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Abstract: A two-dimensional (2D) coordination polymer, [Co(4-dpds)(bdc)(H2O)2]·4-dpds (1) (4-dpds
= 4,4′-dipyridyldusulfide and bdc2− = dianion of benzenedicarboxylic acid), has been synthesized and
structurally determined by single-crystal X-ray diffractometer. In 1, the bdc2− and 4-dpds both act as
bridging ligands connecting the Co(II) ions to form a 2D wrinkled-like layered coordination polymer.
Two wrinkled-like layered coordination polymers are mutually penetrated to generate a doubly
interpenetrated framework, and then extended to its 3D architecture via the supramolecular forces
between doubly interpenetrated 2D frameworks and free 4-dpds ligands by intermolecular O–H···N
hydrogen bonding interaction. Crystal packing arrangements were characterized by fingerprint plots,
which were derived from the Hirshfeld Surfaces analysis, and showed that intermolecular hydrogen
bonding interactions are the most important interactions on the construction of the crystal 1.

Keywords: coordination polymer; metal-organic framework; Hirshfeld surface analysis; hydrogen
bond; pi-pi interaction

1. Introduction

The three-dimensional (3D) structure constructed by coordination polymers [1] or metal organic
frameworks (MOFs) [1,2] with various types of structural topologies have been widely studied, not
only on their structural diversity [3–12], but also on their potential functional applications. Based on the
concepts of crystal engineering, a variety of supramolecular architectures have been built up through
different types of supramolecular forces, ranging from strong halogen interactions [13–21] or hydrogen
bonding interaction [22], and much weaker forces, such as weak hydrogen bonding [23,24] and π–π
stacking interactions [25–28]. The N,N′-donor spacer, 4,4′-dipyridyldisulfide (4-dpds), is an excellent
ligand for structural research, as it exists as an equilibrium mixture of two enantiomeric conformers
with different helicity as M- and P-forms. The structural diversity of [M(4dpds)] coordination polymers
is mainly a result of the characteristic structure of 4-dpds, but is also correlated with the coordination
geometry of the metal ions [29–31]. In the present study, we report here the synthesis, structural
characteristics and thermal stability of a 2D coordination polymer, [Co(4-dpds)(bdc)(H2O)2]·4-dpds (1),
which is built up by doubly interpenetrated 2D wrinkled-like layered coordination polymers and guest
4-dpds molecules in an alternate ABAB arrangement to complete its 3D structure. Hydrogen bonding
interactions between the 2D layered coordination polymers and guest 4-dpds play an important role
in the construction of its 3D packing array. The Hirshfeld surface analysis [32] provides a powerful
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tool to examine intermolecular interactions, such as hydrogen bonds, close and distant van der Waals
contacts and C–H···π interactions within the crystal. The nature of these interactions in 1 is identified
when examining crystal packing diagrams by the Hirshfeld surface analysis.

