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Abstract: The structural, electronic, and optical properties of inorganic CsPb(I1−xBrx)3 compounds
were investigated using the full-potential linear augmented-plane wave (FP-LAPW) scheme with
a generalized gradient approximation (GGA). Perdew–Burke–Ernzerhof generalized gradient
approximation (PBE-GGA) and modified Becke–Johnson GGA (mBJ-GGA) potentials were used to
study the electronic and optical properties. The band gaps calculated using the mBJ-GGA method
gave the best agreement with experimentally reported values. CsPb(I1−xBrx)3 compounds were wide
and direct band gap semiconductors, with a band gap located at the M point. The spectral weight (SW)
approach was used to unfold the band structure. By substituting iodide with bromide, an increase
in the band gap energy (Eg) values of 0.30 and 0.55 eV, using PBE-GGA and mBJ-GGA potentials,
respectively, was observed, whereas the optical property parameters, which were also investigated,
demonstrated the reverse effect. The high absorption spectra in the ultraviolet−visible energy range
demonstrated that CsPb(I1−xBrx)3 perovskite could be used in optical and optoelectronic devices by
partly replacing iodide with bromide.

Keywords: CsPb(I1−xBrx)3 perovskite; PBE-GGA and mBJ-GGA; fold2Bloch; electronic and optical
properties

1. Introduction

Halide perovskite ABX3 has attracted increasing interest as a potential solar cell material because
of its simple fabrication techniques and outstanding optoelectronic properties. ABX3 perovskite
materials have a high absorption coefficient, appropriate band gap (Eg), and balanced electron and
hole mobility [1–6]. In recent years, numerous researchers have focused on methylammonium lead
trihalide perovskite (CH3NH3PbX3), metal halide perovskite (ABX3, A = Cs, Rb; B = Pb, Sn; X = Cl, Br,
I), and CsPbI3, which have shown great potential [7,8].

Most of the researchers have studied the structural, electronic, and optical properties of CsPbX3 (X =

Cl, Br, I) using the density functional theory (DFT) and the WIEN2k package [8–11]. The Eg tenability for
CsPbX3 was studied experimentally [12], and the lattice modulation of Cs1−xRxPbBr3 (R = Li, Na, K, Rb,
x = 0–1) was also investigated [13]. By doping the perovskite, the efficiency can be increased, as this can
affect numerous electronic and optical properties [7]. The structural and electronic properties of all of the
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inorganic mixed-halide perovskites, CsPb(Br1−xIx)3 and CsPb(Cl1−xBrx)3, were investigated according
to their halide composition using the Vienna ab initio simulation package (VASP) [14]. The accuracy of
DFT calculations, i.e., how close they are to experimentally measured values, has been a concern for DFT
calculations on perovskite since their recent introduction into solar cell and LED applications [15–21].
The accuracy of DFT calculations proved to be highly dependent on the exchange potential used in the
calculations, such as local density approximation (LDA) [22], Perdew–Burke–Ernzerhof generalized
gradient approximation (PBE-GGA) [23], modified Becke–Johnson GGA (mBJ-GGA) [24,25], Green
function for the wave equation approximation (GW) [26,27], and hybrid functionals (HF) [27,28].
The HF and GW potentials have shown higher accuracy of the calculated band gap [26–28], but these
functionals were more computationally expensive than LDA or PBE-GGA. The calculated band gap
using LDA or PBE-GGA potentials was strongly underestimated because these functions contain a
self-interaction error [29,30]. For example, calculation of the Eg has varied greatly among many recent
DFT reports, occasionally with considerable deviations from experimental values (band gap reported
between 1.359–1.75 eV [8,9,31,32] compared to experimental values of ~1.791 eV [33,34] for CsPbI3 and
1.7–4.53 eV [1,8,10,35–38] compared to experimental values of ~2.3 eV [13,39–44] for CsPbBr3). However,
very accurate measurements of the band gaps of semiconductors and insulators were obtained when
an orbital-independent exchange-correlation potential, mBJ-GGA, was used. This depended solely on
semilocal quantities and was competitive in accuracy with the expensive HF and GW methods [24,45].
The supercell calculations are usually performed to allow minor modification of the crystal structure by
replacing one atom with another atom. The most successful approach, spectral weight (SW), which
links the supercell band structure with the primitive basis representation, is based on a Bloch spectral
density [46]. One of the main challenges of supercell electronic structure calculations is to recover the
Bloch character of electronic eigenstates [46]. To our knowledge, there have been no studies so far for a
spectral weight (SW) approach which can be used to unfold the band structure of inorganic perovskite
compounds by fold2Bloch package [46]. The fold2Bloch package was used in the past to unfold the
band structure for other compounds such as GaAsBi [47], group (III–V and II–VI) semiconductor solid
solutions [46], and graphene [48].

