
crystals

Article

Crystalline Phase Transitions and Reactivity of Ammonium
Nitrate in Systems Containing Selected Carbonate Salts
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Abstract: Samples of pure ammonium nitrate (AN) and its mixtures with calcium carbonate, potas-
sium hydrogen carbonate and potassium carbonate were investigated with the use of differential
thermal analysis with mass spectrometry, powder X-ray diffraction and scanning electron microscopy.
The main objective of the study was to determine the influence of selected carbonate materials on
phase transitions of ammonium nitrate and to consider a possibility to use such potassium salts as
fillers in fertilizer production. It was proven that all carbonate salts caused the absence of a phase
transition that normally would occur at around 84–86 ◦C. Potassium carbonates were too reactive in
systems containing AN. Based on the performed study, it was concluded that even though potassium
carbonates are not fit to replace mineral fillers in the production process of fertilizers containing
ammonium nitrate, they could be used in lesser amounts to remove the presence of low-temperature
phase transitions of AN.

Keywords: crystalline phase; ammonium nitrate; carbonate salts; fertilizers; DTA-TG-MS

1. Introduction

Ammonium nitrate (AN) is an inorganic salt that contains 35 wt % N in the form
of ammonium and nitrate ions. It is highly hygroscopic and easily dissolves in water,
absorbing heat from the environment in the process. It does not form hydrates and is
characterized by good solubility in alcohols, such as methanol and ethanol, along with
acetone and some organic and inorganic acids, such as nitric and formic acid [1,2].

AN is a chemical of a great practical importance due to its high nitrogen content. It is
widely used in agriculture and horticulture as a mineral fertilizer. It has a few unfavorable
properties, the most important of which are its tendency to cake, mainly caused by a high
hygroscopicity of the salt and an absorption of moisture from the air, and a possibility
to explosively decompose, which is a real threat that was proven by numerous, well-
documented accidents that have occurred in the past, the most recent being the explosions
in Beirut, Lebanon [3–8].

Ammonium nitrate can exist in several different crystal structures depending on
temperature, pressure and other factors. It has six known crystalline phases at standard
pressure conditions, which are stable within specific temperature ranges [9]. Table 1 shows
the temperature ranges of five ammonium nitrate phases that have a well-documented
structure in the literature [10,11]. These phase transitions result in a volume change of
the solid ammonium nitrate phase. Available literature data also indicate the existence of
phase VII at temperatures below −170 ◦C [10,12].
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Table 1. Crystal structures of ammonium nitrate [10,11].

Crystalline Phase Temperature Range (◦C) Crystal System

I 169.5 ÷ 125.2 Cubic
II 125.2 ÷ 84.2 Tetragonal
III 84.2 ÷ 32.3 Orthorhombic
IV 32.3 ÷ −18 Orthorhombic
V −18 ÷ −103 Orthorhombic

Crystalline phases listed in Table 1 are not the only existing ammonium nitrate crystal
structures. Phase VI, the high-pressure structure of ammonium nitrate, occurs in the
pressure range of 0.9–1.9 GPa at temperatures above 168 ◦C, and its exact structure, similarly
to phase VII, is not yet known [13].

Current research on phase transformations of ammonium nitrate suggests the exis-
tence of a high-pressure, distorted equivalent of phase IV, which occurs at pressure above
17 GPa—it is defined as phase IV [10]. The same study also confirmed a significant influ-
ence of water in the occurrence of phase III. Some researchers suggest that dry ammonium
nitrate (less than 0.1 wt % of water content) does not exist in the form of phase III and un-
dergoes a phase transition from IV to II crystalline phase at a temperature of approximately
51 ◦C. At low moisture contents, simultaneous IV→ III and IV→ II phase transformations
are observed in the temperature range from 32 to 55 ◦C [10,14].

Tests carried out with the use of X-ray diffraction (XRD) showed that, under certain
conditions, it is possible for several phases of ammonium nitrate to coexist in one sys-
tem. Most often, cases of this phenomenon are coexisting phases II with IV, and IV with
V [15]. If the sample is subjected to several heating and cooling cycles, the course of phase
transformations may change [16,17].

Phase transformations of ammonium nitrate, occurring as a result of temperature
increase, are accompanied by an endothermic effect and a change in the specific volume,
caused by different packing of ions in the crystal structure (Table 2). Multiple transitions
from phase IV to III above 32 ◦C are most unfavorable, as they cause cracking of fertil-
izer granules, increased porosity and a greater tendency to cake during the production,
transport and storage of fertilizers containing ammonium nitrate. The transformation of
phase IV into phase III, with a completely different, deformed structure, is possible only
in the presence of water. This is probably due to the participation of water in dissolving
phase IV crystals, followed by a recrystallization of ammonium nitrate in the form of phase
III [9,15,18].