2. Results and Discussion

2.1. Synthetic and Structural Description of (1)

Compound 1 was synthesized by the reaction of cobalt(II) chloride (Sigma-Aldrich Inc.,
Taipei, Taiwan), disodium terephthalate (Na2bdc) (Sigma-Aldrich Inc., Taipei, Taiwan) and
4,4′-dipyridyldisulfide (4-dpds) (Sigma-Aldrich Inc., Taipei, Taiwan) in a water solution with molar
ratios of 1:1:2, which resulted in the formation of light-pink plate crystals of 1, with a chemical
formula of [Co(4-dpds)(bdc)(H2O)2]·4-dpds. Single-crystal structural determination reveals that 1 is
self-assembled by 2D wrinkled-like layered coordination polymers and guest 4-dpds molecules. It is
also notable that 1 crystallizes in the Orthorhombic system, space group Fddd. The asymmetric unit
of 1 composed of one hexacoordinated Co(II) centers, half of 4-dpds, half bdc2− and one coordinated
water molecule, along with half of a 4-dpds free molecule. The coordination environment of Co(II)
in 1 (Figure 1a) reveals that the Co(II) ion is located at the two-fold axis and bonded to two nitrogen
atoms (N(1)) from two 4-dpds ligands at cis position, with a bond length of 2.176(2) Å, two oxygen
atoms (O(1)) from two bdc2− ligands at trans position, with a bond length of 2.071(1) Å and two
water molecules (O(3)) at cis position, with a bond length of 2.123(1) Å. Bond lengths and angles
around the Co(II) ion are listed in Table 1. In compound 1, bdc2− acts as a bridging ligand adopting
bis-monodentate coordination mode, connecting the Co(II) ions to form a 1D linear chain. Adjacent
1D chains are connected via the linkage between the Co(II) ions and gauche 4-dpds ligand (S–C–C–S
dihedral angle 93.6(1)) with the bis-monodentate coordination mode, to form a 2D wrinkled-like layered
MOF (Figure 1b) along the c axis), which can be viewed in a simplified way as a 4-connected uninodal
net with point symmetry (Schläfli symbol) {44.62} by using TOPOS [33,34]. One intra-layer O–H···O
hydrogen bonds with the O···O distance of 2.684(1) Å between coordinated water molecules (O3) and
the un-coordinated oxygen atoms (O2) of bdc2− ligands provide extra energy on the stabilization of
the 2D MOF. Related parameters about O–H···O hydrogen bonds are listed in Table 2. Interestingly,
two 2D wrinkled-like coordination polymers are mutually interpenetrated to generate a doubly
interpenetrated 2D framework (Figure 1c), in which a particular eclipsed π–π arrangement between
the inter-layer benzene rings of bdc2− ligands are observed with the ring centroid distance of 3.604(5)
Å. Related inter-planar parameters are listed in Table 3. Furthermore, the doubly interpenetrated 2D
frameworks and the guest 4-dpds molecules adopting gauche conformation (S–C–C–S dihedral angle
100.5(1)) are held together and arranged in an alternate ABAB manner to complete its 3D structure by
supramolecular force (Figure 1d), via the O–H···N hydrogen bond (green dashed lines in Figure 1d),
between the coordinated water molecules (O(3)) and nitrogen atoms (N(2)) of guest 4-dpds molecules.
Related parameters of O–H···N hydrogen bonds are listed in Table 2.
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Figure 1. (a) Coordination geometry of Co(II) ion in 1 with atom labelling scheme (ORTEP drawing, 

50% thermal ellipsoids). Free 4-dpds and H atoms are omitted for clarity; (b) the 2D wrinkled-like 

coordination polymer viewing along c axis (up) and viewing towards (110) plane (down) in 1; (c) the 

doubly interpenetrated 2D framework in 1 with eclipsed  arrangement between the benzene 

rings (red color) of bdc2 ligands viewing along the a axis (up) and b axis (down); (d) the 3D structure 

assembled by doubly interpenetrated 2D coordination polymers and guest 4-dpds molecular via the 

OHN hydrogen bonding interaction (green line) viewing along the b axis. 

Table 1. Bond lengths (Å ) and angles () around Co(II) ion in 1. 1. 

Co(1)O(1) 2.071(1) Co(1)O(1)i 2.071(1) 
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O(1)iCo(1)N(1)i 89.40(4) O(1)Co(1)N(1) 89.40(4) 

O(3)Co(1)N(1)i 177.86(4) O(1)iCo(1)N(1) 93.76(4) 

O(3)Co(1)N(1) 86.33(4) O(3)iCo(1)N(1) 177.86(4) 

N(1)iCo(1)N(1) 95.81(6)   
1 Symmetry transformations used to generate equivalent atoms: i = –x + 7/4, –y + 3/4, z. 

Table 2. Related parameters of OHO and OHN hydrogen bonds in 1. 

DHA DH (Å) HA (Å) DA (Å)  DHA () 

Figure 1. (a) Coordination geometry of Co(II) ion in 1 with atom labelling scheme (ORTEP drawing,
50% thermal ellipsoids). Free 4-dpds and H atoms are omitted for clarity; (b) the 2D wrinkled-like
coordination polymer viewing along c axis (up) and viewing towards (110) plane (down) in 1; (c) the
doubly interpenetrated 2D framework in 1 with eclipsed π–π arrangement between the benzene rings
(red color) of bdc2− ligands viewing along the a axis (up) and b axis (down); (d) the 3D structure
assembled by doubly interpenetrated 2D coordination polymers and guest 4-dpds molecular via the
O–H···N hydrogen bonding interaction (green line) viewing along the b axis.