In this study, a combination of CsPbI3 and CsPbBr3 was proposed to tune the electronic and
optical properties, using the full-potential linear-augmented plane wave (FP-LAPW) method [49,50]
within the framework of the DFT [22], as implemented in the WIEN2K code [51]. Here, an investigation
into CsPb(I1−xBrx)3 (where x = 0.00, 0.25, 0.50, 0.75, 1.00) was performed to calculate the electronic and
optical properties using PBE-GGA [23] and mBJ-GGA [24] methods. The structural properties were
calculated using PBE-GGA potential. Unfolding the band structure of CsPb(I1−xBrx)3 compounds for a
number of Br fractions was performed by calculating the Bloch SW, using the fold2Bloch package [46]
implemented in WIEN2k, in order to observe how the electronic properties of these compounds
develop [47]. The visualization for electronic and structural analysis (VESTA) program was used for
atomic structure visualization [52].

2. Computational Method

The ground state properties of CsPb(I1−xBrx)3 were calculated by the FP-LAPW method [50]
within the framework of the DFT [22,49], as implemented in the WIEN2K code [51]. The PBE-GGA and
mBJ-GGA potentials were used to calculate the electronic properties of CsPb(I1−xBrx)3 perovskite [23,24].
To simulate CsPb(I1−xBrx)3 (x = 0.00, 0.25, 0.50, 0.75, 1.00), a 1 × 1 × 4 supercell with 20 atoms was used.
For x = 0.25, three atoms of iodide were substituted with three atoms of bromide. For x = 0.50, six
atoms of iodide were substituted with six atoms of bromide. For x = 0.75, nine atoms of iodide were
substituted with nine atoms of bromide. For x = 1.00, twelve atoms of iodide were substituted with
twelve atoms of bromide.

The muffin-tin radius RMT was chosen with no charge leakage from the core, and total energy
convergence was ensured. The convergence of the basis set was controlled by the cutoff parameter,
RMT·Kmax = 9, where Kmax is the largest reciprocal lattice vector used in the plane wave expansion
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within the interstitial region. The magnitude of the largest vector in the charge density Fourier
expansion was Gmax = 12·(a.u)−1. The Brillouin zones were sampled with a 12 × 12 × 12 k-point mesh
for the unit cell and a 15 × 15 × 3 k-point mesh for the supercell. The energy cutoff was chosen as
−6.0 Ry, which defines the separation of the valence and core states. The charge convergence was
selected as 0.0001e during the self-consistency cycles. The unfolded band structure of CsPb(I1−xBrx)3

compounds was determined by calculating the Bloch SW, using fold2Bloch package [46] implemented
in WIEN2k, which is available from GitHub [46]. See the Supplementary Materials for more details
about fold2Bloch package.

3. Results and Discussions

3.1. Structural Properties

The crystal structures of cubic CsPbX3 with the atomic positions of Cs at (0, 0, 0), Pb at (0.5, 0.5,
0.5), and X at (0.5, 0.5, 0) within the Pm3m space group were evaluated through these calculations.
The CsPb(I1−xBrx)3 semiconductor compounds were modeled at the selected compositions with ordered
structures of periodically repeating supercells 1 × 1 × 4 with 20 atoms per unit cell for x = 0.00, 0.25, 0.50,
0.75, and 1.00, as shown in Figure 1. See the Supplementary Materials, Tables S1–S5 for more details.
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Figure 1. Atomic structures of CsPb(I1−xBrx)3, with x = 0.00, 0.25, 0.50, 0.75, and 1.00 for the different
mixed ratios of x.

