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Abstract: X-ray free-electron lasers (XFELs) have a unique capability for time-resolved studies of
protein dynamics and conformational changes on femto- and pico-second time scales. The extreme
intensity of X-ray pulses can potentially cause significant modifications to the sample structure
during exposure. Successful time-resolved XFEL crystallography depends on the unambiguous
interpretation of the protein dynamics of interest from the effects of radiation damage. Proteins
containing relatively heavy elements, such as sulfur or metals, have a higher risk for radiation
damage. In metaloenzymes, for example, the dynamics of interest usually occur at the metal centers,
which are also hotspots for damage due to the higher atomic number of the elements they contain.
An ongoing challenge with such local damage is to understand the residual bonding in these locally
ionized systems and bond-breaking dynamics. Here, we present a perspective on radiation damage
in XFEL experiments with a particular focus on the impacts for time-resolved protein crystallography.
We discuss recent experimental and modelling results of bond-breaking and ion motion at disulfide
bonding sites in protein crystals.

Keywords: X-ray free-electron laser; serial crystallography; time-resolved crystallography;
radiation damage

1. Introduction

Time-resolved protein crystallography has developed into a powerful capability of X-ray
free-electron laser sources (XFELs) [1,2]. Femtosecond XFEL pulses provide substantially higher
time-resolution than synchrotron sources [3] and permit experiments on proteins at room
temperature [4]. One of the most significant advances of XFEL crystallography is the capacity to
outrun radiation damage [5]. Although the total dose in XFEL experiments is far in excess of the
synchrotron dose limits [6,7], the timescale of the interaction is so short that it does not adversely affect
the quality of the Bragg diffraction in high-resolution experiments [8]. Those early experiments were a
striking demonstration of the success of the “diffraction-before-destruction” principle [5].

However, a closer examination of the physics of XFEL radiation damage suggests that radiation
damage is an ongoing concern for the success of time-resolved XFEL crystallography experiments.
The key to appreciating the specific issues for time-resolved crystallography lies in the distinction
between “global” and “local” damage effects [9,10]. Global damage processes include the mean
stochastic photoionization and thermal motion that affect all atoms equally in the sample, irrespective
of their location. Because carbon, oxygen, and nitrogen have a similar atomic number and they make
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up a substantial proportion of biomolecules, the damage to these elements can be predominantly
treated as global damage, as shown in Figure 1. Global damage is relatively well understood and it
can be modelled with modified atomic form factors and a factor compensating for the non-equilibrium
heating of the system [7,11]. These correction factors differ from the Debye-Waller (temperature)
factors, since they describe systems that are far from thermal equilibrium, see Figure 2. They compare
favourably to experiment and explain the self-gating effect of XFEL radiation damage [7]. Essentially,
the Debye–Waller (temperature) factors from synchrotron-based protein crystallography model the
thermal motion of atoms at a fixed temperature, whereas XFEL correction factors model the rapid
heating of the sample by the XFEL pulse. The significance of X-ray induced heating effects depends on
pulse duration, pulse energy, and the wavelength [11]. Early XFEL protein crystallography experiments
identified beam conditions for which the heating effects were highly significant [7] and others for
which they could be effectively ignored [8].

Figure 1. Average number of electrons lost in a Photosystem I (PSI) crystal vs. time. Data shown
are simulated using the plasma code CRETIN, as described in [12]; input and output files are
available in the Supplementary Materials. The PSI crystal has the relative atomic content of
H141400O57300C16900N3310S89Fe12 Mg96P3Ca, corresponding to a crystal containing 78% solvent water
and a density of 1.077 g/cm3. The simulations were done with parameters corresponding to what
can be expected at an XFEL source—pulse duration: 50 fs, photon energy: 10 keV, radiant fluece:
106 J/cm2. The figure clearly shows how iron and sulfur reach much higher ionization states, which
lead to so-called hot spots in the protein crystal.

Local damage is not independent of the spatial arrangement of the atoms. It occurs when
there is significant variation in the ionization rates of different elements or when certain ions
exhibit reproducible, non-thermal motion [13]. Local damage is less well-understood, because it
is element specific and depends on the local molecular environment around each atom [14]. However,
it is local damage that remains an ongoing concern for time-resolved crystallography. This is
because local damage has been predicted and observed in the vicinity of heavy ions that occur
in, for example, metalloproteins. Local damage has been predicted in photosystem proteins [15]
and in ferrodoxin [16]. These examples of site specific damage could lead to mistakes in structural
interpretation. Time-resolved experiments are particularly sensitive, because changes as small as a few
tenths of an Ångström can be interpreted as significant chemical changes. It is precisely at these very
small length scales that we can not yet rule out the impact of local damage [17].