Table 1. Bond lengths (Å) and angles (◦) around Co(II) ion in 1. 1

Co(1)–O(1) 2.071(1) Co(1)–O(1)i 2.071(1)
Co(1)–O(3) 2.123(1) Co(1)–O(3)i 2.123(1)
Co(1)–N(1)i 2.176(2) Co(1)–N(1) 2.176(2)

O(1)–Co(1)–O(1)i 175.28(6) O(1)–Co(1)–O(3)i 90.52(4)
O(1)–Co(1)–O(3) 86.18(4) O(1)i–Co(1)–O(3)i 86.18(4)
O(1)i–Co(1)–O(3) 90.52(4) O(3)–Co(1)–O(3)i 91.53(6)
O(1)–Co(1)–N(1)i 93.76(4) O(3)i–Co(1)–N(1)i 86.33(4)
O(1)i–Co(1)–N(1)i 89.40(4) O(1)–Co(1)–N(1) 89.40(4)
O(3)–Co(1)–N(1)i 177.86(4) O(1)i–Co(1)–N(1) 93.76(4)
O(3)–Co(1)–N(1) 86.33(4) O(3)i–Co(1)–N(1) 177.86(4)
N(1)i–Co(1)–N(1) 95.81(6)

1 Symmetry transformations used to generate equivalent atoms: i = −x + 7/4, −y + 3/4, z.
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Table 2. Related parameters of O–H···O and O–H···N hydrogen bonds in 1.

D–H···A D–H (Å) H···A (Å) D···A (Å) ∠ D–H···A (◦)

O(3)–H(3A)···N(2) 0.821(5) 2.045(5) 2.848(2) 166.0(1)
O(3)–H(3B)···O(2) 0.806(5) 1.920(5) 2.684(2) 157.9(1)

Table 3. Related parameters of π–π interaction in 1.

Ring(i) a
→ Ring(j) a Slip Angle (i,j)/◦ Interplanar (i,j)

Distance/Å

Horizontal Shift
between the (i,j)

Ring Centroids/Å

Distance between
the (i,j) Ring
Centroids/Å

R(1)→R(2) 0.0 3.604(5) 0.0 3.604(5)
a R(1) = C(1)–C(2)–C(3)–C(1)i–C(2)i–C(3)i; R(2) = C(1)ii–C(2)ii–C(3)ii–C(1)iii–C(2)iii–C(3)iii . Symmetry code: i = 3/2 +
x, −1/4 − y, 5⁄4 − z; ii = 1⁄4 + x, −y, −7⁄4 + z; iii = −1⁄4 + x, −7⁄4 + y, −1⁄2 − z.

