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Abstract: The kinetic parameters of stochastic primary nucleation were estimated for the batch-cooling
crystallization of L-arginine. It is difficult for process analytical tools to detect the first nucleus. In this
study, the latent period for the total number of crystals to be increased to a predetermined threshold
was repeatedly measured with focused-beam reflectance measurements. Consequently, the latent
periods were different in each measurement due to the stochastic behavior of both primary and
secondary nucleation. Therefore, at first, the distribution of the latent periods was estimated by
a Monte Carlo simulation for some combinations of the kinetic parameters of primary nucleation.
In the simulation, stochastic integrals of the population and mass balance equations were solved.
Then, the parameters of the distribution of latent periods were estimated and correlated with the
kinetic parameters of primary nucleation. The resulting correlation was represented by a mapping.
Finally, the parameters of the actual distribution were input into the inverse mapping, and the kinetic
parameters were estimated as the outputs. The estimated kinetic parameters were validated using
statistical techniques, which implied that the observed distribution function of the latent periods
for the thresholds used in the estimation coincided reasonably with the simulated one based on the
estimated parameters.
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1. Introduction

The nucleation and growth kinetics of crystallization strongly affects the crystal quality, especially
the crystal size distribution (CSD) [1–3] and, hence, needs to be described in crystallization processes.
However, nucleation occurs stochastically rather than deterministically [4–6], which may make it
difficult to control the crystallization processes. This stochastic nature of nucleation has been reported
to be caused by a rarity of the nucleation event [7,8]. Nucleation can be classified into primary
nucleation and secondary nucleation. When the system adequately contains the crystals, secondary
nucleation occurs so frequently that it can be regarded as deterministic [9,10]. On the other hand,
primary nucleation is often regarded as the stochastic process, and this stochastic behavior has been
studied by many researchers [11–13].

Some difficulties arise when the primary nucleation kinetics is investigated in the unseeded
batch-cooling crystallizer by using process analytical tools (PATs). First, it is impossible for many
PATs to detect the very first nucleus in a large crystallizer [14]. The instruments can finally detect
nucleation when the solution comes to suspend a certain number of crystals, which may include grown
secondary nuclei. Secondly, the ends of the latent periods, when the PATs detect a predetermined state
of the solution, can differ from one another in several measurements due to the stochastic behavior
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of nucleation. In order to overcome these difficulties, the population and mass balance equations,
including stochastic primary nucleation, needs to be solved [9]. These differential equations include the
terms that are the stochastic processes, and hence, the solutions of the equations are also the stochastic
processes. The distribution of the latent periods may be reproduced by the stochastic integrals.

In addition, several difficulties in the stochastic integrals remain unsolved yet. At first, the stochastic
behavior of secondary nucleation was ignored in many reports on the stochastic integrals of the
population balance equations. However, secondary nucleation may not occur frequently in the early
stage of unseeded or partially seeded crystallization and can behave in a stochastic manner. In fact,
the stochastic behavior of secondary nucleation was studied in [15,16]. Then, many algorithms developed
for solving the stochastic integrals specialized in stochastic primary nucleation. It might be difficult for
these algorithms to handle other stochastic processes such as stochastic secondary nucleation.

This work aims to estimate the kinetic parameters of stochastic primary nucleation in cooling
crystallization of L-arginine (Arg). First, the kinetic parameters of secondary nucleation and growth are
determined by preliminary experiments based on our previous studies [17,18]. Secondly, the parameters
of the distribution of latent periods for the total number of crystals to be increased to a predetermined
threshold are estimated and correlated with the kinetic parameters of stochastic primary nucleation
by means of a Monte Carlo simulation. In this simulation, the stochastic integrals of the population
and mass balance equations are repeatedly solved with the method of moments. A reasonable
approximation is introduced into the stochastic integrals, which enables stochastic secondary nucleation
to be considered. The parameters of the distribution are estimated at several points in the space of the
kinetic parameters, and the resulting correlation is represented by a mapping. Thirdly, the latent period
is repeatedly measured with focused beam reflectance measurement (FBRM) and Fourier transform
infrared-attenuated total reflection spectroscopy (FT-IR-ATR), from which the actual distribution of the
latent periods is obtained. Fourthly, the parameters of the obtained distribution of the latent periods
are input into the inverse mapping, and the kinetic parameters of stochastic primary nucleation are
estimated as the outputs. Finally, the estimated kinetic parameters and the consideration to stochastic
secondary nucleation are validated using the stochastic integrals and the statistical techniques.

