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Abstract: Phononic crystals (PCs) have been widely reported to exhibit band gaps, which for non-
dissipative systems are well defined from the dispersion relation as a frequency range in which no
propagating (i.e., non-decaying) wave modes exist. However, the notion of a band gap is less clear in
dissipative systems, as all wave modes exhibit attenuation. Various measures have been proposed
to quantify the “evanescence” of frequency ranges and/or wave propagation directions, but these
measures are not based on measurable physical quantities. Furthermore, in finite systems created
by truncating a PC, wave propagation is strongly attenuated but not completely forbidden, and
a quantitative measure that predicts wave transmission in a finite PC from the infinite dispersion
relation is elusive. In this paper, we propose an “evanescence indicator” for PCs with 1D periodicity
that relates the decay component of the Bloch wavevector to the transmitted wave amplitude
through a finite PC. When plotted over a frequency range of interest, this indicator reveals frequency
regions of strongly attenuated wave propagation, which are dubbed “fuzzy band gaps” due to the
smooth (rather than abrupt) transition between evanescent and propagating wave characteristics.
The indicator is capable of identifying polarized fuzzy band gaps, including fuzzy band gaps which
exists with respect to “hybrid” polarizations which consist of multiple simultaneous polarizations.
We validate the indicator using simulations and experiments of wave transmission through highly
viscoelastic and finite phononic crystals.

Keywords: phononic crystals; acoustic metamaterials; damping; band gaps; evanescent Bloch waves

1. Introduction

In nearly 30 years since the development of the first phononic crystal (PC) [1],
a plethora of interesting properties of PCs has been discovered, foremost of which are band
gaps, frequency ranges over which elastic wave propagation is forbidden. Band gaps give
PCs a diverse range of applications including vibration suppression [2], waveguiding [3],
and energy harvesting [4]. Band gaps are easily defined and identified for undamped PCs,
which constitute the majority of published works, but are much more difficult to define and
identify in damped PCs. As all real materials exhibit damping, understanding band gaps
in damped PCs is thus critical to developing real-world applications for PCs. The purpose
of this work is to develop a method for defining and identifying band gaps in damped
PCs which is based on measurable physical quantities. Such a method is amenable to
experimental verification, which allows the performance of physically realized PCs to be
assessed relative to model predictions.

Damping in PCs, and the related structures known as acoustic metamaterials, has been
an increased focus of research in the last decade. Damping creates phenomena not found
in undamped PCs, such as “wavenumber band gaps” [5], and conversely, PCs can create
novel damping behaviors not found in the bulk material, such as anisotropic dissipation [6].
Damping is also unintentionally but inevitably present in many PCs which rely on key
properties of materials that also happen to be damped. For example, locally resonant
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PCs [7], pattern transformation-tunable band gaps [8], and magnetically-tunable band
gaps [9–11] were enabled by the low stiffness, ability to undergo large strains, and magnetic
tunability of elastomers, respectively. The inclusion of damping strongly affects the PC
band structure, causing pronounced smoothing of dispersion curves [12] or a re-ordering
of dispersion curves known as “branch overtaking” [13,14]. In damped band structures,
either frequency [13], wavenumber [12], or both [15] become complex-valued, which creates
challenges for identifying band gaps. In some works, such as those previously cited on
elastomeric PCs [7–11], damping is neglected to simplify the interpretation of the band
structures. However, a full understanding of wave propagation can only be obtained
when damping is considered, due to the strong effect of damping on the band structure.
In particular, the need to understand the damped band structure of the magneto-active
metastructures studied in [11] provided a strong initial impetus for the current work, as
the elastomeric material from which they were fabricated is highly viscoelastic.

In works where damping is included, various methods have been developed to aid
in interpreting band structures, which generally depend upon the class of waves that are
studied: free waves or driven waves. Free waves can decay in time and in space [15].
However, the most common analysis technique for free wave solutions is the “indirect”
or ω(k) method, which proceeds by prescribing a real-valued Bloch wavenumber and
solving the resulting eigenvalue problem for the complex frequency [14,16], yielding waves
which decay in time but not in space. The damping ratio ζ has become a standard figure
of merit to characterize the temporal decay of the wave and has been used, e.g., to study
the phenomenon known as metadamping [17–19] and to study the transition between
viscously and viscoelasticly damped PCs [20]. An alternative figure of merit that has found
limited use is the quality factor [21]. On the other hand, driven waves decay in space
but not in time and are obtained using the “direct” or k(ω) method, by prescribing real
frequencies and computing complex wavenumbers. Band structures for damped driven
waves are much more difficult to interpret than band structures for undamped driven
waves, because all wave modes are propagative (with spatial decay), and the cusps of the
dispersion curves become highly rounded, even for weak damping [12]. The rounding of
the dispersion curves makes it difficult to identify band gap edge frequencies and has led
several authors to use various figures of merit to quantify the wave decay: the minimum
imaginary component of all wavenumbers at a given frequency [22,23], the minimum
imaginary component normalized by wavenumber absolute value [24], and the effective
loss factor [22,25]. In [22,24], the respective figures of merit are visualized with a light-to-
dark shading scheme to visually indicate regions of highly attenuated wave propagation.
However, the lack of a standardized figure of merit illustrates the ongoing difficulties of
identifying band gaps for damped driven wave propagation.

An additional difficulty lies in identifying polarized band gaps, which may also exist
in PCs even when complete band gaps cannot be found. Polarized band gaps have long
been studied in 2D PCs, where different band gaps are observed for modes with in-plane
displacements and out-of-plane displacements, see, e.g., in [26]. More recently, polarized
band gaps with other polarizations (flexural, torsional, longitudinal) were discovered in
lattice-based PCs [11,27–29]. Identification of polarized band gaps is more complicated
than complete band gaps, because it requires a method to classify the polarization of each
Bloch mode shape. In [11,27–29], manual inspection of the Bloch mode shapes was used
to determine the subset of modes that align with the polarization of interest, which is
problematic as it requires judgment calls of whether each mode is significant for a given
direction. Additionally, the PCs in [11,27–29] were physically realized using polymeric
and elastomeric materials which have significant damping. Including damping in the
band structure computation necessitates simultaneous consideration of the polarization
and rate of decay for each mode, and to the authors’ knowledge, no such method has yet
been proposed.

Band gaps may also be studied by considering finite structures created by truncating
infinite PCs. The distribution of the finite structure’s natural frequencies is dictated by
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the dispersion relation of the unit cell [30,31], which prevents natural frequencies from
falling within the band gap, causing a deep trough in vibration transmission in the band
gap frequencies. The transmission trough increases in depth with the number of unit cells
in the truncated structure [32], which is due to the larger number of poles in the frequency
response function that lie below the band gap [33]. It has further been shown that the
dissipated power in a finite periodic structure is confined near the source for excitation
frequencies within the band gap [34], which has been proposed as an alternate means to
identify band gaps from finite structures. The correspondence between the dynamics of
infinite and finite PCs is especially significant as it allows for experimental verification
of band gap existence. However, the existence of damping in all real materials causes
smoothing of the transmission trough edges (see, e.g., in [25]), which makes experimental
identification of band gaps difficult for highly damped materials [11].

The goal of this work is to develop a method by which polarized band gap-like
frequency ranges can be systematically identified in damped PCs. As damped PCs may
exhibit strong wave attenuation due to Bragg scattering, yet possess no true band gaps
due to the effect of dissipation on the eigenmodes, we introduce the term “fuzzy band
gaps” for frequency ranges with strong spatial attenuation of waves which may or may
not be true band gaps. We define a fuzzy band gap as any frequency range where the
transmitted wave amplitude through a finite periodic structure is less than a prescribed
threshold. Though the threshold wave amplitude is arbitrary, it can be chosen based on
physical grounds or engineering requirements, such as the maximum allowable vibration
amplitude of a structure. Although “fuzziness” in PCs can arise from multiple sources,
such as disorder or parasitic resonators, in this article we focus only on fuzziness arising
from dissipation. We then select a measurable physical quantity (e.g., displacement or
force) as a measure of wave amplitude, approximate the transmitted wave amplitude
in a finite PC using a weighted superposition of the Bloch waves, and search for fuzzy
band gaps by comparing the transmitted wave amplitude to the threshold amplitude.
The use of a measurable physical quantity allows the fuzzy band gaps thus obtained to be
directly verified by experiments. We first validate the evanescence indicator for a simple
1D viscoelastic diatomic lattice and show that the predicted fuzzy band gaps agree well
with simulations of the vibration transmission through finite PCs. The “fuzzy” moniker
arises from the fact that the evanescence indicator reveals smooth transitions between
propagating and decaying wave behavior, which make the edges of a fuzzy band gap
appear like an out-of-focus or “fuzzy” photo. We next validate the evanescence indicator
on “magneto-active metastructures”, which are damped PCs with complex 3D geometry
based on prior work [11], using a combination of finite element method simulations and
experiments. We show that the evanescence indicator is capable of identifying fuzzy band
gaps with respect to arbitrary wave polarizations, including hybrid polarizations that
consist of a superposition of two or more simple polarizations. Because of its applicability
to damped PCs with complex geometries and its direct link to experimental results, the
evanescence indicator is a powerful tool for interpreting damped band structures of PCs
fabricated from real materials.