2.2. Thermal Stability of (1)

Thermogravimetric analysis (TGA) (Perkin-Elmer 7 Series/UNIX TGA7 analyzer, PerkinElmer,
Taipei, Taiwan) and in situ temperature-dependent powder XRD measurements (BL01C2 in National
Synchrotron Radiation Research Center (NSRRC), Hsinchu, Taiwan) of 1 were performed on the study
of its thermal stability and structural variation. The TG profile shown in Figure 2a indicates 1 was
thermally stable up to 94.3 ◦C, and then a multi-step but continuous weight loss was observed with
the first weight loss of 5.0% from 94.3 to 117.5 ◦C, corresponding to the release of two coordinated
water molecules (calc 5.1%). On further heating, samples 1 decomposed at approximately 118–600 ◦C
with a loss of 81.7%, corresponding to the weight loss of bdc2− and 4-dpds. The structural variation of
1 was further investigated by in situ powder X-ray diffractometry to study the thermal stability as
shown in Figure 2b. The room temperature powder XRD matched well with the simulation powder
pattern from single crystal structure. The powder pattern at room temperature is similar to that at
150 ◦C. It indicated that the framework was stable till 150 ◦C. The TGA curve showed that there were
two coordinated water losses at 94 ◦C to 118 ◦C. Another large weight was lost at 120 ◦C to 230 ◦C,
which indicated that the ligand had decomposed. The powder pattern at 210 ◦C showed only a few
weak and broad reflections, which indicated the decomposition of the framework structure. The unit
cell parameters for powder XRD form RT to 150 ◦C are listed in Table 4. It showed a thermal expansion
of the unit cell volume, with the a and c axis becoming longer and the b axis becoming shorter as the
temperature heated up. Unit cell parameters were refined by GSAS program. The powder patterns at
210 ◦C, 240 ◦C and 270 ◦C are similar, and are close to a layer structure. It indicated a one dimensional
ordering. The d-spacing of these major XRD patterns are 1/2, 1/3, 1/4, 1/5, 1/6, 1/7 and 1/8 of 42Å, which
may be a compressed c axis. The XRD pattern at 330 ◦C showed a new crystalline phase, which did not
match any known structure. We used the DICVOL method of the DASH program to index the XRD
pattern, which was collected at 330 ◦C. The major reflections fit a monoclinic cell very well. The index
of 330 ◦C XRD pattern is shown in Figure 2c. We also used the MATCH program to search the XRD
pattern at 480 ◦C, which matched well with CoS. The Rietveld refinement has applied to refine the
480 ◦C XRD pattern. The Rwp and Rp are 0.74% and 0.42%, respectively, and X2 is 3.65. The result is
shown in Figure 2d. It is clearly demonstrated that the decomposed product is CoS.
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Figure 2. (a) Thermogravimetric analysis of 1. (b) In situ PXRD patterns of 1 at different temperatures
and simulated PXRD pattern of 1 from single-crystal X-ray diffraction data. (c) The XRD pattern
collected at 330 ◦C can be indexed as a monoclinic cell. Cell parameters are shown in (d) Rietveld
refinement of XRD data at 480 ◦C. The black crosses represent the observed data while the red curve
stands for the calculated pattern. The green line at the bottom displays the difference between the
observed and calculated patterns and the blue bars indicate the expected Bragg reflection positions.
(For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.).

Table 4. Unit cell parameters of sample 1 determined by single-crystal diffraction and PXRD data.

Compound 1 a b c Vol

Single crystal 15.3322(4) 16.5790(4) 45.5861(12) 11587.6(5)
RT 15.426(1) 16.587(1) 46.059(2) 11785.5(9)

90 ◦C 15.4520(6) 16.5776(7) 46.228(1) 11841.6(5)
120 ◦C 15.4603(7) 16.5736(9) 46.341(2) 11874.0(6)
150 ◦C 15.4686(6) 16.5702(8) 46.450(2) 11905.9(6)

2.3. Hirdhfeld Surface Analysis of (1)

The calculated Hirshfeld surface and subsequent fingerprint plots were used to quantify the
intermolecular contacts present within the 3D supramolecular architecture of 1. Figure 3 gives the
3D Hirshfeld surface showing (i) O–H···N intermolecular hydrogen bonds (ii) O···H–C intermolecular
hydrogen bonds and (iii) S···H and S···O van der Waals interactions. These are indicated as bright red
spots on the Hirshfeld surface. The corresponding labels of the three significant interactions are 1O, 2O
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and 3O, and are noted in Figure 4 as displaying local orientation of one given free dpds among 1a. Here
1a is the [Co(4-dpds)(bdc)(H2O)2] moiety. All are attributed to the interactions between the free 4-dpds
and carboxylic groups of bds−2. It appears that the guest 4-dpds locates between two layers of bdc−2

with ordered packing. This proposes that the guest 4-dpds glues the [Co(4-dpds)(bdc)(H2O)2] moieties
together, and then results in an eclipsed orientation of benzene rings of bdc−2.
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Figure 4. Local orientation of one free 4-dpds among 1 viewed from the a-axis.

