Article

Structures and properties of new organic conductors, BEDT-TTF, BEST and BETS salts of the $\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SO}_{3}{ }^{-}$ anion
Hiroki Akutsu ${ }^{1, *}$, Yuta Koyama ${ }^{1}$, Scott S. Turner ${ }^{2}$, Keigo Furuta ${ }^{3}$, and Yasuhiro Nakazawa ${ }^{1}$
1 Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan.
2 Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK. 3 .

Supporting Information

GAMESS input options
ET^{+}and BETS ${ }^{+}$ICHARG $=1, \mathrm{MULT}=2, \mathrm{SCFTYP}=$ ROHF, RUNTYPE $=$ ENERGY, DFTTYP $=$ B3LYP, GBASIS $=$ N31, and NGAUSS $=6$.
$\mathrm{I}_{3}: \mathrm{ICHARG}=-1, \mathrm{MULT}=1, \mathrm{SCFTYP}=\mathrm{RHF}$, RUNTYPE $=\mathrm{ENERGY}$, DFTTYP $=$ B3LYP, and GBASIS $=$ SBKJC.
$\mathrm{HOC}_{2} \mathrm{H}_{4} \mathrm{SO}_{3}:$ ICHARG $=-1, \mathrm{MULT}=1, \mathrm{SCFTYP}=\mathrm{RHF}$, RUNTYPE $=\mathrm{ENERGY}$, DFTTYP $=$ B3LYP, GBASIS $=$ N31, and NGAUSS $=6$.

Figure S1. Temperature dependence of electrical resistivity of $\mathbf{1}$.

Figure S2. Temperature dependence of electrical resistivity of $\mathbf{2}$.

