

Supplementary Materials

Oxygen Inhomogeneity and Reversibility in Single Crystal Lanio_{3-Δ}

Hong Zheng¹, Bi -Xia Wang¹, D. Phelan¹, Junjie Zhang², Yang Ren³, M. J. Krogstad¹, S. Rosenkranz¹, R. Osborn¹ and J. F. Mitchell¹

- ¹ Materials Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
- ² Institute of Crystal Materials, Shandong University, Jinan, Shandong 250100, China
- ³ Advanced Photon Source, Argonne National Laboratory, Lemont, IL 60439, USA
- * Correspondence: <u>zheng@anl.gov</u>

I. Structures of Oxygen Deficient Phases

Figure S1 shows the crystal structures of La₂Ni₂O₅ and La₄Ni₄O₁₁. Octahedrally coordinated nickel cations are shown in orange, while square-planar coordinated nickel cations are shown in blue. Lanthanum cations are not depicted. The La₂Ni₂O₅ structure was constructed from the coordinates given in Ref. [1]. The La₄Ni₄O₁₁ was constructed by removing the expected pattern of oxygen anions from the LaNiO₃ structure. The actual octahedral rotations in La₄Ni₄O₁₁ are unknown, and for this reason it is labeled as "proposed." In both cases, the common motif are rows of NiO₄ square planes separated by rows of NiO₆ octahedra. The thickness of the row of octahedra is determined by the oxygen stoichiometry, with a general building rule for this homologous series La_nNi_nO_{3n-1}.

 $La_2Ni_2O_5$ after Moriga 1994

La₄Ni₄O₁₁ (proposed)

Figure 1. Crystal structures of (a) La2Ni2O5 and (b) La4Ni4O11.

II. Magnetic Susceptibility

Figure S2 shows the results of magnetometry from the pieces cut from the single crystal boule as described in the text. The measurements were taken under μ_0 *H*=0.2 T.

Figure 2. Magnetic susceptibility (χ) vs Temperature for samples #1 to #9.

III. Oxygen Vacancy Structures

As discussed in the main text, we find evidence in as-grown single crystals for an antiferromagnetic (AFM) phase, which is identified as La₂Ni₂O₅, and a second apparently nonmagnetic phase that has a 4-fold superlattice. The composition of this latter phase is not known, but evidence from the literature points to La₄Ni₄O₁₁ (LaNiO_{2.75}), which exhibits alternating stripes of octahedra and square planes in a 3:1 ratio (Hypothetically, La₄Ni₄O₉ is another potential phase which could have a 4-fold superlattice with rows of octahedra separated by three rows of square planes; however, there is no evidence in the literature for this highly reduced phase). Low temperature H₂-reduction of a pristine LaNiO₃ crystal results in a magnetic susceptibility that shows both an AFM and ferromagnetic (FM) transition at 150 K and 230 K, respectively. Diffraction from this reduced crystal also shows evidence of 4-fold superlattice. Thus, we expect this specimen to likewise have both La₂Ni₂O₅ (AFM) and LaNiO_{2.75}. Notably, Sanchez *et al.* have reported that a sample of composition LaNiO_{2.75} is FM with $Tc \sim 240$ K [2]. Thus, the appearance of the FM component in our H₂-reduced crystal but not in the as-grown crystal (both of which show evidence for a 4-fold superlattice in at least some of the specimen) leads to an apparent paradox. We offer here one possible solution to this puzzle, shown schematically in Figs. S3-S4.

Figure 3. Proposed phase behavior of the oxygen-deficient perovskite system, LaNiO₃₋₈. Narrow homogeneity regions are denoted by colored bands. Symmetry of the phases identified at the top. Magnetic characteristics of single- and biphasic mixtures shown as insets. PM = paramagnetic, FM=ferromagnetic, AFM=antiferromagnetic. Bold lines represent Tc and TN.