Table 2. Changes of specific volume of ammonium nitrate resulting from phase transitions [14,18,19].

Phase Transitions of Ammonium Nitrate Change of Specific Volume (cm3/g)

V→ IV −0.0170
IV→ III 0.0215
III→ II −0.0080
II→ I 0.0133

The nitrogen fertilizer granulation process is usually carried out at temperatures
above 100 ◦C, what creates the possibility of changes between crystalline phase II and I
of ammonium nitrate. Maintaining the temperature close to 125 ◦C causes cyclical phase
transitions and changes of the volume of produced fertilizer granules by about 2%, which
may result in a decrease in mechanical strength and an increase in porosity, which increases
the susceptibility of ammonium nitrate to exothermally decompose [9,20,21].

During the production of nitrogen fertilizers, various additives are used in order to
change the temperature range of undesirable phase transitions beyond the range typical for
conditions of transport and storage of fertilizers. Properly selected chemical compounds
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allow for the elimination of some phase transitions or reduction in the unfavorable impact
of said transformations between crystal structures on properties of the final product [22].

Additives with a stabilizing effect on ammonium nitrate may fulfill various functions.
Some of them act by stabilizing the crystalline structure of ammonium nitrate, limiting its
phase transitions. This effect is considered to be a physical stabilization. Other additives
increase the temperature of the onset of thermal decomposition of ammonium nitrate and
limit the occurrence of undesirable phenomena accompanying this process, e.g., the release
of significant amounts of heat or gaseous products. They can also reduce the possibility
of ammonium nitrate to explosively decompose. Carbonate minerals are often used for
this purpose, such as dolomite, limestone and anhydrite [14,23]. All these interactions are
considered as a chemical stabilization.

Properties of carbonates that inhibit the exothermic decomposition of ammonium
nitrate have been confirmed by numerous scientific studies. It was proven that 20 wt %
of calcium, magnesium, sodium, ammonium and potassium carbonates in systems with
ammonium nitrate increased the temperature of obtaining the maximum exothermic effect
of the decomposition process in comparison to pure ammonium nitrate [24]. Studies
with dolomites and limestones have shown that carbonate minerals are highly effective in
inhibiting the exothermic decomposition of ammonium nitrate [25].

Potassium salts have the ability to form solid phase solutions with ammonium nitrate,
in which the NH4

+ ion is exchanged with the K+ ion, stabilizing its crystal structure. Such
a substitution is made possible by the similarity of the potassium ion (with an ion radius of
1.38 Å) with the ammonium ion (1.48 Å) [26–28]. The similarity of these two ions causes
the formation of a double salt in which its salts crystallize as one substance and dissociate
independently of each other after dissolving in water [29].

Both potassium and carbonate salts have a positive influence on thermal stability of
AN. Systems containing potassium carbonate salts together with ammonium nitrate have
not yet been studied in temperature ranges typical for fertilizer production processes and
their influence on phase transitions of AN is not yet properly defined. It is important to
understand phenomena occurring in such systems and it might be useful to know how
they compare to pure AN or mixtures of ammonium nitrate and calcium carbonate.

2. Materials and Methods
2.1. Materials

Ammonium nitrate (POCH, Gliwice, Poland, purity ≥ 99.0 wt %), calcium carbonate
(POCH, Gliwice, Poland, purity ≥ 99.0 wt %), potassium carbonate (POCH, Gliwice,
Poland, purity ≥ 99.0 wt %) and potassium hydrogen carbonate (POCH, Gliwice, Poland,
purity ≥ 99.0 wt %) were used without any further purification. Synthetic air (Air Liquide)
was used as a purge gas during DTA-TG-MS measurements.

Every tested sample was prepared with the use of agate mortar and pestle. Ap-
propriate amounts of each compound, necessary to acquire a desired mass ratio in a
sample (AN:carbonate salt equal to 1:1), were ground together in order to obtain a
homogenic mixture.

2.2. Methodology

Thermal analysis measurements were performed with the use of differential thermal
analysis coupled with thermogravimetry and mass spectrometry (DTA–TG–MS). A thermal
analyzer STA 449 F3 with a thermobalance and a mass spectrometer QMS 403 C, Netzsch,
Selb, Germany, were used. The equipment was previously calibrated to ensure that correct
results were obtained.