2. Theory

In this section, we derive an “evanescence indicator”, a figure of merit which quantifies
how strongly waves are attenuated in a periodic structure at a given frequency. To compute
this evanescence indicator only requires knowledge of the dispersion relation k(ω) for
an infinite periodic structure, the accompanying Bloch wave mode shapes, a threshold
displacement amplitude of interest uthres, and the number of unit cells N that defines
the extents of a finite periodic structure of reference. This method is applicable for both
undamped and damped structures with 1D periodicity.
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2.1. Background

According to the Bloch theorem, as adapted to elastodynamics, waves propagating in
periodic structures can be described by a basis of eigenfunctions having the form

u(x, t) = ei(k·x−λt)û(x) , (1)

where x and t are the spatial and time coordinates, respectively; u is the displacement
field; û is a function with the same periodicity as the periodic structure; k is the Bloch
wavevector; and λ is the angular frequency. Quantities in boldface denote vectors and u, û,
k, λ may all be complex-valued, depending on the frequency of excitation and the material
properties of the structure.

For driven wave propagation, i.e., waves which are excited by a harmonic displace-
ment or force and decay in space but not in time, the “direct” or k(ω) method is used to
solve the dispersion relation. This method proceeds by prescribing a real-valued angular
frequency ω and solving the resulting eigenvalue problem for the Bloch wavevector k.
Writing the Bloch wavevector in terms of its real and imaginary parts and substituting
k = kR + ikI and λ = ω + 0i into (1) yields

u(x, t) = e−kI ·xei(kR ·x−ωt)û(x) . (2)

It is evident that the imaginary-valued exponential function ei(kR ·x−ωt) governs the spatial
and temporal oscillation of the wave, while the real-valued exponent e−kI ·x defines an
“envelope” that governs the spatial growth or decay of the wave. If the wavevector is
real-valued, i.e., kI = 0, then the wave undergoes no change in amplitude as it propagates
and is termed a “propagating” wave. However, for complex-valued k, the wave amplitude
will decrease with increasing kI · x and the wave is known as an “evanescent” wave.
As an evanescent wave propagates through a medium of infinite extent, that is, x→ ±∞,
the wave amplitude decays to zero as kI · x→ ∞.

In undamped periodic media, the dispersion relation can be partitioned into discrete
“pass bands” (frequency ranges where at least one real-valued k exists) and “stop bands”
or “band gaps” (frequency ranges where all k are complex, i.e., all waves are evanescent).
Within a band gap, wave transmission in an unbounded medium is prohibited, because all
wave modes decay to zero amplitude.

However, it is not so straightforward to define band gaps in finite structures or in
damped periodic structures. In finite periodic structures created by truncating an infinite
structure, a nonzero transmission is observed at all frequencies, even within the band gap,
because e−kI ·x 6= 0 for any finite kI , x. In damped periodic structures, all k are complex,
so all wave modes are evanescent according to the traditional definition. In each of these
cases, the rate of spatial decay of the wave amplitude (which depends on kI) becomes
important for characterizing the effectiveness of the phononic crystal at suppressing wave
transmission. The developed evanescence indicator uses this basic concept of faster/slower
wave decay and links it to measurable physical quantities such as displacement or force, so
that band gaps in damped phononic crystals can be systematically defined.

2.2. Derivation of Evanescence Indicator

Our general approach to defining an evanescence indicator for damped systems is
as follows. First, we select a finite structure of reference for which the wave attenuation
is measured and choose a physical quantity (e.g., stress or displacement) as a measure of
wave amplitude. For concreteness, we study two examples in which the displacement at
a single point and the average displacement magnitude over several points are selected
to characterize the wave amplitude. Next, we approximate the wave amplitude for all
frequencies of interest using information directly extracted from the dispersion relation:
a weighted summation of the Bloch mode shapes, so that the contributions of all wave
modes are considered simultaneously. The amplitude is calculated at two locations (“input”
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and “output”) and the normalized transmission (output divided by input) is computed.
Finally, we define “fuzzy band gaps” using a threshold value of normalized transmission as
the criterion for fuzzy band gap existence: if the transmission is greater than the threshold
transmission, there is no fuzzy band gap, and if the transmission is less than the threshold
transmission, a fuzzy band gap is considered to exist. Two methods are discussed for
determining the weights in the summation of Bloch modes, because the correct calculation
of the weights is critical to accurately identifying the fuzzy band gaps.

Consider a structure which is infinitely periodic in the x-direction and of finite extent
in the y- and z-directions. The structure is excited by arbitrary forcing (prescribed forces
and/or displacements) at a real frequency ω. Bloch wave propagation occurs in the x-
direction only, so that k · x = kx, where the scalar k is the magnitude of the wavevector k.
As the Bloch wave modes form a basis for the displacement field, the total displacement
field of the wave can be expressed as a superposition of Bloch waves:

u(x, t; ω) = ∑
j

Aje
−kj,I xûj(x)ei(kj,Rx−ωt) , (3)

where Aj is the amplitude of the jth Bloch wave having wavenumber k j = k j,R + ik j,I
and mode shape ûj, and the summation is carried out over all Bloch modes existing at
frequency ω. As all Bloch wave modes occur in pairs (+k, −k) and the summation is over
all Bloch wave modes, waves propagating in both the +x and −x directions are present
in the summation, and the modal amplitudes Aj are chosen to give a physically realistic
solution (i.e., with Aj = 0 for physically unrealistic wave modes). We define the “input
displacement” as the displacement u(xi, t) of the structure at the point xi = [xi, yi, zi]

T

and the “output displacement” as the displacement u(xo, t) of the structure at the point
xo = [xo, yo, zo]T . Note that the terms “input” and “output” are chosen merely to reflect
the convention that transmission is output divided by input; the locations of xi and xo
are arbitrary and are left to the user to be chosen as appropriate for a given application.
As the dynamics of finite periodic structures are known to resemble the dynamics of
the corresponding infinite structure [32], we propose that the displacement at points
xn, n ∈ i, o in a finite periodic structure can be approximately expressed by Equation (3).
This approximation is made in order to link the information contained in the dispersion
relation to the finite structure upon which the fuzzy band gap definition is based. The
magnitudes of the displacements at the points xn are

|u(xn; ω)| =
∣∣∣∣∣∑j

Aje
−kj,I xn ûj(xn)eikj,Rxn

∣∣∣∣∣ , (4)

which forms the basis for our proposed evanescence indicator. Here, n is independently
taken as i, o to indicate that the displacement magnitude is evaluated at the points xi and xo.

To develop the definition of a fuzzy band gap, we first give an alternate definition of a
band gap. In infinite undamped periodic structures, band gaps are identified by seeking
frequencies ωBG where all Bloch wavenumbers k j are complex or imaginary. Placing the
input point xi at the origin and the point xo = [∞, 0, 0]T an infinite distance away on the
x-axis, it is clear that the the transmitted wave amplitude |u| is 0 within the band gap, as

lim
xo→∞

e−kj,I xo = 0 ∀ k j,I > 0 , (5)

and all wavenumbers have nonzero k j,I within the band gap. Therefore, a band gap can be
equivalently defined as a range of frequencies ωBG for which the displacement amplitude
transmitted through an infinite structure is equal to a threshold amplitude, namely 0,{

ωBG ∈ R
∣∣∣∣ lim
xo→∞

|u(xo, t; ωBG)| = 0
}

. (6)
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This definition is not amenable to damped structures because it would define a band
gap to exist at all frequencies, as all wavenumbers are complex in damped structures and
therefore decay to 0 as xo → ∞. Therefore, the first adaptation we make to this definition is
to place the output point xo a finite distance from the input point xi, rather than an infinite
distance. In particular, we place xo on the right boundary of a finite structure with N unit
cells: xo = Na (a denotes the lattice constant of the periodic structure). We refer to the finite
structure with N unit cells as the “finite structure of reference”. Relocating the output point
necessitates a second adaptation because the criterion of 0 transmitted wave amplitude
clearly cannot be satisfied for a finite structure, as e−kj,I xo > 0 for all finite xo. We therefore
introduce a threshold value of the normalized transmission, Tthres, as the criterion for fuzzy
band gap existence. Rather than requiring the displacement amplitude to be exactly zero,
we require it to be approximately zero, or more precisely, we require it to be less than or
equal to a small but nonzero number. The chosen value of the threshold transmission is
arbitrary, but it can be selected based on physical grounds, such as the noise floor of an
experiment, or the maximum allowable vibration amplitude of a structure for a desired
fatigue life. Fuzzy band gaps may now be determined in damped PCs using a definition
similar to that of band gaps in undamped PCs, with Tthres replacing 0 as the threshold
amplitude for defining a fuzzy band gap, and with xi = 0 and xo = Na taken on the left
and right boundaries, respectively, of the finite structure of reference, rather than placing
xo at infinity. Fuzzy band gaps are therefore defined as all frequencies ωBG satisfying{

ωBG ∈ R
∣∣∣∣ |u(xo; ωBG)|
|u(xi; ωBG)|

< Tthres

}
, (7)

where u(xo; ωBG) and u(xi; ωBG) are computed using Equation (4). From Equation (7),
we define the evanescence indicator φ for a finite structure of reference with N unit cells as

φ(ω; N, Tthres) =
1

Tthres

∣∣∣∣u(xo; ωBG)

u(xi; ωBG)

∣∣∣∣ . (8)

Note that for φ < 1, a fuzzy band gap is considered to exist. In contrast to the traditional
band gap definition (where the band gaps could be identified by analyzing each wave
mode individually as the transmitted amplitude of every wave mode must be 0 for the total
transmitted wave amplitude to be identically zero), the generalized fuzzy band gap defini-
tion requires the additive contributions of all wave modes to be considered together since
nonzero transmissions are allowed within the fuzzy band gap. The influence of damping
is implicitly captured in this evanescence indicator because the Bloch wavenumbers k j and
mode shapes ûj depend on the damping.