Local damage is also of importance for anomalous dispersion methods of structure
determination [18]. Here, the selective absorption at a heavier element is exploited to determine the
protein structure ab initio. It has been demonstrated with XFELs, with, for example, gadolinium [19],
sulfur [20], and selenium [21].
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Figure 2. Correction factor. For systems far from thermal equalibrium, the Debye–Waller factor does
not model the global damage well. The correction factor, as presented in Barty et al. [7], includes both
the non-thermal heating of the system and atomic form factors modified due to the ionization. Data
shown are based on plasma simulations similar to those in Caleman et al. [11], with the following beam
parameters: pulse intensities 1017–1020 W/cm2, pulse length 500 fs, photon energy 6 keV.

The modelling of XFEL induced damage processes is complex and approximations are made
to target the most relevant damage processes for an experiment. For example, damage simulations
of global damage or of ionization rates can ignore the spatial location of the atoms. However, local
damage is sensitive to the local molecular structure around damage hotspots. It is precisely this
ionization of molecular structure that drives reproducible local ion motion. Therefore, molecular
dynamics simulations that track ion motion have an increasing role to play in local damage simulation.
Another approximation is that molecular bonds are broken by ionization. This is used in almost all
modelling schemes, because the physics of bonding in ionized proteins is not sufficiently well known.
However, local reproducible motion can be heavily affected by residual bonding and there are new
research directions to incorporate these effects into XFEL damage simulations.

Bond-breaking dynamics have been studied with XFELs for small molecules in the gas
phase [22–24]. In small molecule studies, molecular fragments can be measured with precision in order
to produce a detailed understanding of the fragmentation process. Here, we are concerned with the role
of molecular structure in XFEL damage to proteins and protein crystals. The key difference between a
protein crystal and a gas phase protein molecule is that the crystals samples trap unbound electrons.
The unbound electrons generate ionization cascades via electron-impact ionization, generating from
a few to several hundred secondary electrons, depending on material and electron energy [25–28].
The unbound electrons also cause charge screening, which modifies the Coulomb interactions between
ions [29]. Hence, bond-breaking and molecular effects in XFEL damage need to be investigated in
protein samples independently of small molecule experiments.

Radiation damage becomes problematic for structural biology when it impacts the structural
interpretation of the electron density. Most of the X-rays scattered to high angles interact with bound
electrons and, hence, the recovered electron density is primarily determined by the location of the ions.
The evidence so far for “damage free” experiments with XFELs [5,8] does not rule out local reproducible
ion motion in the vicinity of a heavier element, so-called “damage hot spots”, at least on sub-Ångström
scales. An ongoing concern is, thus, whether local damage could impact the interpretation of structure
and dynamics of metal clusters in time-resolved studies of metaloproteins.

Here, we present a perspective on radiation damage in XFEL crystallography with a particular
focus on the local damage that impacts time-resolved crystallography experiments. Previous reviews
of XFEL damage have given significant attention to the progress in understanding global damage
and how SFX has achieved its successes to date [5,10]. However, it is the subtler effects of local
damage, which are not so well understood, which may have greater relevance to future time-resolved
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experiments, especially those that push the boundaries of high beam intensity and high time resolution.
Our perspective is presented in two parts. In Section 2, we briefly summarize the key damage processes
in XFEL-matter interactions. Section 3 deals how they are currently modeled and their particular role
in local damage. Subsequently, in Section 4, we discuss the future directions in XFEL damage theory
and modeling. These include the role of molecule effects and recent experimental evidence for their
occurrence in XFEL experiments. We present new quantum simulations of a disulfide bond breaking
to illustrate these future directions.

2. Overview of XFEL Damage Processes

The most relevant damage processes in XFEL science are described in detail in References [10,30].
Here, we provide a brief overview of these processes highlighting the role each can play in experiments
that are sensitive to local damage effects. Figure 3 illustrates the different processes described in
the text.