The computed lattice parameters for cubic CsPbBr3, CsPbI3, and their compounds using PBE-GGA
potential were in good agreement with previous experimental and theoretical values, as listed in
Table 1. Figure 2 shows that the unit-cell volume varies linearly as a function of the ratio x, which is in
agreement with Vegard’s law [14].

Table 1. Calculated lattice constants (Å), bulk moduli B (GPa), and the pressure derivatives B’ using
Perdew–Burke–Ernzerhof generalized gradient approximation (PBE-GGA) potential compared with
previous results.

CsPb(I1−xBrx)3

Lattice Constants (Å) Unit-Cell Volume V(Å)3 B (GPa) B’

This Study Previous Studies (Exp.) This Study This Study Previous Studies This Study

CsPbI3 6.28

6.40 [9] (PBE-GGA)
6.4004 [53] (PBE-GGA)

6.14 [9] (LDA)
6.25 [9] (PBEsol-GGA)
6.39 [14] (PBE-GGA)

(6.29) [54]
(6.18) [55]

990.69 14.5770

14.3971 [9]
(PBE-GGA)

20.220 [9] (LDA)
16.910 [9]

(PBEsol-GGA)

4.502

CsPb(I0.75Br0.25)3 6.1775 6.395 [14] (PBE-GGA) 942.97 – – –

CsPb(I0.5Br0.5)3 6.075 5.990 [14] (PBE-GGA) 896.81 – – –

CsPb(I0.25Br0.75)3 5.9725 5.997 [14] (PBE-GGA) 852.17 – – –

CsPbBr3 5.87

6.0051 [8] (PBE-GGA)
6.00549 [53] (PBE-GGA)
6.009 [31] (PBE-GGA)

5.875 [56] (PBEsol-GGA)
6.046 [31] (HSE)

5.999 [14] (PBE-GGA)
5.84 [57] (WC-GGA)

(5.874) [58]

809.05 18.7612 – 4.2192
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3.2. Electronic Properties

The electronic properties of CsPb(I1−xBrx)3 were studied by calculating the energy band structure.
The folded band structure calculations at x = 0.00, 0.25, 0.50, 0.75, and 1.00 were performed using both
PBE-GGA and mBJ-GGA methods. The calculated folded band structures along the wave vectors X, M,
and Γ in the Brillouin zone, using mBJ-GGA potential, are shown in Figure 3a–e. In order to study
the behavior of Eg with the composition x of Br, the variation of Eg versus the concentration obtained
using the PBE-GGA and mBJ-GGA methods was calculated. Here, Eg increased with an increasing Br
concentration, as shown in Figure 4. The folded band structures using PBE-GGA are available in the
Supplementary Materials, Figure S1.

The substitution of bromide atoms at the iodide sites in the CsPbI3 compound provided a direct
band gap character (M→M). The overall behavior of the folded band structures calculated by these
two approximations was similar, except for the value of Eg, which was higher for the mBJ-GGA method,
as listed in Table 2. The calculated Eg of CsPb(I1−xBrx)3, using the mBJ-GGA method, agreed with
the experimental values, as listed in Table 2 and shown in Figure 4. Therefore, it could be concluded
that the mBJ-GGA potential presents a good approach for calculating the electronic properties for a
wide range of materials, such as wide-band-gap insulators, semiconductors, and three-dimensional
transition-metal oxides, particularly their band gaps [24,45,59–61].