It is straightforward to compute e−kjxn , and it is assumed that ûj(xn) is known.
(Note that ûj can usually be computed while solving the eigenvalue problem that gives
the dispersion relation, e.g., by computing the eigenvectors of the transfer matrix or the
finite element, dynamic stiffness matrix.) However, the value of Aj, the excited amplitude
of wave mode j, is not readily apparent. Furthermore, the value of Aj cannot be selected
arbitrarily, as Aj determines the existence of polarized fuzzy band gaps. For example, if a
longitudinally-polarized fuzzy band gap (with displacements primarily in the x-direction)
is sought, the excited amplitude Aj should be very small for flexural- or torsional-type
Bloch waves, which effectively eliminates the contribution of the flexural or torsional
modes to the evanescence indicator. Therefore, a method to determine appropriate values
of Aj is required.

2.3. Propagated Bloch Mode Expansion

In this section, we propose a method by which the unknown coefficients Aj can be
estimated, which is based on the modal superposition method and inspired by the Reduced
Bloch Mode Expansion Method (RMBE) [16]. Consider an arbitrary finite metastructure
composed of N unit cells and having M dofs, which can be a discrete system or a discretiza-
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tion of a continuous system obtained using, e.g., the finite element method. Assuming
harmonic motion, the response of the structure is governed by

[D(ω)]u = f , (9)

where [D(ω)] is the dynamic stiffness matrix which captures the effects of inertia, damping,
and elastic forces; u is the vector of nodal displacements; and f is the vector of external
forces. The system is subject to arbitrary excitation at frequency ω: either a prescribed
displacement or force applied to each node. The system can be condensed to remove the
prescribed displacements, which yields the modified equation of motion:

[D′]u = f ′ , (10)

where [D′] is the condensed dynamic stiffness matrix and f ′ is a vector that collects the
effects of all prescribed forces and displacements.

In traditional modal superposition, the eigenmodes u∗ of the system are used to
transform the problem from the physical coordinates to a set of “modal” coordinates. If all
M eigenmodes are used, this transformation simply involves a change of basis to the
orthonormal basis consisting of the normal mode shapes, and the exact displacements can
be recovered. A good approximation may be obtained by using only a small subset of the
eigenmodes, which greatly reduces the computational cost of solving the system response
at many frequencies. The eigenmodes are typically chosen by considering those normal
modes whose eigenfrequencies are close to the frequency range of interest, as normal
modes with greatly differing frequencies will not be preferentially excited.

Here, we propose to modify the modal superposition approach, so that the set of
modal basis vectors is chosen not from the normal modes of the finite system, but rather
from the Bloch modes shapes determined from the dispersion relation at the frequency of
interest. This choice is motivated by many previous works which show that the dynamics
of a finite periodic system with a sufficient number of unit cells, closely approximates the
dynamics of the infinite system (see, e.g., in [32]). As the Bloch mode shapes are computed
only for a single unit cell, we create modal basis vectors ûj (j ∈ 1, 2, . . . , n) for the finite
structure by “propagating” a set of n Bloch mode shapes using the periodic extension of
ûj(x) and the Floquet propagator eikjx. We call these modal basis vectors “propagated
Bloch modes”. We then expand the displacement vector u in terms of the propagated
Bloch modes:

u = [P]a , (11)

where [P] =
[
û1 û2 . . . ûn

]
is an M× n matrix of the propagated Bloch modes and

a is a vector of amplitudes associated with each mode. Thus, the jth element of a is
Aj, the unknown coefficients required for the evanescence indicator. This “propagated
Bloch mode expansion” (PBME) is so-named in reference to the “reduced Bloch mode
expansion” (RMBE) [16], which similarly uses modal superposition of Bloch modes, but
for efficient computation of band structures. Substituting Equation (11) into Equation (10),
and premultiplying by the transpose [P]T of [P], yields

[D̃]a = f̃ , (12)

where [D̃] = [P]T [D′][P] is an n× n matrix and f̃ = [P]T f ′ is an n-element vector. Solving
Equation (12) gives the modal amplitudes Aj, which are used to compute the evanescence
indicator (Equation (8)).

2.4. Modal Participation Factor

The modal participation factor (MPF) is commonly used in structural dynamics in con-
junction with the modal superposition method to determine if a suitable set of eigenmodes
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have been included in the reduced system model. The MPF Γj,i measures the contribution
or “participation” of mode φj to state ψi [35,36]. The states are typically chosen as either
rigid-body translations ψTX, ψTY, ψTZ along the coordinate axes or rigid-body rotations
ψRX, ψRY, ψRZ about axes parallel to the coordinate axes. When the states are chosen in
this way, the MPFs give an indication of the excited amplitude of mode φj in response to
translational or rotational excitations in the specified direction. As the MPFs measure the
amplitude of a mode in response to a given polarization of excitation, they are a logical
choice for the modal amplitudes Aj in the weighted summation of Bloch modes. They also
allow us to study fuzzy band gaps with respect to hybrid polarizations, for example, by
choosing Aj = Γj,TY + Γj,RX to study fuzzy band gaps with respect to y-translation and
x-rotation.

2.4.1. MPF—Definition

The MPFs ΓT,i (i = X, Y, Z) for translations in the i direction are collected in the vector
Γj,T and are defined as

ΓT
j,T =

[
Γj,TX Γj,TY Γj,TZ

]
=

1
mj

φj[M][ΨT ] . (13)

Likewise, the MPFs ΓR,i (i = X, Y, Z) for rotations about the i axis are collected in the vector
Γj,R and defined as

ΓT
j,R =

[
Γj,RX Γj,RY Γj,RZ

]
=

1
mj

φj[M][ΨR] , (14)

where [M] is the system mass matrix, mj = φT
j [M]φj is the modal mass of mode φj,

[ΨT ] = [ψTX, ψTY, ψTZ] is a matrix of the rigid-body translation states, and [ΨR] =
[ψRX, ψRY, ψRZ] is a matrix of the rigid-body rotation states. It is convenient to parti-
tion the vectors φj and ψi as [uT , vT , wT ]T , where (u, v, w) are vectors containing the
dofs associated with displacements in the (x, y, z)-directions, respectively. Using this
partitioning, the rigid-body states can be defined as

ψTX = Lx

1
0
0

 ψTY = Ly

0
1
0

 ψTZ = Lz

0
0
1

 (15)

ψRX = θx

 0
−(z− 1z0)

y− 1y0

 ψRY = θy

 z− 1z0
0

−(x− 1x0)

 ψRZ = θz

−(y− 1y0)
x− 1x0

0

 (16)

where Lx, Ly, Lz represent unit displacements in the coordinate directions, θx, θy, θz repre-
sent unit rotations about axes parallel to the coordinate axes and passing through the point
(x0, y0, z0), and 0 and 1 are vectors of zeros and ones, respectively. For the magneto-active
metastructures used in Section 4 to demonstrate the use of the evanescence indicator for
real and highly viscoelastic PCs, it is found that high-frequency modes have low MPFs due
to their low effective mass, because they primarily involve motion of the exterior lattice
structure. Thus, to identify the primary translational and rotational polarization of each
mode, it is convenient to define the normalized MPF vectors Γ̂j,T and Γ̂j,R:

Γ̂j,T =
[
Γ̂j,TX Γ̂j,TY Γ̂j,TZ

]
=

Γj,T∣∣Γj,T
∣∣ Γ̂j,R =

[
Γ̂j,RX Γ̂j,RY Γ̂j,TZ

]
=

Γj,R∣∣Γj,R
∣∣ (17)

2.4.2. MPF Scaling—Translations and Rotations

From Equation (13) and Equation (14) and the definitions of the rigid-body states
(Equation (15) and Equation (16)), it is evident that the translational and rotational MPFs
are inversely proportional to the amplitude of modes φj and proportional to the ampli-
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tude of the rigid-body states ψ. In regard to the former observation, if a different mode
normalization φ′j = ajφj is chosen, the modal mass becomes m′j = a2

j mj, and the modal
participation factors become

Γ′j,T =
1

m′j
φ′j[M][ΨT ] =

1
aj

Γj,T Γ′j,R =
1

m′j
φ′j[M][ΨR] =

1
aj

Γj,R . (18)

Upon substituting Γ′j = Γj/aj for the modal amplitude Aj and φ′j for the Bloch mode shape
ûj in Equation (4) (ûj being the continuous-system equivalent of φ′j), the same displacement
field is obtained as when Γj and φj are used. This shows that the displacement field given
by Equation (4) is independent of the mode normalization when using MPFs as the modal
amplitudes Aj, which is a desired result because the mode normalization is arbitrary.

On the other hand, the dependence of the MPFs on the rigid-body amplitudes initially
seems undesirable, because the rigid-body amplitudes depend on the arbitrary parameters
Lx, Ly, Lz, θx, θy, θz. In addition, the amplitude of the rigid-body rotation states ψRi also
implicitly depends on the dimensions of the structure, because the terms x− x0, y− y0, z−
z0 are on the order of the dimensions of the structure. This is especially significant when
studying multi-polarized fuzzy band gaps (e.g., Section 4 where we study fuzzy band gaps
with simultaneous y-translations and x-rotations), because the structure dimensions can
introduce a scaling mismatch between ψTi and ψRi. For example, when using standard SI
units, the unit displacements Lx, Ly, Lz could be chosen as 1 m and the unit rotations θx, θyθz
as 1 rad. For a structure with dimensions on the order of tens of millimeters, the terms
(x− x0), (y− y0), (z− z0) in Equation (14) are also of order 10 mm. As Lx, Ly, Lz are 100
times larger than (x− x0), (y− y0), (z− z0), it follows that Γj,T ≈ 100Γj,R. The rotational
contribution would thus be unintentionally obscured when choosing Aj = Γj,Ti + Γj,Ri.
To ensure that all polarizations are properly accounted for, it is recommended to choose
the rigid-body amplitudes Lx, Ly, Lz, θx, θy, θz so that the displacements involved in the
rigid-body rotations are on the same order of magnitude as the rigid-body translations.
The rigid-body amplitudes can also be set equal to the “input” excitation measured in
experiments, as discussed further in Section 4.