2. Materials and Methods

2.1. Substances and Devices

An aqueous solution of L(+)-arginine (C6H14N4O2, abbreviated to Arg) was utilized as a target
substance in this study. Arg (>98.0%) was purchased from FUJIFILM Wako Pure Chemical Corporation
(Osaka, Japan). Arg is a basic amino acid, which nourishing tonics often contain, and there are few
studies on the crystallization of Arg. In our previous work [17,18], the characteristics of growth and
secondary nucleation for the crystallization of Arg were investigated as a typical hydrophilic amino
acid, and hence, Arg was selected also in this study. The physical properties of the substance are listed
in Table 1.

Table 1. Physical properties of L-arginine (Arg).

Name Symbol Unit Value

Density ρc (kg/m3) 1324
Volume shape factor kv (−) 1/9 2

MWhydrate/MWanhydrate
1 Rh (−) 1.207

Nucleated crystal size L0 (µm) 8.15 2

Coefficients of Equation (4)
αsat (10−6 g/g−solvent/◦C 2) 182 2

βsat (10−3 g/g−solvent/◦C) −1.37 2

γsat (g/g−solvent) 0.102 2

1 MW stands for molecular weight. 2 Adapted from [17].
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The in-line measurements of the solution temperature, the chord length distribution (CLD), and the
IR spectrum were conducted simultaneously. The solution temperature was measured with a platinum
electrode (model CENTER376 made by Sato Shoji Corporation, Tokyo, Japan) and was controlled in a
jacketed beaker with a programmable controller (model AD-4820, made by A&D Company Limited,
Tokyo, Japan).

The CLD was measured with focused beam reflectance measurement (FBRM, made by Mettler
Toledo International Inc., Columbus, OH, USA). The FBRM technique is often applied to obtain the
size distribution [19–21]. However, the CLD obtained with FBRM is different from CSD, and hence,
the CLD needs to be converted into the CSD [22,23]. In our previous work [18,24], the method for the
conversion was investigated for the Arg crystals and is represented as follows:

NCLD = S NCSD, (1)

where S is mapping matrix, and N is frequency-length or frequency-size distribution. Each element of
S corresponds with the probability that a crystal with a certain size will be measured as a certain chord
length [18]. In this study, S was computed with a Monte Carlo analysis in MATLAB (version R2019a
made by The MathWorks, Inc., Natick, MA, USA) [25,26], in which crystals with a predetermined shape
were rotated and translated randomly [24,27]. Settings of the Monte Carlo analysis and the instruments
for FBRM are listed in Table 2. A number-size distribution was deduced from the frequency-size
distribution and the total mass of crystals based on the mass balance.

Table 2. Settings of the Monte Carlo analysis and instruments for focused beam reflectance measurement
(FBRM) in the preliminary and the main experiments.

Name Preliminary Main

Crystal shape Square prism 1

Aspect ratio 3 1

Number of trials 2 50,000,000
Size of S 90 × 90 100 × 50
Model M500 S400A

Measuring interval 10 s 15 s
Axis Logarithmic Linear

Range 1−1000 µm 0−1000 µm
Number of channels 90 100

1 These values are adapted from [17]. 2 Number of random points per column of S.

The IR spectrum was measured with Fourier transform infrared-attenuated total reflection
spectroscopy (FT-IR-ATR, made by Mettler Toledo International Inc., Columbus, OH, USA) and was
utilized for obtaining the Arg concentration. The peak intensity of the FT-IR-ATR has been reported
to be affected by the solution temperature [28,29]. The calibration equation used in this study is
represented as follows:

A = αIRC + βIRT + γIR, (2)

where A is peak area to the two-point baseline; C is the concentration or mass of solute per unit mass
of solvent; T is the Celsius temperature of the solution; and α, β, and γ are regression coefficients.
The regression coefficients were estimated in each measurement. An example of the estimation of the
regression coefficients is illustrated in Figure 1, and the measurement conditions of the FT-IR-ATR
are listed in Table 3. In Figure 1, the dotted line of concentration denotes that the concentration was
unknown. The range of data marked by the gray arrows was utilized to obtain the calibration equation
of A = 6.58 C − 0.00696 T + 0.471.
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Figure 1. The estimation of the regression coefficients of Equation (2) in a main experiment.