Figure 3. Schematic figure of relaxation processes and their approximate time-scales. The initial
absorption of an X-ray photon results in the emission of a photoelectron, increasing the molecular
charge by one. Heavier elements have a larger number of core-states than light elements, and the
absorption cross-section is substantially higher, hence it is more likely for the primary photoabsorption
event to occur on a heavier element (Section 2.1). Subsequently, the core-hole is relaxed. For elements
lighter than arsenic, the Auger process is more likely (Section 2.2), the emission of the Auger electron
further ionizes the molecule. The emitted electron scatters with bound electrons, producing cascades
of low energy electrons. The higher electron density of heavier elements makes the cascade more
common around a heavy nucleus (Section 2.3. Molecules consisting only of light elements have limited
cascades. At this stage, the molecule can reach a highly ionized state. The photo-induced processes
leads to ion dynamics, due to the loss of electrons, and the excited state populations, the molecular
bonds might break (Section 2.4). The relaxation processes branch out to a large number of possible
outcomes, contributing to the challenge of accurately simulating radiation damage.
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2.1. Photoabsorption

At the wavelengths that are typically used in XFEL experiments, the most likely interaction
between X-rays and matter is photoabsorption [31]. The X-ray photon transfers all of its energy to an
electron, which is ejected from the atom, leaving a positively charged ion behind. Figure 4 shows that,
at 10 keV, the probability for photoabsorption of X-rays by a carbon atom is around ten times higher
than that for coherent scattering.

(a) (b)

Figure 4. (a) Cross sections vs. energy. Atomic cross sections of neutral carbon for photoabsorption,
coherent scattering, and incoherent (Compton) scattering. At 10 keV photoabsorption is the dominating
interaction. (b) Ionic scattering factors. The ionic scattering factors for carbon in different ionization
states. Reproduced with permission from Caleman et al. [11]. The term “s-electrons” in the legend
refers to the number of electrons occupying the 1 s shell of the ion.

Photoabsorption rates are highly dependent on atomic number. Light elements, such as carbon,
nitrogen, and oxygen, have similar photoabsorption rates (this is reflected in Figure 1). When few
heavier elements are present, the photoionization of these light elements can be treated globally with
an average scaling the atomic scattering factor. More detail on this global modification is given in
Section 3.1, below. Heavier elements that are common in proteins and nucleic acids, such as sulfur
and phosphorous, or the metals that are contained by metalloproteins, have higher ionization rates.
Hence, these heavier elements can function as a damage “hotspots”, where X-ray energy is deposited
at much higher rates (see Figure 1). The key issue for crystallography is when this energy leads to
reproducible structural modifications that impact accurate structure determination or the interpretation
of that structure.

Damage significantly affects the ionization edges. In intense XFEL conditions, they are predicted
to broaden and shift to smaller wavelengths [32].

2.2. Core Hole Relaxations Processes

Photoabsorption initiates a chain of subsequent ionization processes that ultimately leads to the
destruction of the sample [33]. Photoabsorption is more likely from the core shells than the valence
shells, so that the resulting ions are in excited states [11]. Light elements, such as carbon, decay most
often from the core-hole state to the ground state via Auger decay [34,35], which results in a second
electron (the Auger electron) being emitted. In biological molecules, Auger electrons have energies
that are in the range 250 eV–2 keV [36], which is lower than the photoelectrons that account for the
majority of the absorbed energy. The lifetimes for Auger decay of light elements with K-shell holes is
up to 10 fs and the lifetimes of heavier elements are typically shorter. In heavier elements, radiative
decay is more probable than Auger decay. The final state of the Auger process is an ion with core-shells
populated, ready for further core-shell ionization. Auger decay along with photoionization has been
included in damage modeling since the very first studies [33,37] .
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The different decay rates and mechanisms between heavy and light elements contribute to the
elemental variation in the ionization rates and are, therefore, a contributing factor to local damage.
A heavy element may go through a cycle of core-shell ionization, decay and reionization faster
than a lighter element. Auger decay has a significantly larger probability than relaxation through
X-ray fluorescence for most of the lighter elements relevant for biomolecules.