3. Example 1: Diatomic Lattice

To validate the developed evanescence indicator, we apply it to two example systems
which are discussed in the literature. First, to illustrate the basic features of the evanescence
indicator, we apply it to a simple discrete 1D system: the diatomic lattice [14,20,37], which
we modify from its usual undamped configuration to include viscoelastic springs in order to
illustrate the application of the evanescence indicator to damped systems. Later, in Section 4,
we apply it to a more complex case of magneto-active metastructures [11], which provided
some of the initial impetus for this work, and demonstrate that the evanescence indicator
can correctly predict polarized fuzzy band gaps in damped PCs with 3D geometries.

As shown in Figure 1, the 1D viscoelastic diatomic lattice is characterized by a unit cell
with masses m1 and m2, separated by distance a0 and connected by springs with stiffness β.
Thus, the lattice constant a is 2a0. To validate the indicator for damped as well as undamped
systems, the springs are assumed to be viscoelastic, with the spring stiffness characterized
by a complex number β = β0eiδ, where β0 is the magnitude of the spring stiffness and the
loss angle δ is varied to control the dissipation of the lattice without changing the spring
stiffness. δ = 0 corresponds to an undamped lattice.
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p

β β
uL uI uR

fL fR
m1 m2

a0 a0

Figure 1. Schematic of a 1D diatomic lattice. The pth unit cell is shown, with lattice spacing a0, masses
m1 and m2, viscoelastic springs β, and subject to forces fL and fR on the left and right boundaries. uL,
uR, and uI are the displacements of the left and right boundaries and the internal dof, respectively.

We use the transfer matrix method to solve for the dispersion relation of the lattice.
The transfer matrix links the left boundary forces and displacements from the pth unit cell
to the p + 1 unit cell according to

[T]
{

uL
fL

}(p)

=

{
uR
− fR

}(p)

=

{
uL
fL

}(p+1)

, (19)

where uL (uR) and fL ( fR) are the displacements and forces, respectively, on the left (right)
side of the unit cell, and

[T] =

 1− ω2m1
β

2β−ω2m1
β2

−ω4m1m2−βω2(m1+m2)
β

ω4m1m2−βω2(m1+2m2)+β2

β2

 (20)

is the transfer matrix. We prescribe real frequencies ω and compute the complex wavenum-
ber k and mode shapes û from the eigenvalues and eigenvectors of the transfer matrix.
We use the PBME method to determine the modal amplitudes and compute the evanes-
cence indicator. For the purposes of illustration, we choose m1 = 1, m2 = 2, β0 = 1,
a0 = 0.5, and an input displacement amplitude u0 = 0.01. All results are presented in
terms of the normalized angular frequency ω/ω0, where ω0 =

√
2β0/m2 is the lower edge

frequency of the first band gap for the undamped PC. We vary the parameters δ, N, and
uthres to study their effect on the computed evanescence indicator and the fuzzy band gaps.
All results are presented in terms of normalized transmission amplitudes T = u(Na)/u0
and Tthres = uthres/u0. To verify that the true displacement at unit cell N is accurately
captured by a summation of Bloch modes with the computed modal amplitudes, we also
compute the true response of the finite structure by constructing the dynamic stiffness
matrix including all degrees of freedom, applying appropriate boundary conditions, and
inverting the dynamic stiffness matrix.

The evanescence indicator is shown in Figure 2 for a finite structure of reference with
N = 5. In each plot (a–c), the effect of the threshold displacement amplitude uthres on
the fuzzy band gaps is shown by varying uthres = 10−3, 10−4, 10−5, which corresponds to
threshold transmission amplitudes Tthres = 10−1, 10−2, 10−3, respectively. The Tthres values
are plotted as horizontal dashed lines and per the generalized fuzzy band gap definition,
a fuzzy band gap is defined to exist at any frequency where the evanescence indicator
falls below Tthres. As in [22,24], we use a shading model to visualize the evanescence
indicator. In our model, regions with transmission T > Tthres are shaded white, indicating
that no fuzzy band gap exists at that frequency. Regions with transmission T < 0.1Tthres
are shaded with a solid color, and intermediate values 0.1Tthres < T < Tthres are assigned
shades between white and the solid color, so that shaded bars indicate the fuzzy band
gaps. This luminance-based shading scheme is an intuitive choice for representing relative
values of data [38], and it enables ready visual identification of band gaps while also
illustrating how the wave amplitude progresses through smooth transitions near the fuzzy
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band gap edges. If the threshold value is based on an engineering requirement, such as the
maximum allowable vibration amplitude in a structure, the “darkness” of the shading can
be interpreted as the factor of safety of the system against the given requirement. White
regions indicate a factor of safety of 1 or less, dark regions indicate a factor of safety of 10
or more, and intermediate shades indicate a factor of safety between 1 and 10. The shading
near the fuzzy band gap edges is reminiscent of out-of-focus photos due to the lack of
sharp contrast. This gives rise to the moniker “fuzzy band gaps”, as out-of-focus photos
are often colloquially described as “fuzzy”.

From Figure 2, it is evident that the existence of fuzzy band gaps is dependent on the
selected value of Tthres. For example, in panel (a), a fuzzy band gap exists between 1.05–
1.24ω0 for Tthres = 10−1 because the evanescence indicator (black dashed line) falls below
Tthres = 10−1 (blue dotted line) in that frequency range. However, when the threshold
transmission is selected as Tthres = 10−2 or Tthres = 10−3, there is no fuzzy band gap,
because the trough in the evanescence indicator is not deep enough to reach Tthres = 10−2

or Tthres = 10−3 (orange and green dotted lines). The existence/nonexistence of fuzzy band
gaps is also readily apparent from the shaded bars, as the light blue shaded region between
1.05–1.24ω0 indicates a fuzzy band gap, while the lack of any orange or green shading
in the same frequency range shows that no fuzzy band gap exists for those threshold
amplitudes.

In addition to determining the existence of fuzzy band gaps, the threshold amplitude
also affects the frequencies at which fuzzy band gaps occur. For example, in panel (a),
the edge of the high-frequency fuzzy band gap increases in frequency from 1.74ω0 to
1.77ω0 to 1.83ω0 as Tthres is varied from 10−1 to 10−2 to 10−3, as determined by locating the
intersection of the evanescence indicator curve with the horizontal dotted lines that indicate
the selected threshold amplitudes. This gives the shaded bars a stair-step appearance.
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Figure 2. Effect of threshold amplitude and loss factor δ on the fuzzy band gaps of a 1D viscoelastic
diatomic lattice: (a) δ = 0, (b) δ = 0.1, and (c) δ = 0.3. Solid black lines: evanescence indicator; dashed
black lines: transmission through N = 5 finite structure computed using full set of DOFs; dotted
lines: three selected values of the threshold transmission Tthres: Tthres = 10−3 (blue), Tthres = 10−4

(orange), and Tthres = 10−5 (green). Shaded bars indicate fuzzy band gaps for the Tthres value of the
corresponding color.

Figure 2 also reveals how the loss factor δ affects the existence, position, and width of
the fuzzy band gaps. Conferring with Figure 2a for the undamped case, it can be seen that a
fuzzy band gap exists between 1.05 and 1.24ω0. As the dissipation in the lattice is increased
to δ = 0.1, the width of the fuzzy band gap increases to 0.97–1.33ω0. The trough is deeper
than for the undamped case, so the structure of reference meets the threshold amplitude
with a greater margin, and thus the shading is darker than for the undamped fuzzy band
gap. However, the trough is still not sufficiently deep to meet the Tthres = 10−2, 10−3

threshold amplitudes, and so a fuzzy band gap is not formed for those cases. As the
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dissipation is further increased by increasing the loss factor to δ = 0.3 (Figure 2c), the two
fuzzy band gaps which existed for the Tthres = 10−1 case merge into a single high-frequency
fuzzy band gap starting at 0.86ω0. This is the result of the disappearance of the optical pass
band, which is much more strongly affected by damping than the acoustic pass band [14].
The disappearance of the optical pass band causes a large decrease in the edge frequency
of the single fuzzy band gap identified for Tthres = 10−2 and Tthres = 10−3. Finally, it is
apparent that the fuzzy band gaps become “fuzzier” with increasing dissipation, that
is, the shaded transition from white to solid color becomes wider as the dissipation is
increased. This is a result of the slope of the evanescence indicator curve near the fuzzy
band gap edges becoming less steep with increasing dissipation. This, in turn, is caused by
increasingly smooth transitions in the kI band structure as δ is increased.

