)

F(000) 922

Largest diff. peak and hole 0.82 and -0.38 e-/Å3

Goodness-of-fit on F2 1.53

3. Results and Discussion

The synthetic route for the benzodifuran precursor BDF (in Scheme 1) followed a reported
procedure [40] consisting in the diazotization of 4-nitroaniline and the coupling of the diazonium
salt on benzoquinone. By appropriate choice of the substituted cyanoacetate reacting with

https://www.ccdc.cam.ac.uk/structures/
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4’-nitro-[1,1’-biphenyl]-2,5-dione [40] a wide range of substituted benzodifuran derivatives could be
obtained. In our case, after some preliminary tests, the acetyl substituents were chosen as a good
compromise between solubility and ability to crystallization. Different reaction conditions were
experimented by varying BDF/3-hydroxy-2-naphthaldehyde ratio, the solvent and the operating
temperature. The better results were obtained by using four times the stoichiometric amount of the
aldehyde in boiling acetic acid. The product was recovered as microcrystalline powder directly from
the hot solution with 30% yield, pure enough for the further characterization. Very selectively, the mono
reacted products remain in the mother liquors.

A T-shaped molecule (see Scheme 1) can be envisioned as a cruciform structure obtained by
assembling the branches to a central core determining the geometry and the extent of the electronic
pattern [56].

Compound NBDF is the condensation product between a diamine and a salicylic aldehyde in 1:2
ratio. The probe contains two half-salen [12,57–59] Schiff base sites working as electron-donor arms and
an electron-acceptor core. As shown in Scheme 1, the (4-nitrophenyl) benzodifuran unit represents the
acceptor moiety due to the strong electron-withdrawing properties of the nitro substituent. To narrow
the bandgap achieving red emission the donor naphthol aromatic cores are fused to BDF enlarging the
conjugated length and enriching the aromatic pattern [24]. As a result, a highly conjugated main plane
(M moiety, in Scheme 1) is produced in the dye.

The intramolecular hydrogen-bond interactions in the half-salen moieties cause the excited-state
intramolecular proton-transfer (ESIPT) [60,61] known to lead to emission in solution [46,59,61–66].
The same effect is known to occur in the solid state [12,67] if the intramolecular H-bond produce
hindrance to the torsion of sterically encumbered parts of the molecule [57,68,69]. In our case, the acetyl
substituents on the furan rings and the bulky naphthol moieties make NBDF a RIR probe. Interestingly,
RIR effect has been confirmed effective both in the solid state and in solution, as discussed below.

Identification and purity degree evaluation were assessed by elemental analysis, mass spectrometry
and 1H NMR (see Figure 1). The NMR pattern appears peculiar (spectrum reported in Section 2.1).
The rigid H-bonded M plane (in red in Scheme 1) of NBDF probe impedes rotation around single bonds
also in solution. Two non-equivalent sides of the molecule are recognizable: part a, more encumbered
due to the nitrophenyl on the same side of the acetyl group, and part b (respectively in red and in
blue in Figure 1). Because of this, most resonances split. The signals of two protons at 9.47 and 9.76
ppm (same integration) can be attributed to the imine in the side b and in the side a, respectively.
The non-equivalent OCH2 protons appear as two quadruplets at 3.93 and 4.54 nm and the terminal
methyl groups as two triplets at 0.87 and 1.08 ppm. In the complicated aromatic pattern couples of
protons of the same naphtholic ring are equivalent (integrating for 2 protons) while the signals in the
part a differ from those in the side b. The three signals integrating for one proton can be attributed to
the single proton on the BDF unit and the two protons in the nitrophenyl ring in orto to BDF. In the
p-substituted system, the two protons in orto to nitro group are recorded as one doublet at 8.45 ppm.
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Figure 1. 1H NMR of NBDF in 1,1,2,2-tetrachlorethane d2.

Concerning the phase behaviour, bright red crystals of NBDF were obtained by slow evaporation
of TCE/acetic acid solution at room temperature. Crystals appeared in ~2−3 days from a 1.5 mM of
1% solution of acetic acid and grew with dimensions of 0.07 × 0.1 × 0.6 mm. They were examined by
optical observation and DSC/TGA analysis. The compound melts at 330 ◦C and is thermally stable up
to 350 ◦C under nitrogen flow. The dye is soluble in many organic solvents. In an acid environment
the solutions are stable and retain their spectroscopic characteristics up to three months under natural
light at room temperature.

3.1. Spectroscopic Behavior

The compound underwent a spectroscopic analysis by absorption and UV-Visible emission
spectrophotometry in TCE solutions and on thin films of finely crumbled spin-coated crystals.

As a pigment, NBDF is red chromophore with (Commission Internationale de l’Eclairage
coordinates) CIE: (0.48; 0.30) in the solid state, (0.58; 0.33) in TCE solution and molar extinction
coefficients of 46,000.