The folded band structure calculation for a 20-atom supercell of CsPb(I1−xBrx)3 represents a zone
folding that hinders the analysis of the band structure of supercells, and the direct character of the folded
band gap is obscured [46]. In order to recover the CsPb(I1−xBrx)3 band structure in its conventional
Bloch representation, the SW approach was applied to unfold the electronic structure obtained from
the framework of density functional theory, using the all-electron Wien2k package. The calculation of
the SW is based on remapping the supercell reciprocal space with a mesh that is compatible with the
translational symmetry of a primitive cell [46]. The unfolded band structure calculation for a 20-atom
supercell 1 × 1 × 4 was calculated as shown in Figure 3f–j and can be directly compared to that in
Figure 3a–e. The unfolded band structure for the pure supercell CsPbI3 is shown in Figure 3f. Due to
the increases in the doping level of Br, the unfolded band structure becomes more obvious (Figure 3g–j).
In another words, the colors in the conduction band minimum (CBM) and valence band maximum
(VBM) change, which indicate the Bloch spectral weights as shown in the right axis of Figure 3. The SW
is determined by both degeneracy and magnitude of the corresponding Bloch character [46,62–64].
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Figure 3. (a–e) Calculated folded band structures of CsPbI3, CsPb(I0.75Br0.25)3, CsPb(I0.5Br0.5)3, 
CsPb(I0.25Br0.75)3, and CsPbBr3 using the (most accurate) modified Becke–Johnson generalized gradient 
approximation (mBJ-GGA) method. (f–j) Band structures obtained by the first-principle simulations 
equipped with fold2Bloch function at Br fractions of 0%, 25%, 50%, 75%, and 100% respectively. The 
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Figure 3. (a–e) Calculated folded band structures of CsPbI3, CsPb(I0.75Br0.25)3, CsPb(I0.5Br0.5)3,
CsPb(I0.25Br0.75)3, and CsPbBr3 using the (most accurate) modified Becke–Johnson generalized gradient
approximation (mBJ-GGA) method. (f–j) Band structures obtained by the first-principle simulations
equipped with fold2Bloch function at Br fractions of 0%, 25%, 50%, 75%, and 100% respectively. The
color scale at the bottom right indicates the Bloch spectral weights.
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compared with experimental values [12,13,33].



Crystals 2020, 10, 342 6 of 14

Table 2. Calculated Eg (in eV) of CsPb(I1−xBrx)3 compared to the experimental and density functional
theory (DFT) calculated values.

CsPb(I1−xBrx)3
x =

Eg(eV)

This Study Other Calculations

PBE-GGA mBJ-GGA Theoretical Experimental

0.00 1.52 1.83

1.485 [32] (PBE-GGA)
1.938 [32] (HSE06)

1.359 [31] (PBE-GGA)
1.56 [9] (PBE-GGA)

1.879 [9] (mBJ-GGA)
1.478 [8] (PBE-GGA)

1.75 [8] (nTmBJ)
1.90 [53] (PBE-GGA)

1.791 [33]
1.73 [34]

0.25 1.58 1.92 – 1.92 [12]

0.50 1.74 2.14 – 2.167 [33]

0.75 1.81 2.34 – –

1.00 1.82 2.38

1.60 [57] (WC-GGA)
2.41 [65] (HSE)

1.482 [14] (PBE-GGA)
1.764 [31] (PBE-GGA)
2.50 [53] (PBE-GGA)

2.30 [66]
2.36 [67]
2.32 [13]
2.282 [68]

3.3. Density of States

The total density of states (TDOS) and partial density of states (PDOS) based on the variable
control approach were determined to further reveal the factors controlling the Eg trends. In order to
study the effect of replacing iodide by bromide on Eg trend, the TDOS were calculated using PBE-GGA
and mBJ-GGA methods shown in Figure 5a,b. The overall feature of the TDOS remains the same in
CsPb(I1−xBrx)3 compounds. However, by increasing the concentration of x from 0.00 to 1.00, the edges
of TDOS show upshifts. Figure 6 shows the calculated PDOS with various doping concentrations,
using mBJ-GGA potential. For all concentrations, the Cs atom makes a negligible contribution to the
valence band maximum (VBM) or conduction band minimum (CBM).