Figure 3 shows how the number of unit cells N in the finite structure of reference
affects the fuzzy band gaps. For N = 5 (Figure 3a), there are two fuzzy band gaps when
Tthres = 10−1 and only one fuzzy band gap when Tthres = 10−2 and 10−3, as discussed
previously. However, when N is increased to 10 (Figure 3b), the two fuzzy band gaps
observed for Tthres = 10−1 merge into a single fuzzy band gap, while for Tthres = 10−2,
a new fuzzy band gap opens between 1.0–1.37ω0. This behavior is expected, as the
additional length of the N = 10 structure of reference allows for a greater loss of amplitude
by the decaying waves as they propagate [32,33]. Figure 3b also illustrates an interesting
feature of the shading approach: the ability to identify near-passbands. Though the N = 10
structure exhibits a single fuzzy band gap for all frequencies greater than 0.9ω0 when
Tthres = 10−1, the peak in the evanescence indicator at 1.47ω0 nearly reaches the threshold
amplitude. This is visualized by a region of lighter blue color centered around 1.47ω0.
The same phenomenon is observed for N = 20 and Tthres = 10−3 in Figure 3c. Finally, it
is observed that increasing N tends to decrease the “fuzziness” of the fuzzy band gaps,
because the wave attenuation is magnified by the increased number of unit cells, resulting
in steeper rolloffs at the fuzzy band gap edges.
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Figure 3. Effect of threshold amplitude and the size of the structure of reference N on the fuzzy band
gaps of a 1D viscoelastic diatomic lattice with δ = 0.1: (a) N = 5, (b) N = 10, and (c) N = 20. Solid
black lines: evanescence indicator; dashed black lines: transmission through N = 5 finite structure
computed using full set of DOFs; dotted lines: three selected values of the threshold transmission
Tthres: Tthres = 10−3 (blue), Tthres = 10−4 (orange), and Tthres = 10−5 (green). Shaded bars indicate
fuzzy band gaps for the Tthres value of the corresponding color.

To confirm the accuracy of the propagated Bloch mode expansion method, we com-
pare the evanescence indicator with the true displacement of the N-cell finite structures,
computed using the full set of dofs for the finite structure. For each case of δ and N in
Figures 2 and 3, the normalized displacement amplitude for mass m2 of cell N is plotted
with a black dashed line. In general, the evanescence indicator agrees with the true dis-
placement within half a decade or less. The agreement is nearly perfect for frequencies
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less than 0.75ω0 in all cases, with the largest deviation observed in the frequency range of
the optical mode. The deviation decreases as the loss factor is increased, with a maximum
deviation of 5.9 dB for N = 5 and δ = 0.3, compared to a maximum deviation of 21.2 dB
for N = 5 and δ = 0.0. Interestingly, the deviation between the evanescence indicator
and the true displacement is almost unaffected by changing the number of unit cells N,
with a maximum deviation of 10.1dB for each of the cases shown in Figure 3. At first
glance this seems counterintuitive, as the PBME method applied to this system essentially
consists of reducing a (2N + 1)-dof structure to two dofs, and increasing N therefore results
in a greater reduction in the number of dofs, which would be expected to give a worse
approximation. However, increasing the number of dofs in the finite structure causes its
dynamics to more closely resemble the dynamics of the infinite system, making the Bloch
modes more closely resemble the modes of the finite structure. These competing effects
appear to cancel out, allowing the PBME method to model arbitrarily large structures with
only two dofs.

Figure 4 illustrates how the evanescence indicator and fuzzy band gap shading can
be used to simplify the presentation and interpretation of damped dispersion relations.
For the undamped lattice (Figure 4a), the band gaps can be easily identified using either of
two methods: by locating frequency ranges where kR is 0 or π/a, or by locating frequency
ranges where kI is nonzero. However, the introduction of damping changes the eigenmodes
and causes the band gap to close (Figure 4b), as the acoustic and optical modes for kR
are no longer distinct but instead meet at the edge of the first Brillouin zone, and kI is
nonzero for all frequencies. This has been noted before in the literature, see, e.g., in [12]. In
the damped case, it is thus necessary to present both the real and imaginary parts of the
wavenumber to understand the wave propagation behavior.
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Figure 4. Band structure for the 1D viscoelastic diatomic lattice: (a) δ = 0 and (b) δ = 0.1. Fuzzy
band gaps computed with N = 10, Tthres = 10−2 are shown for (c) δ = 0, (d) δ = 0.1, and (e) δ = 0.3.

In contrast with the complicated picture of wave propagation painted by Figure 4a,b,
Figure 4c–e provides a much clearer picture of the wave behavior. The evanescence
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indicator is computed for N = 10, Tthres = 10−2 for three different loss factors, and the
fuzzy band gap shading is plotted directly on the dispersion relation using the same
shading model as in Figures 2 and 3. The fuzzy band gaps are clearly visible from the
shaded regions, even for the damped lattices where the fuzzy band gap edges cannot be
inferred from the dispersion curves alone (Figure 4d,e). In addition, it is not necessary
to present the imaginary part of the wavenumber to give a clear picture of the wave
propagation behavior because the essential information about the decay of the wave
amplitude is captured by the fuzzy band gap shading, which reduces the complexity of
the figure. Interestingly, the fuzzy band gap identified by the evanescence indicator for
the undamped lattice (shaded region in Figure 4c) is noticeably narrower than the band
gap identified by the traditional means (which exists between ω0 and

√
2ω0). This can

be explained by referring to the imaginary part of the wavenumber shown in Figure 4a.
Near the edges of the band gap, kI is close to 0, which gives a slow spatial decay that is
not sufficient to cause the transmission to fall below Tthres within N = 5 unit cells. The
evanescence indicator thus provides a more practical assessment of the effectiveness of the
lattice for suppressing vibrations than the traditional method of identifying band gaps.

4. Example 2: Magneto-Active Metastructures

We now apply the evanescence indicator to a damped PC with a complex 3D geometry:
a magneto-active metastructure. These structures were studied in [11], and are based on a
unit cell which consists of a lattice surrounding a large included mass. The metastructure
is composed of magneto-active elastomer (MAE), a smart material composed of magnetic
particles in a non-magnetic elastomer matrix which exhibits an increase in modulus in
the presence of a magnetic field [39,40]. Prior work showed that the tunable modulus
enabled the metastructure to exhibit a magnetically-tunable, longitudinally-polarized
band gap [11]. For more details on the geometry of these structures and their magnetic
tunability, the reader is referred to the prior article [11]. In the present work, we show
that the evanescence indicator is able to accurately predict the longitudinally-polarized
band gaps shown in [11], as well as flexural and torsional band gaps that have not been
previously studied.

4.1. Materials and Methods

The MAE metastructures studied in [11] used a direct-ink write additive manufac-
turing process to fabricate metastructures in two geometries with different lattice config-
urations, termed “low-stiffness” and “mid-stiffness”. In the present work, for simplicity
of presentation we include results only for the low-stiffness geometry described in [11],
but the method is also applicable to the mid-stiffness geometry. The MAE consisted of
spherical carbonyl iron particles (3 µm average diameter, US1163M; US Research Nano-
materials, Houston, TX USA) and poly(dimethylsiloxane) (PDMS) elastomer (Sylgard 184;
Dow Corning, Midland, MI USA) combined in an 8:1 weight ratio. Using a mixture rule, we
computed the MAE density ρ to be 4500 kg/m3. Prior dynamic compression experiments
on cylindrical samples of MAE characterized the frequency-dependent complex modulus
E∗(ω) = E′(ω) + iE′′(ω), and the following curve fits were extracted [11].

E′(ω) = 1.73× 104ω + 2.76× 107 Pa

E′′(ω) = 6.27× 103ω + 8.95× 106 Pa (21)

To compute the band structure of the MAE metastructures, we use two approaches.
First, we repeat the results in [11], in which we used an indirect ω(k) FEM approach which
was modified to include the frequency dependence of the complex modulus |E∗(ω)| =√

E′(ω)2 + E′′(ω)2 but neglected viscoelasticity. In the present work, we use the band
structure obtained in [11] and study fuzzy band gaps with respect to three different wave
polarizations: “longitudinal” waves with displacements primarily in the x-direction, “flex-
ural” waves with displacements primarily in the y-direction that resemble beam bending,
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and “torsional” waves with displacements resembling rotations about the x-axis. To iden-
tify the polarized band gaps, we compute the MPF for the polarization of interest for
each mode, and manually select the subset of modes for which the MPF is greater than
half of the maximum MPF for that polarization. From the chosen subset of modes, we
identify band gaps for the polarization of interest. This method was used in [11] to identify
longitudinal band gaps. In this article, we further use this method to identify flexural band
gaps and henceforth refer to it as the “MPF inspection method”. To compute the damped
band structure, we use a direct k(ω) FEM approach following the method of [24], which
considers both the frequency dependence and damping of the MAE through the complex
modulus (Equation (21)). The k(ω) method is implemented by modifying the standard
eigenvalue formulation of a commercial FEM software package (COMSOL Multiphysics).
The COMSOL model files for the modified formulation are provided in the publicly avail-
able dataset that accompanies this article. We extract the Bloch wavenumbers k and mode
shapes û(x) from the FEM solution and compute the evanescence indicator to determine
the fuzzy band gaps. To compute the evanescence indicator for longitudinally-polarized
waves, we choose the input and output as the x-component of displacement, with the input
taken at a single point on the x = 0 face of the metastructure, and the output taken at a
single point on the opposite face. The points are taken at the same location as the point
selected for the experiments and simulations in [11]. To compute the evanescence indicator
for flexurally-polarized waves, we choose the input as the average y-displacement of nine
points and the output displacement as the average y-displacement of 11 points as shown in
Figure 5b.

To experimentally verify the evanescence indicator, we characterized the band gaps
in the metastructures by performing vibration transmission measurements on the finite
metastructure specimen (N = 5) fabricated in [11]. In [11], we characterized longitudinal
band gaps using an electrodynamic shaker (Model 4810; Brüel and Kjær, Nærum, Denmark)
to excite longitudinal vibrations in the metastructure in a forced-free configuration, and
measured the out-of-plane (x) velocity at both ends of the metastructure using a laser
Doppler vibrometer (Model OFV-5000 with OFV-505 single point laser head; Polytec,
Waldbronn, Germany) and lock-in amplifier (Model SR830; Stanford Research Systems,
Sunnyvale, CA USA). We computed vibration transmission as the ratio of the output and
input velocities. The experimental results for longitudinal excitation are taken from the
work in [11], and complete details of the experimental setup for longitudinal waves can be
found in that article.