2.3. Secondary Ionization

Photoelectrons and Auger electrons further ionize the sample, initiating a cascade of low
energy electrons (called secondary electrons) [38,39]. The number of secondary electrons is
roughly proportional to the energy of the impact electron triggering the cascade [25]. All of the
photoelectrons, Auger electrons, and secondary electrons interact with each other and rapidly
thermalize. Although some of these electrons recombine with atoms, the average energy of
these electrons is sufficiently high that the majority remain unbound for the duration of the
pulse-sample interaction (<100 fs). The result is a plasma-like state of ions and a trapped electron
gas. The thermalized electron gas is characterized by macroscopic variables, such as the density and
temperature [40].

To understand the scale of secondary ionization, consider that, in a near neutral organic sample
where the majority of atoms have bound outer shell electrons, an 8 keV photon electron causes up
to 400 secondary ionization events [28]. The thermalization happens within tens of femtosecond,
which means that 10–30 femtoseconds after a single photo-ionization event, more than 400 secondary
ionization events have occurred in the sample [28].

2.4. Ion Motion and Bond-Breaking

As the sample is interacting with the X-rays, the motion of the ions can be affected in two different
ways. Either by thermal motion, caused by ion-ion and ion-electron collision, or by electrostatic
repulsion, where particles of the same charge repel each other.

Thermal motion of ions increases during the pulse-sample interaction as the trapped electron gas
collides with the ions and heats them [41]. This motion is random and it can be effectively modeled
as global damage with appropriate temperature factors. The effect of random motion is mitigated
by the self-gating effect [7], so that measured Bragg diffraction has greater sensitivity to the initial
undamaged crystal than the final disordered crystal.

Ion motion due to electrostatic repulsion occurs when the positively charged ions repel each other
via Coulomb forces [33]. Atomic bonds are broken by ionization and remove bonding forces that
keep atoms in chemically relevant locations. The motion driven by electrostatic forces can be either
reproducible or random [16]. In the random case, the electrostatic forces are ultimately contributing to
thermal motion. However, it is the reproducible motion that raises an issue for XFEL crystallography.
At a damage hot spot, a heavier ion creates a repulsive potential that drives reproducible motion in the
neighbouring ions. The Bragg diffraction is sensitive to the reproducible motion and it will impact the
electron density that is recovered by crystallographic analysis.

Reproducible ion motion can be modeled by molecular dynamics [16,42]. The capacity of
molecular dynamics for tracking individual ion trajectories is critical for identifying the reproducible
motions and distinguishing them from random thermal motions.

3. Modelling

3.1. Global Damage Attenuation Factor with Ionization and Ion Motion

The effect of global damage on the Bragg diffraction can be modelled as an attenuation that only
depends on the magnitude of the scattering vector (or scattering angle). The attenuation factor is due to
the fact that the system is far from thermal equilibrium and is not the conventional Debye–Waller factor,
commonly used in conventional X-ray crystallography. The q-dependence of the attenuation factor
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is not Gaussian in general. Instead, the precise form of the attenuation depends on the distribution
of ion states in the sample and the time-dependence of the ion temperatures. The attenuation due to
ionization and thermal motion appears in an expression for the diffracted intensity, I(q), as follows:

I(q) = r2
e ∆Ω|F(q, t)|2

∫
I0(t)k(q, t)e−4π2q2σ2(t)dt (1)

where q is the scattering vector, re is classical electron radius, ∆Ω is solid angle of a pixel, F(q, t) is the
molecular form factor, I0(t) is the incident pulse intensity and the time-integral on the right hand side
of Equation (1) represents the global correction factor for both ion motion, σ(t), and ionization, k(q, t).

Core-shell electrons make up a greater fraction of the scattering factor at high resolution, as shown
in Figure 4. Hence, core-shell ionization is expected to reduce high resolution peaks relative to low
resolution peaks, adding to the initial effects of ion motion. Interestingly, valence shell ionization can
have the opposite effect. Figure 4 shows that valence electrons contribute to the scattering factor at
resolutions up to 3 Å and when valence ionization dominates low resolution peaks can be attenuated
relative to high resolution peaks. This effect is predicted by the simulations [11]. At lower intensities
(1017–1018 W cm−2) ion motion and core-shell ionization dominate and high resolution peaks are most
affected, but at higher intensities (1019–1020 W cm−2) valence ionization dominates global damage and
the low resolution peaks are more greatly affected.