Table 3. Measurement conditions of Fourier transform infrared-attenuated total reflection spectroscopy
(FT-IR-ATR) in the preliminary and the main experiments.

Name Preliminary Main

Wavenumber 1439−1380 cm−1 *
Model ReactIR 45 m ReactIR 15

Measuring interval 10 s 15 s

* Adapted from [17].

2.2. Experimental Procedure

A saturated amount of Arg anhydrate was dissolved in 300 mL of water at an initial temperature
higher than the saturated temperature. Then, the solution was linearly cooled down to the final temperature
and stirred with a four-blade agitator (ϕ40) at the rotation speed of 400 rpm. During cooling in the
preliminary experiments, sieved seed crystals with the size range of 44–74 µm were added when the
solution temperature reached the saturated temperature. After cooling, the solution temperature was
kept at the final temperature for a while. The conditions of the preliminary experiments and the main
experiments are listed in Table 4. The preliminary experiments were performed for the estimation of
the secondary nucleation and growth kinetics, and the main ones for the estimation of the primary
nucleation kinetics.

Table 4. Operating conditions of the preliminary experiments for the secondary nucleation and growth
kinetics and the main experiments.

Name Unit Secondary
Nucleation Growth Main

Saturated temperature (◦C) 40 45
Initial temperature (◦C) 45 50
Final temperature (◦C) 20 15

Mass of seed crystals (mg) 50 0

Cooling rate (K/min) 0.2, 0.4, 0.6, 0.8, 1.0,
1.2, 1.4, 1.6, 1.8, 2.0 0.2, 0.3, 0.4, 0.5, 0.6 35/60 ≈ 0.583

(×25 runs)

2.3. Mathematical Model

Growth is regarded as deterministic, and this rate is represented as follows [30,31]:

G = kg(S− 1)g, (3)
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where kg and g are the growth rate coefficient and order, respectively, and S is the supersaturation
ratio. Saturation and supersaturation are expressed as follows:

Csat = fsat(T) = αsatT2 + βsatT + γsat, (4)

Tsat = fsat
−1(C), (5)

S =
C

Csat
, (6)

where Csat is the solubility at temperature T, Tsat is the saturation temperature at concentration C,
the subscript “sat” denotes saturation, and regression coefficients of the solubility curve are also listed
in Table 1. Primary nucleation and secondary nucleation are regarded as stochastic, and expected
values of these rates are represented as follows, respectively [31–33]:

B1 = E
[
B∗1

]
= kb1 exp

[
−b1(ln S)−2

]
, (7)

B2 = E
[
B∗2

]
= kb2(Tsat − T)b2µ3, (8)

where kb1 and b1 are the primary nucleation rate coefficient and order, kb2 and b2 are the secondary
nucleation rate coefficient and order, the superscript “*” emphasizes that the value is a stochastic
variable, and µ3 is the third moment of the CSD. The i-th moment of the CSD is defined as follows:

µi =

∫
∞

0
nLidL. (9)

Here, n is the population density or crystal number per unit mass of solvent per unit crystal size,
depending on time t and crystal size L. The total nucleation rate and its expectations are represented as
follows, respectively, due to the linearity of the expectations:

B∗ = B∗1 + B∗2, (10)

B = B1 + B2. (11)

Then, the probability that the number of crystals newly nucleated from t to t + τ will equal k is
denoted as follows:

P(τ, t; k) = Pr
{∫ t+τ

t
WsB∗dτ′ = k

}
, (12)

where the concentration begins to exceed the solubility at t = 0, W is the mass, and the subscript “s”
denotes the solvent. At most one nucleus is assumed to appear during an infinitesimal time, and hence,
the following equation is established:{ ∂

∂τP(τ, t; k) = −WsBP(τ, t; k) + WsBP(τ, t; k− 1) (k ∈ N)
∂
∂τP(τ, t; 0) = −WsBP(τ, t; 0).

