ELECTRONIC SUPPORTING INFORMATION

Synthesis, Crystal structures and Characterization of two non-metal cation tetrafluoroborates

N. O. Alzamel^a, G. M. Alenzi^a, I. Abdi^c, A.H. Al-amri^a, A. BenAli^a,

- ^a Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
- ^b Basic and Applied Scientific Research Center, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441 Saudi Arabia
- ^c Department of Basic Sciences, Chemistry unit, Deanship of preparatory year and supporting studies, Imam Abdulrahman Bin Faisal University. P.O. Box 1982, Dammam 34212, Saudi Arabia.
- * Correspondence: asbali@iau.edu.sa

Atom	Site	Х	У	Z	Beq(Å ²)
B(1)	4a	0.8109(4)	0.3109(4)	0.1891(4)	3.5(1)
B(2)	4a	0.4728(3)	0.5272(3)	0.0272(3)	2.8(1)
B(3)	4a	0.7053(4)	0.2947(4)	-0.2053(4)	3.(1)
F(1)	4a	0.8807(2)	0.3807(2)	0.1193(2)	3.45(8)
F(2)	12b	0.7001(2)	0.3478(3)	0.1768(3)	5.84(8)
F(3)	4a	0.5409(2)	0.4591(2)	-0.0409(2)	4.07(8)
F(4)	12b	0.4265(3)	0.4611(3)	0.1137(3)	5.56(7)
F(5)	12b	0.7377(4)	0.2890(5)	-0.0951(3)	9.7(2)
F(6)	4a	0.7706(3)	0.2294(3)	-0.2706(3)	7.3(2)
N(1)	4a	1.0308(2)	0.5308(2)	-0.0308(2)	1.96(7)
N(2)	12b	1.0059(4)	0.2727(3)	-0.0631(3)	3.71(7)
C(1)	12b	1.0969(3)	0.4574(3)	-0.1086(3)	2.61(6)
C(2)	12b	1.0294(4)	0.3583(3)	-0.1546(3)	3.13(7)

Table S1	
Atomic coordinates	equivalent isotropic displacement parameters in $[H_2 tran] \cdot (BE_4) \cdot (I)$

Table S2

Selected inter-atomic distances (Å) in [H₃*tren*]•(BF₄)₃•(I)

B(1)-F(2)	3×1.373(8)	N(1)-C(1)	1.469(4)
B(1)-F(1)	1.383(4)	N(2)-C(2)	1.495(5)
<b-f></b-f>	1.375	C(1)-C(2)	1.502(5)
B(2)-F(3)	1.378(4)		
B(2)-F(4)	3×1.373(4)		
<b-f></b-f>	1.374		
B(3)-F(6)	1 32(1)		
D(3) T(0) D(2) E(5)	$2 \times 1.242(5)$		
D(3)-F(3)	5×1.545(5)		
<u><b-f></b-f></u>	1.337		

Table S3

Hydrogen bond distances (Å) and X-H...F angles (°) in $[H_3 tren] \cdot (BF_4)_3 \cdot (I)$

X-HF	d(HF)	d(NF)	X-HF
N(2)-H1CF(4)	2.143	2.946(?)	150
N(2)-H1DF(1)	1.989	2.878(?)	176

Table S4

Atomic coordinates, equivalent isotropic displacement parameters in [H₃*tren*]•(BF₄)₃•HF (II)

Atom	S.O.F	Х	У	Z	$B_{eq}(Å^2)$
В		-0.0416(3)	0.4291(3)	0.1059(4)	3.11(6)
F(1)		0.0496(3)	0.3735(5)	0.1537(6)	8.1(2)
F(2)	0.50	0.1149(9)	0.502(1)	0.166(2)	9.1(6)
F(2P)	0.50	0.087(2)	0.463(1)	0.211(2)	11.4(8)
F(3)		0.0837(4)	0.3739(3)	0.0671(5)	7.0(1)

F(4)	0.50	0.027(1)	0.479(1)	0.0119(8)	7.6(4)
F(4P)	0.50	0.068(1)	0.5129(9)	0.054(1)	8.4(4)
F(5)		-1/3	1/3	-0.2001(3)	2.92(6)
N(1)		-1/3	1/3	0.0094(3)	1.89(6)
N(2)		-0.1401(3)	0.4852(3)	-0.1257(3)	3.48(6)
C(1)		-0.2261(2)	0.3949(2)	0.0502(2)	2.77(5)
C(2)		-0.1643(2)	0.4955(2)	-0.4955(2)	2.99(6)