In the present work, we also characterized hybrid flexural-torsional band gaps using
the frequency sweep bending setup of the work in [29]. We attached the metastructure
(Figure 5(a1)) to an acrylic block using two-part epoxy adhesive, and then attached the
acrylic block to a linear guide (Figure 5(a3)) to allow translations in the y-direction. The
acrylic block was attached to the linear guide with a single screw at the center axis of the
block, which allowed the block to rotate about an axis parallel to the x-axis. The displace-
ment imparted to the metastructure by the acrylic block thus consisted of a superimposed
translation and rotation. The linear guide was excited with harmonic displacements
using an electrodynamic shaker (Model 4809; Brüel and Kjær, Nærum, Denmark, see
Figure 5(a2)), and the out-of-plane (y-direction) velocity v̇ of the metastructure was mea-
sured using a laser Doppler vibrometer (Polytec OFV-5000). The “input” velocity was taken
as the average of nine points on the acrylic block (Figure 5(b2)) and the “output” velocity
was taken as the average of 11 points on the free end of the metastructure (Figure 5(b1)). To
characterize the frequency response of the input translation and rotation, we decomposed
the input mode shape (formed by the nine input velocities; see Figure 5c) into its constituent
translation and rotation (Figure 5d) for each frequency studied.
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Figure 5. Experimental determination of wave transmission in a magneto-active elastomer (MAE)
metastructure for transverse excitations. (a) Side view of experimental setup. Metastructure (a1)
is excited by an electrodynamic shaker (a2). A linear guide (a3) confines displacement to the y-
direction. (b) Front view of metastructure indicating nine input measurement locations (b2) on
the acrylic block and 11 output measurement locations (b1) on the free end of the metastructure.
(c) Frequency spectrum of the input velocities. Divergence of the input velocities above 1.25 kHz
indicates the emergence of rigid body rotation. (d) Input mode shape at 1.5 kHz: black—experimental
velocity; blue—rigid body translation; orange—rigid body rotation; white markers and dashed line—
superposition of rigid body translation and rotation.

To further verify the evanescence indicator, we computed the vibration transmission
through an N = 5 cell finite structure using FEM simulations. The viscoelastic and dynamic
properties of the MAE were modeled using the density ρ and complex modulus E∗(ω)
obtained for the real MAE material. For longitudinal excitation, we take the results in [11],
which were obtained by prescribing a uniform displacement in the x-direction on the input
(x = 0) face of the metastructure and measuring the output displacement at the same point
on the metastructure as in the experiments. In the present work, we set up the FEM model
in a similar fashion to study flexural, torsional, and flexural-torsional excitation. Instead of
x-displacements, we prescribe displacements on the input face of the metastructure that are
appropriate to each polarization: uniform y-displacement for flexural waves, rotation in the yz-
plane about the center of the x = 0 face for torsional waves, and y-translation plus yz-rotation
for flexural-torsional excitation. For the flexural, torsional, and flexural-torsional simulations,
we computed the input and output displacements in the same way as the experiments: by
averaging the displacement amplitude over the input and output points shown in Figure 5b.
We study the fuzzy band gaps only for N = 5 as the specimen used in the experiments
consists of N = 5 unit cells, but it is expected that the MAE metastructure fuzzy band gaps
will exhibit a similar dependence on N as the diatomic lattice.
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4.2. Results

The damped and undamped dispersion relations for the MAE metastructure are
shown in Figures 6 and 7. Figures 6a and 7a present the damped dispersion relation, while
Figures 6b and 7b present the undamped dispersion relation. Comparing the damped
dispersion relation to the undamped dispersion relation shows the effect of damping on
the band structure. Each of the undamped dispersion curves (Figure 6b) starts and ends
at the edges of the first Brillouin zone (k = 0 and k = π/a) and all wavenumbers are
real. Each dispersion curves exists only over a limited frequency interval, so it is possible
to identify band gaps that lie between the upper frequency of one Bloch mode and the
lower frequency of another. In contrast, the damped dispersion curves (Figure 6a) do not
have frequency limits; each curve exists over all frequencies and therefore it is not possible
to identify band gaps in the usual manner. Furthermore, all wavenumbers are complex
(rather than real as in the undamped case), with the real (kR) and imaginary (kI) parts of
the wavenumber shown on separate axes in Figures 6a and 7a. As the MAE metastructure
admits Bloch wave modes with many polarizations, the relevant modes are identified
by computing the MPF for each Bloch mode shape and coloring the dispersion curves
accordingly. The modes colored yellow or green in Figures 6a,b and 7a,b have strong
longitudinal and transverse polarizations, respectively, while modes colored blue or purple
are not significant to those polarizations.

4.2.1. Undamped Band Gaps

Figure 6 presents the results for longitudinally-polarized waves. The undamped
dispersion relation and the experimental and simulated transmission reported in [11]
are shown in Figure 6b,c. It is clear that the experimental band gap is a polarized band
gap, as the only complete band gap in the dispersion relation (near 1250 Hz) is very
narrow and higher in frequency than the experimental band gap. The MPF inspection
method is used to identify the longitudinal band gap. Each data marker in Figure 6b is
colorized by ΓTX , and the shading is chosen so that modes which do not meet the criteria
for a longitudinal mode (i.e., ΓTX less than half the maximum value; ΓTX < 0.315]) are
colored dark purple. From the subset of longitudinal modes (those with blue-green-yellow
coloration), a longitudinally-polarized band gap between 717 and 1457 Hz (Figure 6b)
is found, which approximately corresponds with the experimental band gap. The low-
frequency edge of the band gap in Figure 6b exhibits very good agreement with the
low-frequency edge of the transmission trough for both the experimental and simulated
transmissions in Figure 6c. However, the undamped band gap is much wider (740 Hz) than
the width of the experimental transmission trough (approximately 400 Hz). As damping
strongly affects the real part of the dispersion relation [12], the undamped band structure is
not expected to be a good predictor of the behavior of the damped MAE metastructure. This
suggests that the overlap of the undamped longitudinal band gap and the experimental
transmission trough may be purely coincidental.

This notion is further supported by the complete lack of correspondence between
the undamped band gaps and experimental results for other polarizations. In particular,
no such correspondence is observed for flexural-rotational excitation (Figure 7b,c). The
undamped dispersion relation of Figure 6b is repeated in Figure 7b, but in Figure 7b the
colorization of the modes is based on ΓTY rather than ΓTX to highlight flexurally-polarized
waves. To identify flexural band gaps, all modes colored dark purple in Figure 7b are
ignored and gaps are sought between the remaining modes. This process gives two
band gaps at 549–724 Hz and 1246–1274 Hz. The wider of these band gaps is lower in
frequency than the longitudinal band gap, which is in keeping with the observations
in [27] for similar geometries. Above 724 Hz, there are modes with significant flexural
polarization everywhere except in the narrow band gap at 1246 Hz, which indicates that
the metastructure should transmit flexural waves at high frequencies. However, the
experimental and simulated transmission show that the opposite is true: the metastructure
attenuates flexural waves above 1000 Hz. This contradiction between the undamped
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band gap and experimental results shows that the undamped MPF inspection method
cannot reliably predict polarized band gaps in damped systems. We therefore reiterate the
importance of considering damped band structures when comparing with experimental
results. As we show next, applying the MPF inspection method to the damped band
structure raises several challenges, which illustrates the utility of the evanescence indicator.
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Figure 6. MAE metastructure results for longitudinally-polarized waves. (a) Damped dispersion relation, with the hue of
each point determined by Γ̂TX for the corresponding Bloch mode shape, and the transparency determined by kI , as shown
in the colorbar above the plot. “Frustrated” modes have kR = 0, kI > 0 at ω = 0. The “equal evanescence point” (EEP)
between the resonator and first frustrated mode is indicated by the arrow. (b) Undamped dispersion relation, with the hue
of each point determined by ΓTX as shown in the colorbar above the plot. The longitudinal band gap is shaded in gray. (c)
Transmission through an N = 5 finite structure: blue line—FEM, orange line—experimental. In panels (a,b), modes with a
strong longitudinal polarization are colored yellow or green while other modes are colored blue or purple. In panels (a,c),
fuzzy band gaps are computed using the evanescence indicator with N = 5 and Tthres = 10−3, and the dashed blue line in
panel (c) indicates Tthres.
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Figure 7. MAE metastructure results for transverse (y)-polarized waves. (a) Damped dispersion relation, with the hue
of each point determined by the maximum value of Γ̂TY and Γ̂RX for the corresponding Bloch mode shape, and the
transparency determined by kI , as shown in the colorbar above the plot. (b) Undamped dispersion relation, with the hue of
each point determined by Γ̂TY as shown in the colorbar above the plot. The transverse-polarized band gaps are shaded in
gray. (c) Transmission through an N = 5 finite structure: blue line—FEM, orange line—experimental. In panels (a,b), modes
with a strong transverse polarization are colored yellow or green while other modes are colored blue or purple. In panels
(a,c), fuzzy band gaps are computed using the evanescence indicator with N = 5 and Tthres = 10−3, and the dashed blue
line in panel (c) indicates Tthres.