(13)

The following equations are derived by solving Equation (13) [9,14]:

P(τ, t; k) =

(∫ t+τ
t WsBdτ′

)k

k!
exp

[
−

∫ t+τ

t
WsBdτ′

]
, (14)

∫ t+τ

t
WsB∗dτ′ ∼ Po

[∫ t+τ

t
WsBdτ′

]
, (15)
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where Equation (15) means that the number of crystals newly nucleated from t to t + τ follows a
Poisson distribution with the parameter in the right side. Here, τ is substituted by a reasonably short
time ∆t to derive approximately the following equations:

P(∆t, t; k) ≈ Pr
{
Ws(t)B∗(t)∆t = k

}
, (16)

B∗(t) ∼
Po[Ws(t)B(t)∆t]

Ws(t)∆t
, (17)

where ∆t should be so short a time that the change in the expectation of the nucleation rate and the
increase in the crystal size can be ignored during ∆t. In this study, ∆t was determined as follows:
At first, the deterministic population and mass balance equations were solved with a variable step
solver. In solving the equations, the solver based on the Runge-Kutta (4,5) formula was utilized in
MATLAB [34,35]. Then, the shortest time step that had a predetermined acceptable error was detected
when the change in the solution of the equations was sharpest, and this time step was adopted as ∆t.
Finally, the stochastic population and mass balance equations were solved with the step of the solver
fixed to ∆t, where random numbers from the Poisson distribution were generated in MATLAB [36].
The stochastic population and mass balance equations are represented as follows [37,38]:

∂
∂t
(Wsn) + G

∂
∂L

(Wsn) = WsB∗δ(L− L0), (18)

∂
∂t

Wh = −Rh
∂
∂t

Wa = −
Rh

Rh − 1
∂
∂t

Ws = ρckv
∂
∂t
(Wsµ3) = 3ρckvGWsµ2 + ρckvWsB∗L0

3, (19)

where δ is the Dirac delta function, the subscripts “h” and “a” denote the hydrated crystal and
anhydrated solute, and all solutions of these equations are also the stochastic processes due to
stochastic nucleation. The method of moments is utilized to derive the following equation [38]:{ ∂

∂t (Wsµi) = iGWsµi−1 + WsB∗L0
i (i = 1, 2, 3)

∂
∂t (Wsµ0) = WsB∗.

(20)

2.4. Parameter Estimation

In the preliminary experiments, seed crystals are assumed to have been added so sufficiently
that secondary nucleation could be regarded as deterministic and the primary nucleation rate to have
been negligible. First, in order to estimate the kinetic parameters of secondary nucleation, the data of
so-called metastable zone widths were acquired, and the regression analysis was carried out based on
the following approximate equation:

log(∆Tm) ≈
1

b2 + 1
log(R ln r) +

1
b2 + 1

log
(b2 + 1)µ0,seed

kb2µ3,seed
= αB2 log(R ln r) + βB2. (21)

Here, R is the cooling rate, the subscript “seed” denotes the seed crystals, and ∆Tm and r are
defined as follows:

∆Tm = Tsat|t=0 − T|µ0=µ0,m , (22)

r =
µ0,m

µ0,seed
, (23)

where the subscript “m” means that the number of crystals reaches a predetermined threshold in this
study. Equation (21) can be derived from Equation (20) as follows [17]: First, it is assumed from t = 0 to
the threshold that C and Ws are constant, µ3 is proportional to µ0, and that µ0,seed is negligibly small
compared with rµ0,seed. Secondly, B2 is substituted for B* into Equation (20) at i = 0, and this equation
is integrated from t = 0 to the threshold. Thirdly, the same equation is integrated with µ3 fixed to the
average value. Fourthly, the derivation of the second step is substituted into that of the third step, and the
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relation between the µ3,seed and the averaged µ3 is derived. Finally, the derivation of the fourth step is
substituted into Equation (20) at i = 0, and this equation is integrated with t substituted by ∆T/R to
derive Equation (21). Here, ∆T is a decrease in the solution temperature. Several thresholds can be set
in one measurement only if the errors between the initial concentration and actual ones satisfy the
following restriction:

Tsat|t=0 − Tsat|µ0=µ0,m

∆Tm
< ε, (24)

where ε was set to 0.2 in this study. Equation (24) should be satisfied, because the decrease in
concentration is ignored in Equation (21). An example of the data acquisition of metastable zone
widths is illustrated in Figure 2. At the points marked by the circles, the errors satisfied Equation (24),
and the data were accepted and added to the dataset. The µ0,seed was obtained as the average value in
the preliminary measurements.
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Figure 2. The data acquisition of metastable zone widths in a preliminary experiment for the secondary
nucleation kinetics at the cooling rate of 1.0 K/min. The zeroth moment is denoted by the blue solid
line, the thresholds of the zeroth moment by the blue dashed line, the zeroth moment of seed crystals
by the blue chain line, the accepted data by the circles, the rejected data by the triangles, the error by
the red solid line, and the permissible error by the red dotted line.