Next, a sample of a mixture containing approximately 40.0 mg of AN was weighted
and placed in a 0.3 cm3 alumina crucible and closed with a pierced lid. Each sample
was heated up to 140 ◦C at the rate of 3 ◦C/min in synthetic air with a 30 cm3/min total
flow of the purge gas. Every measurement was preceded by heating an empty crucible to
400 ◦C in order to remove any impurities and a correction to 200 ◦C for a compensation of



Crystals 2021, 11, 1250 4 of 19

thermal effects associated with characteristics of the crucible. Before each measurement,
the furnace chamber was evacuated three times and filled with synthetic air. Each mixture
was analyzed three times in order to ensure that obtained thermograms are correct and
mean values with corrected standard deviation for each sample are presented in Table 3. In
the same way, for comparison purposes, a 40.0 mg sample of ammonium nitrate without
the addition of any carbonate was also examined with the use of an empty crucible as a
reference material. Obtained results were analyzed with the use of a professional software
supplied by the manufacturer of the measuring equipment. The selected ion monitoring
for mass-to-charge ratios (m/z) consisted of following signals: 12 (CO, CO2), 15 (NH3),
18 (H2O), 30 (NO, NO2), 44 (N2O, CO2), 46 (NO2). MS analyses for every sample are also
presented in order to show changes in gaseous products resulting from the addition of
each compound.

Table 3. Effects of selected carbonate salts on phase transitions of AN.

Sample
Temperature of Observed Thermal Effects (◦C)

First Endothermic Effect Second Endothermic Effect Third Endothermic Effect

P1 50.8 ± 0.1 86.0 ± 0.3 124.8 ± 0.2
P2 51.1 ± 0.2 - 125.0 ± 0.1
P3 40.6 ± 0.1 - 125.3 ± 0.1
P4 38.0 ± 0.1 - 125.3 ± 0.1

The scanning electron microscopy (SEM) analysis was performed on Quanta 650 FEG
(Thermo Fisher Scientific, Waltham, MA, USA) device equipped with a heating stage in
extended vacuum mode (ESEM). Samples were heated up to temperatures of 130–180 ◦C.
Obtained results were presented in the form of images of samples at room temperature
and at approximately 130–180 ◦C. The heating rate was set to 10 ◦C/min up to 120 ◦C and
then lowered to 5 ◦C/min afterwards.

Prepared mixtures were characterized by powder X-ray diffraction (XRD) analysis.
The XRD patterns were recorded on Empyrean X-ray powder diffraction diffractometer
(PANalytical, Malvern, UK). Work parameters of the instrument were as follows: 40 kV,
40 mA, CuKα radiation (α = 1.5406 Å). Samples analyzed at an elevated temperature
(130 ◦C) were studied in a temperature chamber HTK1200 with nitrogen used as a purge
gas (5 dm3/h) and a heating rate of 10 ◦C/min. Obtained results were analyzed with the
use of a PDF 4+ 2019 database and presented as diffractograms for each tested sample at
room temperature and at 130 ◦C.

3. Results and Discussion

Results obtained from thermal analysis of prepared samples are presented in the form
of figures located in appropriate subsections and are summarized in Table 3. Temperatures
of phase transitions and other observed thermal effects were determined as onset tempera-
tures due to their relatively “sharp” beginnings. Prepared samples were assigned symbols
as follows: P1—pure ammonium nitrate, P2—ammonium nitrate and calcium carbonate,
P3—ammonium nitrate and potassium hydrogen carbonate, P4—ammonium nitrate and
potassium carbonate.

3.1. Characteristics of Pure Ammonium Nitrate (P1)

The results of the thermal analysis of the 40.0 mg ammonium nitrate sample are shown
in Figure 1. During the heating of the sample, ammonium nitrate underwent a sequence
of endothermic phase transitions that are specific to this compound and were described
in the introduction. Simultaneous IV→ III and IV→ II phase transitions were recorded
at average temperature of 50.8 ◦C. The III→ II transition occurred at 86.0 ◦C and II→ I
at 124.8 ◦C. No evolved gaseous products nor a decrease in mass were recorded during
performed analyses of pure AN. Obtained MS signals are presented in Figure 2.
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The ammonium nitrate sample was also analyzed with the use of XRD and SEM in
order to obtain reference results that could improve the understanding of phenomena
occurring in AN:carbonates mixtures and to verify the purity of used material. XRD
measurements (Figure 3) clearly showed that ammonium nitrate had an orthorhombic
crystal system at room temperature (phase IV) and changed fully into phase I, which
is characterized as a cubic system, after being heated to 130 ◦C. SEM analysis allowed
for further differentiation between studied phases of ammonium nitrate, showing visible
changes in the structure of the sample as it was heated up to 130 ◦C. It was also possible
to notice that ammonium nitrate started to slowly decompose after reaching the desired
temperature. Obtained images are shown in Figure 4.
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3.2. Characteristics of Ammonium Nitrate and Calcium Carbonate System (P2)