3.2. Damage-Induced Coherence Loss of the Scattered X-rays

Another subtle effect of radiation damage is the dynamical changes in the electron density reduce
the coherence of the scattered X-rays. This was predicted to have an impact on XFEL single particle
imaging [43], but it also occurs to an extent in crystals [44]. Similar to local damage, damage-induced
coherence loss is driven by the variations in the ionization rates of different elements. If the effect is
strong, then the diffraction would not be modeled by a electron density, but by multiple real-space
distributions known as “modes”. It has been predicted theoretically that a single mode case will
be sufficient for most current experimental conditions at XFELs [43,45]. A subtle consequence of
the coherence loss is that the physical interpretation of the dominant mode can deviate from the
time-average of the electron density, particularly for the relatively heavier elements where the effect is
greatest. Hence, the apparent number of bound electrons appearing in the experimentally recovered
electron density may not simply be the time-average. This could affect how we relate experimental
data back to the theoretical estimates.

3.3. Simulation Tools

The simulation of XFEL damage processes divide into two main approaches: (i) molecular
dynamics (MD) [16,28,29,33,42,46,47] and (ii) rate equations [7,11,40,44,48,49]. The molecular dynamics
approach simulates the motion of each ion and unbound electron in the sample, subject to Coulomb
forces. The rates of ionization are required as input to the simulation to determine the time-dependent
ionic charges, the number of unbound electrons, and the energy of the unbound electrons [40].
The earliest study of XFEL damage by Neutze et al. [33] used this approach with a simplistic ionization
and bond-breaking model. The conclusions about the time-scales of ion motion are still valid. Since
then, the MD approach has been developed in several advanced codes that model all of the above
damage processes. The Cimarron Project [50], developed at Lawrence Livermore National Laboratory,
simulates dense plasmas and it has been applied to biological samples [16]. The Xraypac [42] suite of
programs was developed specifically for XFEL studies and it includes both a MD part, XMDYN, and an
atomic ionization part, XATOM [51], which is based on nonrelativistic quantum electrodynamics and
perturbation theory within the Hartree–Fock–Slater model. MD codes for XFEL simulations are
computationally expensive because sub-attosecond time steps are required to model fast unbound
electrons accurately, yet the total simulation time is typically around 100 fs. This places a practical
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limit on the size of the sample that can be simulated. Nevertheless, MD simulations are necessary
when precise details of ion motion are required, as is often the case for local damage.

The rate equations approach to modelling XFEL damage primarily models radiation transfer,
the distribution of ionization states for each elements and the statistical properties of the unbound
electrons. By ignoring the spatial position of atoms and unbound electrons, rate-equations simulations
are inexpensive to run and they are not limited in particle size. Hence, these simulations can facilitate
calculations of ion scattering factors and global damage factors, which are insensitive to the ion
locations. However, this is also their major disadvantage when compared to MD, as they cannot be
used to model specific ion trajectories. As a type of continuum model, the rate-equations approach is
highly similar to simulation models of plasmas and warm dense matter physics. The first application
of the rate-equations approach to biological samples in FEL beams was conducted by Hau-Riege et al.
in 2004 [37]. Non-local thermal equilibrium codes (NLTE), originally developed for warm dense matter
physics applications, have been used to model damage in several SFX studies [5,7,11,52].

A recent development in XFEL damage simulation proposes to overcome the computational
limitations of MD by combining it with the rate-equations approach. The details of this model are
described in an another article in this issue [53] and in Reference [13]. The so-called hybrid plasma/MD
model treats the ions as classical particles, but the electrons a continuum. The properties of the unbound
electrons are incorporated into ion-ion potentials while using Debye screening. This approach enables
faster simulations and larger sample volumes than the conventional MD approach.

Damage simulation based on quantum mechanical approaches, such as quantum molecular
dynamics, is appealing, but, in many instances, too slow to sample a sufficient number of initial
conditions and, hence, suffer from poor statistics. Approaches that are based on density-functional
theory in conjunction with molecular dynamics in the adiabatic approximation, Born–Oppenheimer
molecular dynamics, can account for quantum mechanical effects of bonding beyond the level of
classical molecular dynamics. For a full account of damage processes, non-adiabatic processes have to
be taken account, as the adiabatic approximation assumes that the electrons adjust instantaneously
to the ionic positions. Recent implementations of time-dependent density-functional theory in
conjunction with the delta-SCF method for describing excited states allow for treating e.g., peptides
with account for non-adiabatic effects [54,55]. These simulations give a detailed description for the
damage process, including the time-dependent electron density; hence, fine features of the diffraction
patterns originating with excited bound electrons can be accounted for.