Secondly, in order to estimate the kinetic parameters of growth, the growth rates were
approximately computed by the following equation derived from Equation (19):

G ≈
1

3ρckvWsµ2

∆Wh

∆t
, (25)

where ∆t is reasonably small measuring interval. The data of G were acquired, and the regression
analysis was carried out based on the following equation:

log G = g log(S− 1) + log kg = αG log(S− 1) + βG. (26)

Several datapoints can be obtained in one measurement only if the errors between the actual
changes in the mass of crystals and contributions of growth satisfy the following restriction:(

ρckvWsB2L1
3
)/(∆Wh

∆t

)
< ε, (27)

where the numerator in the left side is the contribution of the secondary nucleation, and εwas set to 0.2
in this study. Equation (27) should be satisfied, because the contribution of the secondary nucleation is



Crystals 2020, 10, 380 8 of 17

ignored in Equation (25). In the measuring interval of ∆t, the nuclei may grow to have an average size
of L1, which should be represented as follows:

L1
3 =

(∫ L0+G∆t

L0

L3dL
)/(∫ L0+G∆t

L0

dL
)
. (28)

Thirdly, in order to estimate the kinetic parameters of stochastic primary nucleation, the data of
the so-called latent periods were acquired from the main experiments. Several thresholds can be set in
one measurement, and the latent period for the j’-th threshold satisfies the following equation:

(Wsµ0)m, j′ =

∫ t∗
m, j′

0
WsB∗dt, (29)

where the subscript “m” means that the total number of crystals reaches a predetermined threshold,
and the latent period is also a stochastic variable. An example of the data acquisition of latent periods
is illustrated in Figure 3, where the maximum number of crystals was obtained as the approximate
average value in the main measurements.Crystals 2020, 10, x FOR PEER REVIEW 8 of 16 
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The acquired data gave the parameters of the distribution of the latent periods, such as a mean
and a standard deviation. On the other hand, a certain combination of the kinetic parameters of the
stochastic primary nucleation may give the corresponding parameters of the distribution of latent
periods by solving Equations (19) and (20) repeatedly. In this study, five hundred latent periods were
simulated for each threshold and for each combination. Then, the parameters of the distribution were
estimated at several points in the space of the kinetic parameters, and the resulting correlation was
represented by a mapping as follows:

θd = F(θB1) =
[
θd,1 · · · θd, j

]
=

[
µt∗m,1

σt∗m,1
· · · µt∗m, j

σt∗m, j

]
, (30)

where j is the number of thresholds, θ is the parameter vector, F is the mapping, which contains
interpolants computed in MATLAB [39], the subscripts “d” and “B1” denote the distribution and
kinetics of the primary nucleation, µ and σ are the mean and standard deviation, and θB1 was defined
as follows in this study:

θB1 =
[

log kb1 b1
]
. (31)
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Conversely, the parameters of the distribution of the observed latent periods are input into the
inverse mapping to estimate the kinetic parameters of the stochastic primary nucleation as follows:

θ̂B1 = F−1
(
θ̂d

)
≈ argmin

θB1

∑
j′

F j′(θB1) − θ̂d, j′

θ̂d, j′


2

, (32)

where that emphasizes that the value is an unbiased estimator obtained from actual measurements,
and the minimization was conducted with the trust-region-reflective algorithm in MATLAB [40–42].