Table S5

Selected inter-atomic distances (Å) in [H₃*tren*]•(BF₄)₃•HF (II)

B- F(4p)	1.293(9)	$N(1)-C(1)^{1}$	1.507(3)	C(1)-C(2)	1.517(2)
B- F(2)	1.33(1)	N(1)-C(1)	1.507(3)		
B- F(1)	1.346(6)	$N(1)-C(1)^{2}$	1.507(3)		
B- F(3)	1.374(5)	N(2)-C(2)	1.486(4)		
B- F(2p)	1.41(2)	<n-c></n-c>	1.496		
B- F(4)	1.439(9)				
<b-f></b-f>	1.36				

Symmetry transformation codes: ^{\$1} -y, x-y+1, z; ^{\$2} -x+y-1, -x, z

Table S6

Hydrogen bond distances (Å) and X-H...F angles (°) in [H₃tren]•(BF₄)₃•HF (II)

X-HF	d(HF)	d(NF)	X-HF
N(1)-H2DF(5)	2.04	2.84(?)	148
N(1)-HF(5)	1.820	2.516(?)	180

Table s7: Assignment of vibration modes in [H₃*tren*](BF₄)₃

Stretching Frequency	Intensity	Assignment	Expected from literature	Ref.
3255, 3200, 3173	m-s	-NH ₃ ⁺ (symmetric and asymmetric)	2800-300	
3046, 2978, 2876	W	-CH ₂ - stretching symmetric and asymmetric	2930/2850	
1469, 1451, 1405, 1387, 1369	m-s	-CH ₂ - scissoring	1465	
1323-1298	W	-CH ₂ - wagging -CH ₂ - twisting	1300-1305	[22 25]
724	S	-CH ₂ - rocking	720	[33-33]
1210, 1026, 1118, 1149	m-s	C-N stretching	1220-1020	
1607, 1638, 1505, 1525	m-s	NH ₂ scissoring, N–H bending	1615	
855, 832	m-s	NH ₂ wagging and twisting	850–750	
768	W	B-F v ₁ (symmetric stretching)	777 cm ⁻¹	[36,37]
-	m	B-F v ₂ (symmetric	360 cm ⁻¹	

		deformation)		
993-947-903-1026	m-s	B-F v ₃ (asymmetric stretching)	1070 cm ⁻¹	
-	m-s	B-F v ₄ (asymmetric deformation)	533 cm ⁻¹	

^a intensities : s = strong, m = medium, w = weak, br = broad, var = varies.

Table s8: assignment of vibration modes in [H₃*tren*]•(BF₄)₃•HF

Stretching Frequency	Intensity	Assignment	Expected from literature	Ref.
3262, 3215	m-s	-NH ₃ ⁺ (symmetric and asymmetric)	2800-3000	
3066-3022	W	-CH ₂ - stretching symmetric and asymmetric	2930/2850	
1468, 1375, 1379	m-s	-CH ₂ - scissoring	1465	
1355, 1313, 1335, 1298, 1281	W	-CH ₂ - wagging -CH ₂ - twisting	1300-1305	[22 25]
743	S	-CH ₂ - rocking	720	[33-33]
1194,	m-s	C-N stretching	1220-1020	
1608-1504	m-s	NH ₂ scissoring, N–H bending	1615	
847	m-s	NH ₂ wagging and twisting	850–750	
760-	W	B-F v_1 (symmetric stretching)	777 cm ⁻¹	
-	m	B-F v ₂ (symmetric deformation)	360 cm ⁻¹	
981, 1026	m-s	B-F v_3 (asymmetric stretching)	1070 cm ⁻¹	[36,37]
-	m-s	B-F v_4 (asymmetric deformation)	533 cm ⁻¹	

^a intensities : s = strong, m = medium, w = weak, br = broad, var = varies.

Fig. S2: X-ray diffraction patterns simulation, in Full pattern matching mode, of $[H_3 tren] \cdot (BF_4)_3$ phase, experimental (red) calculated (black) and difference (blue).

Fig. S5: X-ray diffraction patterns simulation, in Full pattern matching mode, of $[H_3 tren] \cdot (BF_4)_3$. HF phase, experimental (red) calculated (black) and difference (blue).

Fig. S6: DTA and TGA curves of [H₃*tren*]•(BF₄)₃•HF

Fig. S8: Infra-red absorption spectrum of tris-(2-aminoethyl)amine (tren) (from https://webbook.nist.gov/cgi/cbook.cgi?ID=C4097896&Mask=80)