In solution, the absorbance pattern reveals a broad band peaked at 505 with a shoulder at 543
nm. The emission spectrum of the same sample irradiated at the absorbance maximum shows a
double peaked band (at 575 and 615 nm, as shown in Figure 2) and 70 nm Stokes shift. PLQY
(photoluminescence quantum yield) measured in diluted TCE solution was 2%.

In the solid state, the absorbance of NBDF sample is peaked at 488 nm. As an AIEgen its PL
performance in the solid state is intriguing because the compound shows a large part of the emission
band in DR region (the peak at 655 nm, see Figure 2) and an appreciable part in the NIR region (the
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hump above 700 nm). PLQY measured on the crystalline thin layer was 18%, considered a good result
for a DR/NIR emitter in the solid state [19].

A large Stokes shift was measured in this case (167 nm from the maximum of absorbance, used as
excitation wavelength, to the first emission maximum). The intramolecular relaxation process from LE
state to the ICT state usually leads to a large Stokes shift [70]. The reabsorption of the emitted photons
is avoided in fluorophores with large Stokes shift making them highly efficient. Emission spectra of
NBDF both in TCE solution and in the crystalline phase are showed in Figure 2.
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Figure 2. Emission spectra of NBDF in TCE (black curve) and in the solid phase (red curve). In the
insets, the same samples employed for the spectroscopic characterization.

On solutions of NBDF probe was observed the typical behaviour of AIEgens, depending on a
different solvent/non-solvent ratio. The emission performance was examined in TCE/hexane. In diluted
TCE solutions (0.2 mM) the sample displays poor red emission. Upon incremental addition of hexane
to the TCE sample, red fluorescence increases, as can be naked-eye perceived, starting from 60%
hexane solution (see Figure 3A). After 80% the sample undergoes precipitation. As expected for AIE
undergoing molecules, the aggregation process involving the self-assembly of emissive units improve
fluorescence. Hydrogen bonding and van der Waals interactions are involved in the process [71].

Finally, it was found that NBDF probe produced some mechanochromic effect. The luminescence
properties of compounds able to form strong stacked molecular organization are subject to the molecular
packing in the solid state [72,73]. Increase in the crystallite size distribution was expected to produce
higher PL intensity because of the stacking of the NBDF moieties hinders non-radiative relaxation
pathways. Grinding the very fine powder of the as-synthetized compound some particles fused.
The increase in the particle size distribution causes enhanced florescence intensity in NBDF. After
grinding (see Figure 3B), the sample shows the same emission color with slight PL increase (about 15%).
In the fuming process, the same sample was treated with acetone vapor. We checked several solvents
and the most relevant effect was found in acetone. The fumed samples were obtained by fuming the
grinded powders for 1 min. Finally, the same sample was kept at 150 ◦C for 3 min (heating process).
Due to the disruption of the molecular packing obtained by grinding and the production of an amount
of less structured material, PL performance are expected worsen as a result of the fuming (first) and of
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the heating (subsequent) process. In fact, the luminescent states checked by PL measurements show a
small decrease correspondent to 4%−5% in PL intensity to each of the two stages.Crystals 2020, 10, x FOR PEER REVIEW 8 of 15 
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heating process (second, third and fourth sample, respectively).

3.2. Production of a Red Emissive Polymeric Layer

To further explore the potential applications of NBDF probe in the production of emissive layers,
the fluorophore was mixed with poly(vinylcarbazole) (PVK), a polymeric conductive matrix often
employed in optoelectronic devices. Production of polymeric blends, and more generally deposition
of low-weight molecules on conductive substrates [45,57,74], is a functional approach to produce
macroscopically processable layers. For ACQ undergoing molecules this is a way to relieve fluorescence
quenching effect [45,57]. In our case, the AIE performance of the dye required the employ of a high
percentage of NBDF in the amorphous host matrix.

Thin films of NBDF were obtained by the spin-coating of a dispersion of finely shattered crystals
(obtained by sonication of a dispersion in hexane) and PVK in chloroform/hexane (3:1) using an SCS
P6700 spin-coater operating at 600 rpm. All the blends produced homogeneous microcrystalline layers
retaining their optical characteristics up to two months under natural light at room temperature.