2.5. Validation

At first, the estimated parameters were substituted into the rate equations, and latent periods
were simulated five hundred times. Then, the simulated cumulative distribution function of the latent
periods was compared to the observed one with 99% confidence bounds. For calculating the confidence
bounds, the Kaplan-Meier method was utilized as follows [43]:

Pr∗
(
t∗m,obsd ≤ tm

)
∼ N

[
Pr

(
t∗m,obsd ≤ tm

)
, V

[
Pr∗

(
t∗m,obsd > tm

)]]
, (33)

where the left side is the probability that the observed latent period will take a value less than or equal
to a certain latent period, and this probability in itself is assumed to follow a normal distribution with
the parameters in the right side. Here, the subscript “obsd” denotes an observed value,N is the normal
distribution, and V is the variance, which is estimated as follows [43]:

V
[
Pr∗

(
t∗m,obsd > tm

)]
=

{
Pr

(
t∗m,obsd > tm

)}2 ∑
tl′<tm

1
νl′(νl′ − 1)

. (34)

Here, νl’ is the number of samples within their own latent period at time tl’ when some sample
finishes its latent period, and it is assumed that no two samples finish their latent period at the same
time. In addition, the test statistics of the two-sample Kolmogorov-Smirnov test were computed to
obtain the p-value. The test statistic is defined as follows:

D = max
tm

(∣∣∣∣Pr
(
t∗m,simd ≤ tm

)
− Pr

(
t∗m,obsd ≤ tm

)∣∣∣∣), (35)

where the subscript “simd” denotes a simulated value. The p-value is approximately computed with
the following equation [44,45]:

Pr
(√

lD > x
)
≈ 1− ϑ

(
1
2

;
2
√
−1
π

x2
)
, (36)

where ϑ is the Jacobi theta function, and l are defined as follows:

l =
lsimd · lobsd
lsimd + lobsd

, (37)

where lsimd or lobsd is the total number of samples, and l was about 23.8 in this study. The p-value is
computed by substituting the test statistic for x. The small p-value implies the difference between the
simulated distribution and the observed one. Finally, the deterministic secondary nucleation rate was
substituted for the stochastic one into the population and mass balance equations, and the validation
was carried out in the same way.
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3. Results and Discussion

3.1. Parameter Estimation

In the preliminary experiments, the kinetic parameters of the secondary nucleation and growth
were estimated based on the regression analyses expressed in Equations (21) and (26). The resulting
regression lines are illustrated in Figures 4 and 5, respectively, and the estimated parameters are listed
in Table 5. In Figure 4, the unit of R is K/s.

Table 5. Estimated kinetic parameters of the Arg crystallization.

Name Symbol Unit Value

Primary nucleation coefficient kb1 (/kg−solvent/s) 69.7
Primary nucleation order b1 (−) 2.28

Secondary nucleation coefficient kb2 (1010/s/m3/Kb2) 1.65
Secondary nucleation order b2 (−) 2.67

Growth coefficient kg (µm/s) 4.15
Growth order g (−) 2.32Crystals 2020, 10, x FOR PEER REVIEW 10 of 16 
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In the main experiments, at first, the latent periods for the four thresholds were measured
twenty-five times, and the mean and the standard deviations of the latent periods were estimated for each
threshold. The means and the standard deviations are listed in Table 6. At j’ = 0 in Table 6, the standard
deviation is large, which is attributed to a low sensitivity of the instruments for the small number of
crystals. Moreover, at j’ = 3, the standard deviation is also large, which might be attributed to the
agglomeration, breakage, and heat of crystallization. Therefore, the data for these thresholds were
rejected in this study.

Table 6. The statistics about the latent periods for each threshold.

Name j’ = 0 j’ = 1 j’ = 2 j’ = 3

Threshold (105) 3 6 15 30
Fraction of max. (%) 1 2 5 10

Mean (s) 1454 1524 1571 1708
Standard deviation (s) 133 71.1 75.4 296
Accepted or rejected Rejected Accepted Accepted Rejected

p-value for stochastic B2 7.95 × 10−4 0.198 0.235 1.78 × 10−4

p-value for deterministic B2 1.48 × 10−3 0.152 0.166 1.78 × 10−4

Then, the means and the standard deviations for the accepted thresholds were estimated at
several points in the space of the kinetic parameters, and the resulting correlation was represented
by a mapping. The mapping is outlined in Figure 6. In Figure 6, the parameters of the distribution
were estimated at 7 × 5 points in the space of the kinetic parameters, and the bold lines correspond
to the unbiased estimators obtained from the actual measurements. In short, the resulting kinetic
parameters should be reasonably close to all the bold lines. The estimation of the kinetic parameters
of the stochastic primary nucleation is outlined in Figure 7, and the estimated parameters are also
listed in Table 5. When the dimensions of the parameters of the distribution are less than that of the
kinetics, the estimators are undetermined, as is marked by the lines in Figure 7. When they are equal,
the estimators are determined uniquely, as is marked by the circle and the square. When those of the
distribution are more than that of the kinetics, the estimators are overdetermined, and approximate
solutions are obtained, as is marked by the triangle.