4.2.2. Damped MPF Inspection Method

Figures 6a and 7a show the damped band structure for the MAE metastructures,
from which the limitations of the MPF inspection method for damped band structures are
evident. In Figure 6a, the data markers are colored to highlight longitudinally-polarized
waves, while in Figure 7a the data markers are colored to indicates modes with either a
flexural or rotational polarization. In each of these figures, the normalized MPF Γ̂ is used
instead of the non-normalized MPF Γ, because Γ is much smaller at high frequencies than
at low frequencies due to the decay of the high-frequency waves. Using Γ for the marker
color would thus give the erroneous impression that there are no longitudinally-polarized
modes at high frequencies, and therefore Γ̂ is a better polarization indicator. Furthermore,
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the process of normalizing ΓT and ΓR removes the scaling difference between the rotational
and translational MPFs (Section 2.4.2) so that they can be compared. Figure 6a shows
that there are three modes (shown in yellow) with a significant longitudinal polarization.
In addition, there is a fourth mode (kI ≈ 0.2π/a at 2000 Hz) for which the longitudinal
polarization is not significant at low frequencies but becomes significant above 1750 Hz, as
evidenced by the data points turning green above 1750Hz. Each of these four dispersion
curves is smooth and continuous across the range of frequencies studied, exhibiting no
band gaps.

At low frequency, longitudinal wave transmission is dominated by a single mode
(kR ≈ 0.5π/a at 500 Hz), the longitudinal “resonator” mode with displacements concen-
trated in the large included mass. The other three longitudinal modes are purely evanescent
(kR = 0, kI 6= 0) at ω = 0 and strongly decaying at low frequencies, having much larger |kI |
than the resonator mode. In undamped systems, such modes are purely evanescent below
a cut-off frequency and become propagating modes above the cut-off frequency, and can be
physically likened to “frustrated diffracted waves” in diffraction gratings [26]. In damped
systems such as the MAE metastructures, the wavenumber for these “frustrated modes”
takes on a nonzero real part for all ω > 0, although the modes remain strongly decay-
ing at low frequencies [12] and thus have a negligible contribution to wave transmission.
However, they become more propagative at higher frequencies than at low frequencies,
due to their increasing kR and decreasing kI . Conversely, the resonator mode, which is
initially propagative, becomes more evanescent at high frequency than at low frequency,
with an especially rapid increase in |kI | occurring above 500 Hz. This eventually causes the
frustrated modes to usurp the resonator mode as the dominant contributors to longitudinal
wave transmission. The “equal evanescence point” (EEP), defined as the frequency where
kI is equal for both the resonator mode and the frustrated mode, occurs at about 820 Hz,
as shown in Figure 6a. This falls within the experimental and simulated transmission
troughs shown in Figure 6c, which suggests that this type of “dominant-mode transition”
is responsible for the emergence of fuzzy band gaps in damped PCs. To aid in identifying
dominant-mode transitions, the transparency of each data point is made proportional to
the imaginary part of the wavenumber. This makes highly evanescent waves appear faint,
indicating that their contribution to the total transmitted wave amplitude is insignificant.
Increases in |kI | are represented by transitions from opaque to transparent data markers,
making modes “disappear”, as, for example, the resonator mode above 1150 Hz. The re-
sults for flexural-torsional modes (Figure 7a) exhibit many of the same features as for
longitudinal modes, including mode appearance and disappearance and dominant-mode
transitions. Due to the inclusion of both flexural and torsional modes, a larger subset of
modes are identified as significant than in the longitudinal case, as evidenced by the larger
number of dispersion curves highlighted in yellow in Figure 7a than in Figure 6a.

The damped MPF inspection method of prescribing marker color and transparency
is useful as a heuristic illustration of the features of a damped band structure that govern
fuzzy band gap formation in damped PCs, but is less useful as a quantitative measure of
the fuzzy band gap frequencies. The coloration of each data marker, which classifies a
mode as significantly or not significantly polarized in the direction of interest, is dependent
on an arbitrary parameter: the threshold value of Γ̂. Likewise, the transparency of each
marker, which indicates the decay of each wave mode, is also affected by an arbitrary
parameter: the value of |kI | which is assigned to be fully transparent (chosen as |kI | = π/a
in Figures 6a and 7a). Additionally, using the normalized MPF Γ̂ as an indicator of wave
polarization removes the possibility of comparing the relative amplitudes of different
modes at the same frequency.

4.2.3. Evanescence Indicator: Longitudinal Fuzzy Band Gaps

In light of these limitations of the damped MPF inspection method, the utility of the
evanescence indicator becomes apparent. Using the MPF for translations in the longitudinal
(x) direction (Γj,TX) to compute the modal amplitudes Aj, and considering an N = 5 finite
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structure of reference, we compute the evanescence indicator for longitudinal excitation.
Choosing Tthres = 10−3, we plot a contour map of the evanescence indicator using the
same shading approach as before, where φ(ω) ≥ 1 is shaded in white, while φ(ω) ≤ 0.1
is shaded 80% gray, and intermediate values receive shades between white and 80% gray.
From the shading, it is elementary to discern the fuzzy band gap frequencies in Figure 6.
As discussed previously, the lower edge of the fuzzy band gap is evidently determined
by the longitudinal resonator mode which has kR ≈ 0.5π/a at 500 Hz. In the fuzzy
band gap, kI for the resonator mode is increasing rapidly, which causes the mode to
disappear before reaching the upper edge of the fuzzy band gap. Simultaneously, the
longitudinally-polarized frustrated modes gain significance. In general, the frustrated
modes become less evanescent as frequency increases, evidenced by a decrease in |kI |.
This trend appears to accelerate slightly within the fuzzy band gap for the longitudinal
frustrated mode (kI ≈ 0.47π/a at 1000 Hz). The resonator mode and the frustrated mode
have approximately equal kI at 820 Hz, but the resonator mode has a modal amplitude
approximately twice that of the frustrated mode, and so the resonator mode remains the
most significant contributor to wave transmission until 880 Hz. The strongest attenuation
of longitudinal waves occurs at this frequency, and accordingly the shading of the fuzzy
band gap is darkest at this frequency. As frequency increases above 880 Hz, the frustrated
mode becomes the dominant mode, becoming less and less evanescent until it cuts off the
fuzzy band gap at 1220 Hz. Unlike the undamped band structure, where the transitions
between dominant modes occur abruptly when modes begin and end at the edges of the
first Brillouin zone, the transitions that occur in the damped band structure occur smoothly
over a wide frequency range. The evanescence indicator captures the smoothness of the
transition, as the shading smoothly transitions from white to gray, reaching a minimum
value (maximum darkness) at about 880 Hz, then smoothly transitions back to white.

Comparing the shaded fuzzy band gap in Figure 6a,c to the simulated and experimen-
tal transmission, it can be seen that the fuzzy band gap shading predicts the steepness of
the rolloff at the edges of the transmission trough. The high-frequency edge of the fuzzy
band gap appears “fuzzier” than the low-frequency edge, that is, the white–gray transition
occurs over a wider frequency range on the high-frequency edge than on the low-frequency
edge. This indicates that the transition from wave propagation to attenuation occurs slower
on the high-frequency edge than on the low-frequency edge. The transmission results
confirm this observation, as the slope of the transmission curve (blue solid line in Figure 6c)
is lower on the high-frequency side of the transmission trough than on the low-frequency
side. This illustrates an advantage of the evanescence indicator method over the undamped
MPF inspection method, as the MPF inspection method fails to capture the smooth behavior
of the fuzzy band gap edges. Furthermore, the evanescence indicator predicts a fuzzy band
gap width of 480 Hz, which is in very good agreement with the experimental band gap
width, in contrast to the undamped MPF inspection method which predicts a much wider
band gap.

4.2.4. Evanescence Indicator: Hybrid-Polarized Fuzzy Band Gaps

The applicability of the evanescence indicator method to fuzzy band gaps of dif-
ferent polarizations, including multiple simultaneous polarizations, is demonstrated by
the results for flexural-torsional excitation shown in Figure 7. These results represent
a particularly complicated hybrid polarization, in which the amplitude ratio of the two
constituent polarizations (flexural and torsional) is not constant, but frequency-dependent.
As Figure 5c shows, the input velocities for frequencies less than 700 Hz are approximately
equal at all nine points, indicating that the input is almost entirely composed of a trans-
lation with negligible rotation. Above 700 Hz, the nine curves diverge from each other.
As shown in Figure 5d, this is due to rotation of the acrylic block. The relative amplitude
of rotation versus translation can be inferred by comparing the spread of the curves in
Figure 5c to their average value. This shows, for example, that the rotation amplitude is
negligible at 500 Hz, and takes its largest value at 1500 Hz. We extract the amplitude and
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phase of the translation and rotation for all frequencies, and prescribe the same amplitude
and phase in the finite structure FEM simulations to capture the frequency dependence
of the relative rotation amplitude. Figure 7c shows the results of both the simulated and
experimentally-determined transmission. Both simulations and experiments show that
the metastructure acts as a low-pass filter with respect to displacements in the y-direction.
This is in contrast to the longitudinal direction (Figure 6c) where the region of strongest
attenuation was confined to a band near 1 kHz with passbands below 740 Hz and above
1240 Hz.

The frequency dependence of the relative rotation amplitude is also incorporated in
the evanescence indicator. This is achieved in the computation of the MPFs by setting the
scale Ly of the state ψTY equal to the translation amplitude and the scale θx of the state
ψRX equal to the rotation amplitude. This has two advantages. First, choosing Ly and θx
in this way automatically addresses the issue of scaling discussed in Section 2.4.2, as the
relative amplitudes of the states ψTY and ψRX are the same as the relative amplitudes of
the experimental translations and rotations. Second, it allows control over the relative
importance of the constituent polarizations within a hybrid polarization.