Up to 5% wt. the addition of PVK acted as a conductive plasticizer, with no relevant decrease of
PLQY. In the larger host percentage blends, from 5% to 25% wt., PLQYs rapidly decreased to about one
half (8% PLQY was recorded on the more diluted sample). Not unexpected, both in solid and in liquid
diluted media the emission of the AIEgen weakens. The emission color of the neat compound placed
in the DR region with CIE: (0.68; 0.32), see Figure 4. On the other hand, going from the neat crystalline
dye (0% PVK blend) up to 25% PVK blend the CIE coordinates gradually undergo blue-shift, so that
emission color of 25% blend is very similar to the 30% wt. TCE solution, CIE: (0.58; 0.43) and (0.58;
0.42) respectively (Figure 4).
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3.3. Single-Crystal X-Ray Structure

The molecular structure of NBDF shows a T-shaped pattern recognizable in the two different
segments: main plane (M in red in Scheme 1) and nitrophenyl group (Figure 5). The probe crystallizes
in P 1 21/n 1 space group with one molecule in the asymmetric unit, as a combination of two 50%
statistically equivalent molecules oriented in opposite directions. A partially occupied molecule of TCE
was also detected (Figure 5). The center of symmetry of P 1 21/n 1 space group is located in the center
of the benzene ring of BDF. NBDF shows a main plane corresponding to the BDF core condensed with
the two naphthol units, with an average displacement of the atoms of about ~0.03 Å. NBDF shows an
intramolecular N--H-O hydrogen bond in the half-salen group (O . . . N distance = 2.55 Å) enforcing the
planarity of the system. The disordered nitro-phenyl group is twisted of ~45◦ with respect to the main
plane, to minimize interactions with the close bulky disordered ethyl-ester group, also out from the
main plane. In turn, ethyl-ester group twisted of ~28◦ with respect to the main plane. This pattern was
already observed in BDF molecules [45]. The strictly hindered rotations satisfy the requirements of
RIR molecules.

A crystal packing with herringbone arrangement of NBDF molecules can be observed (see Figure 6).
NBDF is stabilized by intermolecular Van-der Waals interactions and self-assembled into π-stacked
columns along the b axis and arranged around the center of symmetry and the symmetry elements of
the space group (Figure 6). Each columnar arrangement is characterized by strong π–π interactions
along the main plane and by an average interplanar distance of ~3.5 Å (Figure 6).



Crystals 2020, 10, 269 11 of 15

Crystals 2020, 10, x FOR PEER REVIEW 10 of 15 

 

Table 1. Crystal data and structure refinement details for NBDF. 

 NBDF 

CCDC number 1988060 

Formula probe and solvent C44H31N3O10·C2H2Cl4 

Temperature (K) 100 

Wavelength (Å ) 0.7000 

Crystal system Monoclinic 

Space group P 1 21/n 1 

a (Å ) 16.413(6) 

b (Å ) 4.779(1) 

c (Å ) 25.891(4) 

 (°) 91.172(11) 

R-merge (last shell: 0.87−0.82 Å ) 0.070 (0.559) 

CC(1/2) 0.998 (0.895) 

I/(I) 8.4 (1.3) 

Completeness (%) 71.9 

Estimated mosaicity (°) 0.25 

Volume 2030.4 Å 3 

Z 2 

Calculated density 1.519 g/cm3 

 range for data collection (°) 1.550 to 25.397  

Reflections collected / unique 18565/2855 

R(int) 0.0643 

Data / restraints / parameters 2855/70/381 

R1 indices (I > 2(I), 1913) 0.1275 (0.1538, all data) 

wR2 0.345 (0.371, all data) 

F(000) 922 

Largest diff. peak and hole 0.82 and -0.38 e-/Å 3 

Goodness-of-fit on F2 1.53 

 

Figure 5. A: molecular structure of NBDF C2H2Cl4. Thermal ellipsoids representation of atoms is 

drawn at 25% probability level. The center of the benzene ring of BDF is located on the center of 

symmetry of P21/n space group. Only one orientation of the molecule is shown for clarity. B: 

orthogonal view showing NBDF flat structure of the main plane and deviation from planarity of 

nitrophenyl group and ester groups. 

 

Figure 5. A: molecular structure of NBDF C2H2Cl4. Thermal ellipsoids representation of atoms is
drawn at 25% probability level. The center of the benzene ring of BDF is located on the center of
symmetry of P21/n space group. Only one orientation of the molecule is shown for clarity. B: orthogonal
view showing NBDF flat structure of the main plane and deviation from planarity of nitrophenyl group
and ester groups.
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4. Conclusions

We examined the PL performance of a novel AIEgen. The central BDF scaffold forms a single main
plane with two half-salen terminal naphthol groups. The probe shows a T-shaped D–A–D pattern highly
encumbered, undergoing RIR effect both in solution and in the solid state. Crystal structure analysis
revealed a strong intramolecular H-bond and the ability to form π-stacked columns. The emission
pattern of the neat compound is placed in the DR/NIR region with noteworthy PLQY in the solid state.
The neat crystals undergo mechanochromism depending on the crystallite size distribution. In solution,
NBDF keeps the typical behaviour of AIEgens compliant with the self-assembly of emissive units.
Finally, the probe turned out to be potentially useful in building concentered dye-doped emissive
layers. Emission CIE coordinates (0.68; 0.32) place the probe in the highly sought-after groups of
solid-state DR fluorophores.
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