1 
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Figure 5. Calculated total density of states (TDOS) of CsPb(I1−xBrx)3 with various doping 
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Figure 5. Calculated total density of states (TDOS) of CsPb(I1−xBrx)3 with various doping concentrations
by (a) PBE-GGA and (b) mBJ-GGA potentials where the valence band maximum (VBM) is shifted to
0 eV.
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3.4. Optical Properties

The optical properties of a material, according to Maxwell’s equations, are based on characteristic
constants of matter, such as the dielectric constant, magnetic permeability, and electrical conductivity,
which are functions of the frequency (ω) of the incident photon [9].

The incident photon interacts with the constituent atoms, and subsequently, the dielectric function
ε(ω) describes the optical response of a material. In Figure 7, the imaginary parts ε2(ω) of the calculated
dielectric functions are shown using the results of the mBJ-GGA method. The optical parameters,
including refraction, reflection, and absorption, can be derived from the real and imaginary parts
of the dielectric function [9,69]. The complete response of a material to the disturbances caused by
electromagnetic radiation is described by the complex dielectric function [57]. The imaginary part of the
function ε2(ω) is related to the band structure and describes its absorptive behavior [57]. The critical
(start) points in the spectra of ε2(ω) were at 1.79, 1.945, 2.11, 2.26, and 2.33 eV for CsPbI3, CsPb(I0.75Br0.25)3,
CsPb(I0.5Br0.5)3, CsPb(I0.25Br0.75)3, and CsPbBr3, respectively, which are closely related to the band gaps
of 1.78, 1.89, 2.21, 2.23, and 2.34 eV, respectively.Crystals 2020, 10, x FOR PEER REVIEW 8 of 15 
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The optical conductivity spectra, σ(ω), shown in Figure 8a, demonstrate that optical conductance
started at approximately 1.728, 1.864, 2.13, 2.48, and 2.54 eV for x = 0.00, 0.25, 0.50, 0.75, and 1.00,
respectively; the σ(ω) values reached their maxima and then decreased with small variations [57,70].
Similar features were also observed for the absorption coefficients α(ω) (Figure 8b) and extinction
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coefficients k(ω) (Figure 8c). The wide absorption range suggests that these compounds could be
used for various optical and optoelectronic devices in this range of the EM spectrum. Moreover, the
absorption range could be tuned by varying the composition fraction with values for x between 0.00
and 1.00.
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in the range from 1.0 to 3.5 eV) (b), and extinction coefficient k(ω) (c) as functions of photon energy for
CsPbI3, CsPb(I0.75Br0.25)3, CsPb(I0.5Br0.5)3, CsPb(I0.25Br0.75)3, and CsPbBr3.

Figure 9a shows the variation of the real dielectric function ε1(ω) with energy. In this spectra, the
zero frequency limit ε1(0) was the most important quantity that represented the electronic part of the
static dielectric constant [57]. Here, ε1(ω) increased from the zero frequency limit to the maximum
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value and then decreased to below zero. The calculated ε1(0) is shown in Table 3. As seen in Table 3,
ε1(0) decreased as x increased from 0.00 to 1.00, demonstrating an inverse relation between Br content
(x) and ε1(0), see Figure 10.

1 
 

 
(a) 

 
(b) 

 
(c) 

Figure 9. Calculated ε1(ω) (a), R(ω) (b), and n(ω) (c) as a function of photon energy. 
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Table 3. Calculated zero frequency limits of ε1(0), R(0), and n(0).

Parameters x = 0.00 x = 0.25 x = 0.50 x = 0.75 x = 1.00

ε1(0) 4.82
6.003 [57]

4.60
–

3.87
–

3.73
–

3.08
4.631 [57]

R(0) 0.14
0.177 [57]

0.13
–

0.11
–

0.10
–

0.07
0.134 [57]

n(0) 2.19
2.45 [57]