The fuzzy band gap computed for the flexural-torsional polarization with frequency-
dependent amplitudes is shaded in Figure 7a,c. The modal amplitude Aj is taken as the
sum ΓTY + ΓRX and the evanescence indicator is computed with N = 5, Tthres = 10−3.
The resulting fuzzy band gap has a lower edge at about 950 Hz and upper edge greater
than 2000 Hz. The lower fuzzy band gap edge has a “fuzzy” region extending from around
950 Hz until it reaches full gray saturation at about 1150 Hz. The full gray saturation
is interrupted by a region from about 1375 Hz to 1750 Hz with gray shading that is not
fully saturated, indicating that the wave attenuation is weaker in this region. This is
confirmed by a “hump” in the simulated transmission shown in Figure 7c, where the
transmission increases by about 10 dB from 1250 Hz to 1600 Hz before decreasing from
1600 Hz to 1850 Hz. When a pure translation input is prescribed, this light gray region
does not appear, indicating that the increased transmission is due to the torsional modes
excited by the strong hybridization of the input around 1500 Hz (see Figure 5c). This
observation raises several important points: first, when computing polarized fuzzy band
gaps in complex structures, it is important to understand the polarizations that can be
excited and include all relevant polarizations in the analysis. Second, it is necessary to
consider the possible frequency dependence of the relative amplitudes of the polarizations.
Finally, the ability to identify fuzzy band gaps of hybrid polarizations is contingent upon
the ability to consider the additive contributions of all wave modes, which is a central
component of this evanescence indicator.

To further study how polarization hybridization affects the fuzzy band gaps, we
compute the fuzzy band gaps for pure translation, pure rotation, and hybrid translation-
rotation. For simplicity, we study polarizations with no frequency dependence, choosing
the relative amplitudes of the experimental translation and rotation inputs at 1500 Hz
(Figure 5c,d) as representative values for the amplitudes Ly and θx of the states ψTY
and ψRX, respectively. In Figure 8, we plot the fuzzy band gaps for N = 5 and Tthres =
10−2, 10−3, 10−4. For pure translation (Figure 8a), the metastructure exhibits two fuzzy band
gaps for Tthres = 10−2, which collapse into a single fuzzy band gap for Tthres = 10−3, 10−4.
The width of the fuzzy band gap is strongly affected by Tthres, with the fuzzy band gap
width decreasing to about 750 Hz for Tthres = 10−4. The shaded fuzzy band gaps capture
all of the prominent features of the simulated transmission through an N = 5 structure: the
sharp, narrow trough in transmission near 250 Hz, the deep transmission trough between
about 1350–1650 Hz, and the attenuation at high frequencies. For pure rotation (Figure 8b),
there is only a single fuzzy band gap for Tthres = 10−2, 10−3. The metastructure is much less
effective at attenuating rotationally polarized waves than translationally polarized waves,
as evidenced by the lack of any fuzzy band gaps for Tthres = 10−4 and by the increased
transmission at high frequencies (−50 dB for rotation versus −80 dB for translation). The
rotational fuzzy band gap for Tthres = 10−3 is a “weak” fuzzy band gap; it does not reach
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fully saturated shading, indicating the transmission in the fuzzy band gap is near the
threshold value. The dominance of the rotational mode is further illustrated by comparing
the pure translational and pure rotational fuzzy band gaps (Figure 8a,b) with the hybrid
fuzzy band gaps (Figure 8c). The hybrid fuzzy band gaps closely resemble the rotational
fuzzy band gaps, with only a single fuzzy band gap at Tthres = 10−2, 10−3 and no fuzzy
band gap at Tthres = 10−4. The narrow low-frequency fuzzy band gap that existed for
pure translation with Tthres = 10−2 is obscured by the transmission of the rotational modes.
However, the translational mode can be seen to cause a slight offset between the low-
frequencies edges of the pure rotational and hybrid fuzzy band gaps, and also causes
a 10 dB increase in the maximum attenuation achieved by the structure. The relative
contribution of the translational and rotational modes naturally depends on the relative
values of Ly and θx. For example, if Ly is increased by a factor of three relative to the value
chosen for Figure 8, the contribution of the translational modes becomes significant enough
for a narrow low-frequency fuzzy band gap to appear in the hybrid-polarized mode.
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Figure 8. Polarized fuzzy band gaps in the MAE metastructure: (a) translational (y) only, (b) rotational
(x-axis) only, and (c) simultaneous translation (y) and rotation (x-axis). Dotted lines indicate threshold
tranmission Tthres = 10−2 (blue), Tthres = 10−3 (orange), Tthres = 10−4 (green), and solid black lines
indicate FEM-simulated transmission.

5. Discussion

The proposed evanescence indicator provides a flexible and robust way to identify
frequency ranges of strong wave attenuation in damped PCs which are termed “fuzzy”
band gaps, including polarized fuzzy band gaps and hybrid-polarized fuzzy band gaps.
In contrast to prior methods that heuristically identify regions of relatively greater or lesser
evanescence in damped band structures, or rely on manual inspection and value judgments
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of mode shapes to classify polarizations, the proposed indicator quantitatively identifies
fuzzy band gaps based on measurable physical quantities.

As a consequence of the generalized definition of fuzzy band gaps in damped PCs,
fuzzy band gaps can not be defined unambiguously. In contrast to traditional band gaps
which are unambiguously defined as any frequency where all wave modes are evanescent,
the proposed method includes two arbitrary parameters (N and Tthres) that affect the
fuzzy band gaps. These parameters can be based on physical arguments, so that fuzzy
band gaps identified using this method can be related to experiments or simulations of
finite structures. Alternatively, a single value of N and Tthres can be selected to provide a
consistent comparison between different geometries or polarizations, or fuzzy band gaps
can be visualized for different combinations of N and Tthres to illustrate how the choice of
these parameters affects the computed fuzzy band gaps. In all cases, the chosen values of
N and Tthres should be reported.

To obtain the most accurate results, one must ensure that the computed dispersion
relation is sufficiently complete, that is, that all relevant wavenumbers are computed by the
eigenvalue search algorithm. In particular, FEM packages may utilize eigenvalue solvers
that compute only a small fraction of the eigenvalues of the system. To accurately compute
the evanescence indicator, it is important that all modes with small |kI | are computed by
the eigenvalue solver, as they exhibit the slowest decay and therefore carry the most wave
energy. Further analysis is needed to provide guidance on the minimum value of |kI | that
should be included. One should also ensure that eigenvalues outside the first Brillouin
zone, which may be returned by eigenvalue solvers, are not included in the computation of
the evanescence indicator, as including them would result in double-counting the modes
inside the first Brillouin zone.

Though the evanescence indicator was able to accurately identify the fuzzy band
gaps when using the MPF method to compute the modal amplitudes, a puzzling result of
this work was that the PBME method did not yield modal amplitudes which accurately
captured the behavior of finite MAE metastructures. The reasons for this are not entirely
clear. One possible explanation is that the normal modes of the finite structure do not
resemble the propagated Bloch modes, because the Bloch modes are not compatible with
the applied boundary condition of uniform longitudinal displacement. Further research is
needed to understand if and how the PBME method can be applied to multiply-connected
periodic media. Even still, the evanescence indicator accurately captures details of vibra-
tion transmission through finite MAE metastructures calculated through simulations and
measured in vibration experiments.

There are a number of opportunities to extend and improve the current evanescence
indicator. At present, the method is limited to structures with 1D periodicity. Generalizing
this method to 2D and 3D periodicity would be of great value, but is more complicated
as the flow of energy is not necessarily parallel to wave propagation direction. Thus, the
wave transmission between the chosen input and output locations, and thus the value of
the evanescence indicator, may depend more on the direction of the group velocity than
the direction of the wavevector, and appropriate selection of the input and output locations
takes on additional significance.

6. Conclusions

In this article, we developed a figure of merit called an “evanescence indicator” which
gives a quantitative measure of wave decay in damped phononic crystals (PCs). We intro-
duce a generalized definition of fuzzy band gaps as frequency ranges where the evanes-
cence indicator falls below a threshold value, which we use to identify fuzzy band gaps in
damped PCs. Using the 1D viscoelastic diatomic lattice as an example system, we show
that the evanescence indicator predicts fuzzy band gaps that quantitatively agree with
wave transmission through finite damped lattices. In particular, the evanescence indicator
predicts fuzzy band gaps that coincide with the frequencies where finite transmission falls
below the fuzzy band gap threshold. A novel result of the evanescence indicator is the
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“fuzziness” of fuzzy band gap edges, in which the fuzzy band gap edges occur as a gradual
transition over a range of frequencies, in contrast to the discrete edge frequencies observed
in undamped systems. We also apply the evanescence indicator to the magneto-active
elastomer (MAE) metastructures introduced in [11], and demonstrate that the evanescence
indicator accurately predicts fuzzy band gaps in PCs composed of real, highly damped
materials. We verify the evanescence indicator using finite element method simulations
and vibration experiments of finite MAE metastructures, and show that the evanescence
indicator can identify fuzzy band gaps with respect to arbitrary wave polarizations, includ-
ing hybrid wave polarizations which consist of two or more simultaneous polarizations.
Our results show that the ability of the evanescence indicator to simultaneously consider
multiple simultaneous wave polarizations (e.g., flexural and torsional) is significant, as each
polarization makes a significant contribution to the fuzzy band gaps. This result empha-
sizes the importance of understanding and accounting for all relevant wave polarizations
when studying polarized band gaps.

The evanescence indicator is particularly promising as a tool for understanding ex-
perimental results of physically realized PCs, due to its ability to (1) consider multiple
simultaneous wave polarizations, (2) capture the effect of damping (which is present in
all real materials), and (3) directly relate to measurable quantities (e.g., displacement) of
physical systems. Conversely, the evanescence indicator could also be a useful design tool
for developing real-world applications of PCs, as it requires only a single computation
of the dispersion relation to predict fuzzy band gaps for finite phononic structures with
arbitrary size and excitation polarization. By reducing the need to iteratively simulate finite
PCs with different sizes and excitations, the evanescence indicator method could shorten
the design time and accelerate the introduction of PCs into everyday life.
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