Significant intermolecular interactions are mapped in Figure 5, showing fingerprint plots and
the contributions of atoms within specific interacting pairs (blue area) between the free 4-dpds and
1a. Based on the Hirshfeld surfaces, the H···H interactions appear as the largest region (38.7%) of the
fingerprint plot, with a high concentration at de = di ~ 1.3 Å. The sharp spike (de + di ~ 2.0 Å) on the
fingerprint plot is observed for N···H contact corresponding to the O–H···N interaction. The O···H
(spiking at de ~ 1.4 Å and di ~ 1.0 Å) and S···H contacts contribute to 4.3% and 7.7% of the Hirshfeld
area, respectively. It is therefore clear that the N···H contact is the most important contributor among
the interacting atoms for the special eclipsed arrangement of benzene rings of bdc−2.
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3. Experimental Section

3.1. Materials and Physical Techniques

All chemicals were of reagent grade and used as commercially obtained from the SIGMA-ALDRICH
company without further purification. Elementary analyses (carbon, hydrogen, and nitrogen) were
performed using a Perkin-Elmer 2400 elemental analyzer. IR spectra were recorded on a Nicolet
Fourier Transform IR, MAGNA-IR 500 spectrometer in the range of 500–4000 cm−1, using the KBr disc
technique. Thermogravimetric analysis (TGA) of compound 1 was performed on a computer-controlled
Perkin-Elmer 7 Series/UNIX TGA7 analyzer. Single-phased powder samples were loaded into
alumina pans and heated with a ramp rate of 5 ◦C/min from room temperature to 800 ◦C under a
nitrogen atmosphere.

3.2. Synthesis of [Co(4-dpds)(bdc)(H2O)2]·4-dpds (1)

A water solution (4 mL) of disodium terephthalate (Na2BDC) (0.21 g, 0.001 mole) was added to a
water solution (8 mL) of CoCl2·6H2O (0.238 g, 0.001 mole) and 4,4′-dipyridyldisulfide (4-dpds) (0.440 g,
0.002 mole) at RT. After standing for two weeks, light-pink plate crystals of 1 were obtained with yield
of 0.4481 g (64.1%). Anal. Calc. for C28H24Co1N4O6S4 (1): C 48.06, N 8.01, H 3.46; Found: C 48.18,
N 7.91, H 3.37. IR (KBr pellet): ν = 1580 (vs), 1561 (s), 1501 (m), 1482 m), 1415 (s), 1383 (s), 1323 (m),
819 (w), 706 (m) cm−1.

3.3. Crystallographic Data Collection and Refinements

A single-crystal structure analysis for compound 1 was performed on a Siemens SMART
diffractomerter, with a CCD detector with Mo radiation (λ = 0.71073 Å) at 150 K. A preliminary
orientation matrix and unit cell parameters were determined from 3 runs of 15 frames each, each frame
correspond to a 0.3◦ scan in 10 s, following by spot integration and least-squares refinement. For each
structure, data were measured usingω scans of 0.3◦ per frame for 20 s, until a complete hemisphere
had been collected. Cell parameters were determined using SMART [35] software and refined with
SAINT [36] software on all observed reflections. Data reduction was performed with the SAINT [36]
software and corrected for Lorentz and polarization effects. Absorption corrections were applied
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with the program SADABS [37]. Direct phase determination and subsequent difference Fourier
map synthesis yielded the positions of all non-hydrogen atoms, which were subject to anisotropic
refinements. All hydrogen atoms were generated geometrically with the exception of the hydrogen
atoms attached to the oxygen atoms of the coordinated water molecules, which were located in the
difference Fourier map with the corresponding positions and isotropic displacement parameters being
refined. The final full-matrix, least-squares refinement on F2 was applied for all observed reflections
[I > 2σ(I)]. All calculations were performed by using the SHELXTL-PC V 5.03 software package [38].
Crystal data and details of the data collection and structure refinements for 1 are summarized in Table 5.
CCDC-1998637, for 1 contains the Supplementary Crystallographic Data for this paper. These data can
be obtained free of charge [39].

Table 5. Crystal data and details of the data collection and structural refinements of 1.