4. Outstanding Questions and Future Prospects Concerning Local Damage Processes

The theory and simulation tools reviewed in the previous section assumed that damage takes
place at the atomic level. Bonds between atoms are generally assumed to be broken through ionization
on femtosecond timescales before the ions have time to move significantly. Damage processes that are
sensitive to the molecular environment are generally ignored. However, there is recent evidence from
both theory and experiment that molecular effects play a non-negligible role in XFEL radiation damage.
This includes damage at the sites of relatively heavy elements that is sensitive to the local molecular
environment. Developing more sophisticated damage models to include these effects will be given
increasing attention in the near future. In this section, we review the recent theoretical developments
in molecular nature of XFEL damage, including some previously unpublished quantum-mechanical
simulations in order to illustrate the underlying physics.

4.1. Experimental Evidence for Local Damage and Molecular Damage Effects

In early SFX experiments, the electron densities were compared to synchrotron results of known
structures to identify “damage free” experimental conditions and it was found that electron densities
could be recovered by molecular replacement with sufficient accuracy for atomic modelling [8]. In this
context, a damage-free result can be considered to be one in which the XFEL damage does not cause
errors in the interpretation or the atomic structure. In studies with lower photon energies and higher
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photoionization cross-sections, a study of photo-system protein crystals found evidence of global
damage due to ion heating [7] and a study of lysozyme crystals contained quantitative discrepancies
with synchrotron data attributed to local damage in the SFX data [9].

The development of absorption-based methods of crystallography for XFELs allowed for new
insights to be gained in local damage processes. Single-wavelength anomalous dispersion (SAD)
experiments have been successful demonstrated with gadolinium [19], sulfur [20] and selenium [21].
The preferential absorption of X-rays by a relatively heavy element is sensitive to the relatively higher
ionization of that element to the most common atoms in proteins (H, C, N, and O). Comparing
electron densities at sulfur sites, for example, permitted useful comparisons between theoretical
models and experiment, strongly confirming the preferential ionization [14]. Interestingly, early
theoretical proposals to develop femtosecond multi-wavelength anomalous dispersion (MAD)
methods [32] have not yet been realized experimentally, perhaps because of the complex changes to
wavelength-dependence of the scattering factor due to the high levels of ionization.

To further pursue the question of local damage, targeted damage experiments have been
conducted on high-pulse intensities on systems that are likely to produce these effects. These
experiments are typically performed with a nanofocus beam (<300 nm focal spot size) which is around
a factor of ten smaller than the typical SFX experiments with a micron-sized focus. A notable example
is an experiment on ferrodoxin, which contains iron-sulfur clusters [56]. Reproducible non-random
motion of the sulfur atoms was observed. This motion is observed as a deviation of the sulfur ions
from their known equilibrium position. Another interesting result for this experiment was that the two
iron sites were not equivalent, which indicated the importance of the molecular environment. The iron
ions also showed a reduced sensitivity to change of X-ray wavelength above and below the iron edge,
which may indicate the changing nature of the absorption edge with ionization state.

Another notable experiment studied protein crystals with a femtosecond X-ray pump and X-ray
probe experiment to observe clear local motion of disulfide bonds, carbon-oxygen bonded atoms, and
in carbonyl groups [13] (see Figure 5). Remarkably for temporal separations between the two pulses
up to 100 fs, the crystals remained sufficiently well-ordered to recover electron densities at a high
resolution. This meant that global damage due to the pump pulse was not large and did not “melt” the
crystals before the probe pulse arrived. The low levels of global damage were confirmed by the stable
B-factors that corresponded to random motion of less than an Ångström. Despite the low levels of
global damage, the local motion of ions was clear and reproducible in the recovered electron densities.
The disulfide bonds dissociate and rapidly accelerate, before decelerating due to interaction with the
surrounding ions, as shown in Figure 5c,d. The displacement increases 2 Å in around 100 fs. The C-O
bonds in the backbone increase slightly and then decrease again toward their original value. Elsewhere
in the structure, the aromatic side chains show a loss of electron density in the phenyl ring and an
asymmetric increase of density near the exterior of the ring. The theoretical simulations shown in
Figure 5c,d reproduced the sulfur dissociation and emphasized the importance of Debye-screening
and ion-ion interactions in determining the sulfur dynamics. The motion of C-O bonds and carbonyl
groups are beyond current theoretical models and likely requires further understanding of molecular
effects in highly ionized systems.
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Figure 5. Pump-probe serial crystallography. (a) The dissociation of sulfur bridge in a thaumatin crystal
observed with pump-probe crystallography at LCLS. (b) Isomorphic different density maps between the
two-pulse experiment minus a single pulse measurement with positive density in green and isomorphic
different density map of a β-sheet region in thaumatin, showing peaks near the carbonyl oxygen atoms.
(c) Simulation of S-S dissociation in thaumatin with a molecular dynamics code (XMDYN) and (d) a
simulation of lysozyme with a hybrid plasma-MD approach. Both simulations agree on the importance
of Debye screening and ion-ion interactions in determining the sulfur dynamics. Reproduced from
Nass et al. [13] under a CC4.0 international licence: http://creativecommons.org/licenses/by/4.0/.