Fig. S3 schematically represents a proposed phase behavior of the LaNiO₃₋₀ system, $0 \le \delta \le 0.5$, based largely on the work of Moriga [1,3]. All of Moriga's samples, as well as that of Sanchez [2], were prepared by low temperature reduction either with H₂ mixtures or with metallic getters. We speculate that narrow homogeneity ranges or nearly line phases exist at δ =0, 0.25, and 0.5 as well as at $\delta \approx 0.4$. The δ =0.5 phase is established to be AFM with $T_N \approx 150$ K via susceptibility [1,3], and antiferromagnetic order has been observed via neutron diffraction [4]. Moriga has shown a FM (Tc = 230 K) phase which was identified as δ =0.4 [3]. We suggest that the LaNiO_{2.75} phase, which will have a 4-fold superlattice, does not possess an identifiable magnetic ordering (perhaps it is paramagnetic). We base this conjecture on the absence of FM in our as-grown crystal sample #5 discussed in the main text. Moriga demonstrated that the FM δ =0.4 phase has an *Ibam* symmetry and is effectively an O interstitial phase formed by adding O randomly into the La₂Ni₂O₅ structure while retaining a 2-fold superlattice rather than creating a 4- or 3-fold supercell line phase (i.e., La₃Ni₃O₈). Despite speculation [5] for the existence of La₃Ni₃O₈ (δ =0.33, LaNiO_{2.67}) as part of the homologous series La_nNi_nO_{3n-1} [6], we are unaware of any experimental evidence of La₃Ni₃O₈. Such a period-3 supercell has been reported for Nd and Pr [5,7].

For our H₂-reduced specimens, we see both a FM and AFM component, as well as a 4-fold superlattice. We suggest a way to understand this by asserting that we have a non-equilibrium sample with an oxygen gradient that leads to a phase mixture in which regions of the sample have δ =0.25 (nonmagnetic, 4-fold superlattice) and others have $0.4 < \delta < 0.5$ (biphasic FM and AFM, 2-fold superlattice). An alternative model in which we have a biphasic sample with δ =0.75 and δ =0.25 contradicts both Moriga's reports as well as our own data from as-grown sample #5. However, this alternative model would comport with the data of Sanchez, whose sample of composition LaNiO_{2.75} is reported to be both FM and evidence a 4-fold superlattice based on electron diffraction. One possible way to reconcile our model, that of Moriga, and that of Sanchez is to speculate that Sanchez's sample, although O_{2.75} on average, has some composition spread that includes regions with δ >0.25, which would be FM, while the remaining regions exhibiting the 4-fold supercell would be nonmagnetic. Even this explanation is difficult to reconcile with the observation that susceptibility

of Sanchez's δ =0.25 sample [2] is larger than that of Moriga's δ =0.4 sample [3]. It is clear that further work is needed to definitively understand this complex system.

For our as-grown crystal, we would propose that the phase LaNiO_{3- δ} with δ =0.4 becomes unstable, see Fig. S3. In this case, samples with overall O content 0.25 < δ < 0.5 are biphasic with regions of AFM LaNiO_{2.5} and the presumably nonmagnetic LaNiO_{2.75}, the latter accounting for the 4-fold superlattice observed in X-ray diffraction (main text, Fig. 3).

Figure 4. Schematic free energy diagrams for oxygen-deficient phases under conditions associated with high temperature crystal growth (left) and low-temperature reduction via H₂ or metallic getters (right). Dotted lines represent a Maxwell construction.

We emphasize that the explanations offered here are very much ad hoc and will require careful study of well-defined specimens to test. Nonetheless, they provide a plausible means to rationalize the data presented in the main text in a way that is consistent with the body of literature previously published on these complex phases. They also offer a framework of hypotheses to test for future studies on this system.

References

- T. Moriga, O. Usaka, T. Imamura, I. Nakabayashi, I. Matsubara, T. Kinouchi, S. Kikkawa, and F. Kanamaru, Bull. Chem. Soc. Jpn. 67, 687 (1994).
- R. D. Sanchez, M. T. Causa, A. Caneiro, A. Butera, M. Vallet-Regi, M. J. Sayagues, J. Ganzalez-Calbet, F. Garcia-Sanz, and J. Rivas, Phys. Rev. B 54, 16574 (1996).
- T. Moriga, O. Usaka, I. Nakabayashi, T. Kinouchi, S. Kikkawa, and F. Kanamaru, Solid State Ionics 79, 252 (1995).
- 4. J. A. Alonso, M. J. Martinez-Lope, J. L. Garcia-Munoz, and M. T. Fernandez-Diaz, J. Phys. Condens. Matter 9, 6417 (1997).
- 5. T. Moriga, M. Hayashi, T. Sakamoto, M. Orihara, and I. Nakabayashi, Solid State Ionics **154–155**, 251 (2002).
- 6. P. L. Gai and C. N. R. Rao, Z. Naturforsch. 30a, 1092 (1975).

7. T. Moriga, O. Usaka, I. Nakabayashi, Y. Hirashima, T. Kohno, S. Kikkawa, and F. Kanamaru, Solid State Ionics **74**, 211 (1994).