In this study, the kinetic parameters were defined by Equation (31) and the parameters of the
distribution by Equation (30). These parameters can be changed, removed, or added. For example,
in order to add the activation energy of the primary nucleation to the kinetic parameters, other
parameters of the distribution with a low degree of multicollinearity should be added to the current
parameters of the distribution, such as the ones obtained under the operating conditions with other
cooling rates or with other initial temperatures. In addition, the confidence intervals of the kinetic
parameters can be estimated based on those of the parameters of the distribution.
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3.2. Validation

The simulated and observed cumulative distribution functions of latent periods are illustrated in
Figure 8, where the secondary nucleation is regarded as stochastic in the simulations, and in Figure 9,
where the secondary nucleation as stochastic. In Figures 8 and 9, the LCB and UCB are the lower
and upper confidence bounds of an observed function, respectively. In Figure 8b,c, the simulated
and observed ones are assumed to coincide reasonably, which might be attributed to the trueness of
the estimated parameters. On the other hand, In Figure 8a,d, the differences between the simulated
ones and the observed ones are significant, which might be attributed to the large standard deviations
mentioned in the previous subsection. Moreover, there is no significant difference between Figures 8
and 9. The p-values of the two-sample Kolmogorov-Smirnov test are also listed in Table 6, which implies
that the ignorance of the stochastic behavior of the secondary nucleation makes the larger difference
between the simulated distribution and the observed one for the accepted thresholds.
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In this study, the agglomeration, breakage, and the heat of crystallization were not considered in
the mathematical model. However, the agglomeration and breakage were reported to be significant at
a high magma density [46,47], and the heat of the crystallization is assumed to have greatly affected
the latent period at j’ = 3 (10% of max.) in Figure 3. In order to improve the accuracy of the estimation,
these factors should be added to the mathematical model in future works.

4. Conclusions

The kinetic parameters of the stochastic primary nucleation were estimated for Arg crystallization.
First, the kinetic parameters of the secondary nucleation and growth were determined by preliminary
experiments, where the secondary nucleation and growth were regarded as deterministic. Secondly,
in order to estimate the remaining kinetic parameters of the primary nucleation, the mean and standard
deviation of the latent periods for the total number of crystals to be increased to a predetermined
threshold were estimated and correlated with the kinetic parameters of the primary nucleation by means
of a Monte Carlo simulation, where the primary nucleation and secondary nucleation were regarded as
stochastic. Thirdly, in order to obtain the actual distribution of the latent periods, the latent period was
repeatedly measured with FBRM and FT-IR-ATR. Fourthly, the means and the standard deviations of
the obtained latent periods for the two thresholds were input into the inverse mapping, and the kinetic
parameters of the stochastic primary nucleation were estimated as the outputs. Fifth, the estimated
kinetic parameters were validated using the stochastic integrals and the cumulative distribution
functions. Consequently, the simulated and observed functions were assumed to coincide reasonably
for the two thresholds used in the estimation. However, the differences between the simulated ones and
the observed ones were significant for the thresholds that were not used in the estimation, which might
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be attributed to the agglomeration, breakage, heat of crystallization, and a low sensitivity of the
instruments for the small number of crystals. Finally, the considerations to stochastic secondary
nucleation were validated using the stochastic integrals and the two-sample Kolmogorov-Smirnov
test. The resulting p-values calculated from stochastic secondary nucleation for the two thresholds
used in the estimation were relatively large compared to those calculated from deterministic secondary
nucleation, which implied that the ignorance of the stochastic behavior of secondary nucleation made
the larger difference between the simulated distribution and the observed one.

In this study, the primary nucleation coefficient and order were estimated in the main experiments.
These parameters can be changed, removed, or added, and then, the changed parameters can be
estimated in the same way as in this work. For example, the activation energy of the primary nucleation
will be added to the kinetic parameters and estimated in a future work. Moreover, in order to improve
the accuracy of the estimation, the agglomeration, breakage, and the heat of crystallization should be
added to the mathematical model in a future work.
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