4.2. Molecular Effects in Ionization

In conventional crystallography, photoionization from the X-rays is relatively sparse and the
damage that it generates to the structure occurs on picosecond timescales. However, in SFX,
the situation is very different due to the high photon flux [7]. Atoms can be ionized several times
during the short X-ray exposure, as seen in Figure 1. When a molecule is suddenly ionized several
times, it is pushed far from its electronic ground state. The electrons remaining in the molecule will
redistribute and this, in turn, affects the ability for the atoms to bond with each other. The electronic
redistribution caused by the absence of electrons is fast, on the order of femtoseconds [57]. Even if the
electron rearrangement is almost instantaneous, the heavier nuclei are relatively slow. The movement
of the nuclei is ultimately what is referred to as radiation damage, since it is their positions that are
interpreted as the molecular structure.

The electronic rearrangement only alters the position of the nuclei as a secondary effect due to the
aforementioned influence of electronic states on bonding [30]. However, immediately upon ionization,
it affects the scattering of the X-rays, and the intensity recorded at the detector. In an XFEL experiment,
an average ionization of above one per atom is commonly reached. The differences in charge between
oxygen, nitrogen and carbon can be different at these highly charged states, than in a neutral situation.
For example, the oxygens in a carboxyl group normally has a lower charge than carbon. However,
when we reach charge states of around one per atom, the oxygens instead get a higher charge than

http://creativecommons.org/licenses/by/4.0/
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the carbon. QM/MM simulations of the ionization of amino acids have described theses effects [17],
as illustrated in Figure 6. As can been seen in the figure this could result in an false interpretation of
the structure from the diffracted image.

Carbon, oxygen and nitrogen all have similar photon ionization cross sections and, along with
hydrogen, are the most common elements in proteins [37]. However, heavier atoms, like sulfur or
metals, have a higher ionization cross section. Since these atoms with high cross sections are sparse
in a protein, they create hot spots for ionization. The dynamics of atoms in these hot spots cannot
be described by global damage, where the sample is described as a homogeneous soup of atoms.
Instead, the dynamics on a molecular level are important. In a recent study, the dynamics of the
sulfurs in lysozyme exposed to an XFEL pulse was studied [13]. From the experiment it clear that the
sulfur-sulfur distance is elongated such that it is obvious that a bond between the sulfurs does not
persist, and the sulfur bridge is broken, see Figure 5. This happens on a timescale of 100 fs.

To illustrate both how the electron distribution and nuclei are affected by the heavy ionization
from an XFEL, we have conducted QM/MM simulations on a dimethyldisulfide molecule, see Figure 7.
Dimethyldisulfide has a sulfur bridge, similar to what can be found in proteins, but it only has a
methyl group attached to the sulfur, which makes it computationally favourable. The simulations
were done in the same manner as in Grånäs et al. [17], with some minor modifications. It is
assumed that the initial ultra-fast electron dynamics happen before significant bond breaking occurs.
The ultra-fast dynamics include the photo-emitted core electron, florescence and Auger processes filling
the core-hole, and initial cascade dynamics. See Figure 3 for a schematic overview. To focus solely
on the bond-breaking dynamics, our QM/MM simulation does not include further photo-ionization
processes after the initial ultra-fast dynamics.