Empirical Formula C28H24 CoN4O6S4 Formula Mass (g mol−1) 699.68

crystal system Orthorhombic space group Fddd
a/Å 15.3322(4) α (◦) 90
b/Å 16.5790(4) β (◦) 90
c/Å 45.5861(12) γ (◦) 90

V/Å3 11587.6(5) Z 16
Dcalcd (g cm−3) 1.604 θ range (deg) 2.252–29.998
µ/mm−1 0.932 T (K) 150(2)

total no. of data collected 23999 no. of unique data 4231
R1, wR2

1 (I > 2σ(I)) 0.0283, 0.0681 R1, wR2
1 (all data) 0.0344, 0.0728

GOF 2 1.028 refine params 203
1R1 =

∑
||Fo − Fc||/

∑
|Fo|; wR2(F2) = [

∑
w|Fo

2
− Fc

2|2/
∑

w(Fo
4)]1/2; 2 GOF = {

∑
[w|Fo

2
− Fc

2|2]/(n − p)}1/2.

3.4. In Situ X-ray Powder Diffraction of 1

The powder X-ray diffraction pattern of 1 was recorded at the BL01C2 beamline of National
Synchrotron Radiation Research Center (NSRRC) in Taiwan. The ring of NSRRC was operated at energy
1.5 GeV with a typical current 300 mA with top-up injection mode. The wavelength of the incident
X-rays was 1.0332 Å (12.0 KeV), delivered from the superconducting wavelength-shifting magnet
and a Si(111) double-crystal monochromator. The diffraction pattern was recorded with a Mar345
imaging-plate detector approximately 300 mm from the sample. The pixel size of Mar345 was 100 µm.
The resolution is about 0.02◦ in 2θ. The 1D powder diffraction profile was converted with program
GSAS-II [40] and cake-type integration. The diffraction angles were calibrated according to Bragg
positions of Ag-Benhenate and Si powder (NBS640b) standards. In situ X-ray powder diffractions for 1
were performed from RT to 480 ◦C, with approximately 4 ◦C/min heating rate. The powder samples
were sealed in a quartz capillary (0.5 mm) and heated with a stream of hot air; each in situ PXRD
pattern was exposed for about 3 min. In situ PXRD patterns of RT to 150 ◦C and 480 ◦C were analysis by
GSAS program [41]. The unit cell parameters and crystal structures have been refined. PXRD patterns
of 210 ◦C to 270 ◦C were analyzed by the MATCH [42] program. The MATCH program provides
search and match of known PXRD patterns for comparison. The diffraction pattern of 330 ◦C had
been indexed by DIVOL method [43] of the DASH program [44]. It fitted very well with a monoclinic
unit cell. The PXRD collected at 480 ◦C has been identified by MATCH program. It matched well
with the CoS crystal phase. The Rietveld refinement was applied to refine the crystal structure of the
480 ◦C data.

3.5. Computational Details

Employing the Crystal Explorer program [45], we obtained the Hirshfeld surfaces
three-dimensional maps and two-dimensional fingerprint plots to examine the intermolecular contacts
within the crystals, especially the interaction between the free dpds and 1a.
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4. Conclusions

In this study, we have successfully presented the synthesis, structure, thermal stability and
Hirshfeld surface analysis of a 3D coordination compound, [Co(4-dpds)(bdc)(H2O)2]·4-dpds (1), which
is assembled by doubly interpenetrated 2D wrinkled-like layered coordination polymers and guest
4-dpds molecules. The 4-dpds and bdc2− both act as bridging ligands connecting the Co(II) ions to form
a 2D wrinkled-like coordination polymers. Two coordination polymers were mutually interpenetrated
to form a 2D doubly interpenetrated layered framework. The 2D doubly interpenetrated layered
coordination polymers and guest 4-dpds molecules were arranged in an alternate ABAB pattern, and
were further extended to a 3D network via an intermolecular hydrogen bonding interaction between
the coordinated water molecules and nitrogen atoms of free 4-dpds molecules. The Hirshfeld surface
analysis revealed that the O···H, H···H, S···H and N···H contacts were the most significant interactions
in the crystal of 1. The hydrogen bonding information conveyed by the Hirshfeld surface analyses
were in consistent with the intermolecular interactions from structural analyses.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/5/419/s1.
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