2.14
–

1.96
–

1.93
–

1.75
1.928 [57]
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The frequency-dependent reflectivity R(ω) for these compounds is shown in Figure 9b, while the
zero frequency reflectivities are listed in Table 3. In addition, R(0) increased in a similar way to ε1(0) as
the change of anion concentration x increases from 0.00 to 1.00. As Figure 9a,b shows, the maximum R(ω)
occurred when ε1(ω) reached a negative value; thus, the material exhibited a dielectric behavior (ε1(ω)
> 0); Below zero, the material demonstrated metallic properties (ε1(ω) < 0) [57,71]. The maximum range
of R(ω) increased with the metallicity when ε1(ω) was negative [9]. The reflectivity R(w) was initially
14.1% and reached a maximum value of 31.3% for CsPbI3; for CsPb(I0.75Br0.25)3, R(ω) was initially 13.1%
and increased to 28.7%; for CsPb(I0.5Br0.5)3, R(ω) was initially 10.7% and reached a maximum value of
38.5%; for CsPb(I0.25Br0.75)3, R(ω) was initially 7.6% and reached a maximum value of 52.2%; and for
CsPbBr3, R(ω) was initially 10% and reached a maximum value of 47.9%. The maximum reflectivity
peak decreased as x approached 1.00 [66]. The calculated R(0) is shown in Table 3 and Figure 10 which
show that R(0) decreased as x increased from 0.00 to 1.00.

Figure 9c shows the refractive indices n(ω) as a function of the incident photon energy. The spectrum
of n(ω) closely followed ε1(ω) [57,70]. From Figure 9c, n(ω) of the material increased with an increasing
Br concentration in CsPbI3 from the zero frequency limits and reached the maximum values of 2.8,
2.85, 2.57, 2.234, and 2.38 for CsPbI3, CsPb(I0.75Br0.25)3, CsPb(I0.5Br0.5)3, CsPb(I0.25Br0.75)3, and CsPbBr3,
respectively. After n(ω) reached the maximum value, it decreased to below unity in certain energy
ranges; thus, the group velocity (Vg = c/n) of the incident radiation was greater than c [57,70]. The group
velocity shifted to a negative domain, and the nature of the medium changed from linear to nonlinear
or the material became superluminal for high energy photons [57,70]. The calculated n(0) is shown in
Table 3, and Figure 10 shows that n(0) decreased as x increased from = 0.00 to 1.00.

4. Conclusions

The structural, electronic, and optical properties of CsPb(I1−xBrx)3 (x = 0.00, 0.25, 0.50, 0.75 and
1.00) were investigated using the FP-LAPW scheme within the framework of the GGA. The two
exchange potentials, PBE-GGA and mBJ-GGA, were used to study the electronic and optical properties.
In this study, a variation in the Eg values (1.83, 1.92, 2.14, 2.34, and 2.38 eV) was observed with the
increasing concentration of Br atoms in the CsPb(I1−xBrx)3 compounds using the mBJ-GGA potential,
while another variation in Eg values (1.52, 1.58, 1.74, 1.81, and 1.82 eV) was observed using the PBE-GGA
potential. CsPb(I1−xBrx)3 compounds were found to be wide and direct band gap semiconductors
with Eg located at the M-symmetry wave vector. The effects of the substitution of I by Br on the
electronic structure were studied from first principles. By controlling the portion of Br, the unfolded
band structure was obtained by both degeneracy and magnitude of the corresponding Bloch character,
leading to color changes in CBM and VBM. The optical properties, such as the optical conductivities,
absorption coefficients, real and imaginary parts of the dielectric functions, refractive indices, extinction
coefficients, and reflectivities, were also calculated. The direct Eg and high absorption spectra of these
compounds in the ultraviolet−visible energy range demonstrated that the perovskite could be used
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in optical and optoelectronic devices in this range of the spectrum by varying the level of x in the
composition of the compound.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/5/342/s1,
Tables S1–S5: Structural properties of CsPb(I1−xBrx)3 Perovskite, Figure S1: Calculated the band structures
of CsPbI3, CsPb(I0.75Br0.25)3, CsPb(I0.5Br0.5)3, CsPb(I0.25Br0.75)3, and CsPbBr3 using the PBE-GGA method,
fold2Bloch package.
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