This argument is used to start the quantum molecular dynamics simulations with only excited
valence configurations considered, i.e., the approximation that all processes involving core-electrons
are fast in relation to bond-breaking. Naturally, a multitude of initial conditions occur in an experiment.
We sample the starting configurations from Born–Oppenheimer molecular dynamics based on
pseudo-potential density functional theory (DFT), as implemented in the Siesta-package [54].

After the initial cascade effects, the molecule resides in an ionized state with a high likelihood
of being excited (electrons not occupying the molecular orbitals of the ionized molecule according
to the Aufbau principle). The number of possible excited states is very large. However, in case
the molecule contains heavier ions, the probability of photoemission is higher in the vicinity of the
heavy atom. Subsequently, we use the cross-section of molecular orbitals to the core hole to reduce
the number of excited states we treat. We model these excited states according to the delta-SCF
procedure. We use statistical trajectory sampling, where trajectories for ionized excited states as well
as ionized ground-state (occupied according to the Aufbau principle) can be sampled using TD-DFT
and Ehrenfest dynamics to allow for a multitude of initial conditions to be simulated [55].

In the example of the Dimethyldisulfide, we mimic a molecule that has been photo ionized at a
sulfur core level, and than relaxed to a excited state via Auger decay to leave a hole in the low-lying
valence molecular orbitals with high sulfur character. The molecule in this example is in the +1 state.
Although the level of ionization is low, the excited valence configuration breaks the sulfur-sulfur bond.
With an increasing level of ionization, we expect that the Coulomb-forces will dominate over the effects
on bonding of the excited potential energy surface.

From our simulation it is obvious that the both the electronic structure and the structure of the
molecule are affected on the timescales relevant in time resolved SFX experiments. In our simulation,
we only have a singly ionized, excited sulfur, but still the sulfur bridge is broken within tenths of
femtoseconds. The timescale of the bond breaking agrees well with those reported by Nass et al. [13],
as well as in Beyerlein et al. [40], and very clearly indicates that local damage tied to atoms with high
ionization cross sections, such as atoms or sulfurs, needs to be taken into account when analyzing data
from time resolved SFX experiments.
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Figure 6. Local charge redistribution. The deviation from the neutral charge state, described by the
Hirshfeld charge [58], per ionization stage (z̄) for amino acids. In some parts of the molecule, the charge
density is increased due to the reduced electronic screening caused by the ionization. This provides
stability to certain bonds to high levels of ionization. Illustration is from Grånäs et al. [17].

Figure 7. Bond breaking. QM/MM simulation of a doubly charged dimethyldisulfide ion, resulting
in a breaking of the Sulfur-bridge. (a) Distances between the atoms vs. time. (b) The electron density
is illustrated as an iso-surface, and clearly shows how the electron density shared between the two
sulfur atoms disappears after the ionization. The simulations were done in a similar manner as in
Grånäs et al. [17]; input and output files are available in the Supplementary Materials.

5. Conclusions

We have reviewed XFEL damage processes with a particular focus on recent theoretical and
experimental developments concerning local damage “hot spots” and molecular damage effects.
The majority of XFEL damage theory has focused on assuming the bonds are broken early during
the pulse-sample interaction, so that ions can be treated independently subject to electrostatic forces
and thermal effects. However, recent experiments have provided new insights into how relatively
heavy ions drive complex local dynamics. There is a growing understanding that damage modeling
will need to develop as well to provide a complete picture of the molecular nature of damage. These
molecular effects are most relevant to time-resolved SFX on, for example, metallo-proteins where the
metal sites of most relevance of biological function are also those that are most susceptible to local
damage. Fundamental studies of X-ray matter interactions will continue to support the progress of
SFX for the foreseeable future.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4352/10/7/585/s1,
Input/output for CRETIN calculations associated with Figure 1. Input/output for TDAP/Siesta calculations
associated with Figure 7.

http://www.mdpi.com/2073-4352/10/7/585/s1
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The following abbreviations are used in this manuscript:

XFEL X-ray Free-Electron Laser
MD Molecular Dynamics
MM Molecular Mechanics
QM Quantum Mechanics
SFX Serial Femtosecond Crystallography
PSI Photosystem I
NLTE Non-Local Thermal Equilibrium
MAD Multi-wavelength Anomalous Dispersion
DFT Density Functional Theory
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