A thermogram containing results of DTA-TG measurement of 80.0 mg P2 sample is
presented in Figure 5. During the heating program, the studied mixture showed similarity
in its thermal properties to the pure ammonium nitrate with the exception of an absent
endothermic phase transition at around 86 ◦C that vas visible during the analysis of the
P1 sample. It was indicative that the first endothermic signal registered on the DTA curve
represented only the IV→ II phase transition of AN, explaining the absence of a thermal
effect at the temperature typical for the III→ II transformation. The II→ I change was
observed at an average temperature of 125.0 ◦C and was connected with a slight mass
decrease that resulted in the creation of N2O and H2O (Figure 6). Evacuated gaseous
products were probably created during a partial decomposition of ammonium nitrate,
according to reaction 1. Trace amounts of NH3 and CO2 were also detected, suggesting
that a simultaneous reaction 2 might have also started to occur, but to a significantly
lesser extent.

NH4NO3 → N2O + 2H2O (1)

2NH4NO3 + CaCO3 → Ca(NO3)2 + 2NH3 + H2O + CO2 (2)
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The XRD measurement of the P2 sample (Figure 7) allowed us to determine that
crystalline phases of ammonium nitrate at 25 and 130 ◦C were the same as in the P1 sample.
CaCO3 was in the form of calcite at both temperatures. There was not enough calcium
nitrate in the studied system at 130 ◦C for the measurement to record its presence during
the analysis. The SEM measurement revealed visible structural differences between the
studied system at room temperature and at temperatures above 130 ◦C. Obtained images
are presented in Figure 8.
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Performed analyses show that the pure calcium carbonate is too reactive to be con-
sidered suitable for the main filler in fertilizer production since it should not react with
ammonium nitrate at such low temperatures.

3.3. Characteristics of Ammonium Nitrate and Potassium Hydrogen Carbonate System (P3)

The sample containing ammonium nitrate and potassium hydrogen carbonate in
a 1:1 mass ratio had vastly different thermal properties than the previous two samples,
P1 and P2. During the sample preparation in a mortar, there was a noticeable smell of
ammonia, suggesting that a partial reaction between two salts began even before the
measurement. Thermal analysis of the mixture revealed the appearance of an endothermic
effect at around 40.6 ± 0.1 ◦C. Since the presence of potassium is known to stop the low
temperature transition of ammonium nitrate, the endothermic effect may have been caused
by a reaction taking place in the studied sample. The next thermal effect was difficult to
define, as it occurred in a wide temperature range and was connected with a slow decrease
in mass up until a temperature of approximately 86 ◦C was reached. After that, the mass
drop slowed down and continued with an increasing rate until the end of the heating
program. The last phase transition of ammonium nitrate was not influenced by the presence
of the potassium salt in the system (Figure 9). The MS measurements, preformed during the
thermal analysis, made it possible to observe a creation of all monitored gaseous products.
Their quantities varied with the process progression and first peaked at the temperature of
III→ II phase transition and then continued to increase with heating. Obtained MS results
are shown in Figure 10.
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Figure 11. XRD results for a sample containing ammonium nitrate and potassium hydrogen carbonate (P3) at room
temperature and at 130 ◦C.

However, there was not enough potassium hydrogen carbonate to allow for total
conversion of ammonium nitrate, so there must have been some AN remaining in the
studied system. Reaction 3 may also explain the decrease in mass during the thermal
analysis of the P3 sample, as ammonium hydrogen carbonate is not thermally stable and
should decompose at elevated temperatures. The XRD measurement at 130 ◦C showed that
only potassium nitrate and ammonium nitrate remained in the analyzed mixture, further
proving the hypothesis.

SEM analysis showed very minor changes in the structure of analyzed powder after
heating it to 141 and then to 160 ◦C. Observed images are presented as Figure 12.

Performed measurements prove a high reactivity of potassium hydrogen carbonate in
relation to ammonium nitrate.
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action. To explain the presence of detected crystalline phases, multiple reactions would 
have to occur, such as: 

NH4NO3 + K2CO3 → KNO3 + KHCO3 + NH3 (5)

Figure 12. SEM results for a sample containing ammonium nitrate and potassium hydrogen carbonate (P3) at room
temperature (a,b) and at 141–160 ◦C (c,d).

3.4. Characteristics of Ammonium Nitrate and Potassium Carbonate System (P4)

The ammonia smell, noticed during the preparation of ammonium nitrate and potas-
sium hydrogen carbonate, was more intense during the grinding process of the P4 sample.
DTA-TG measurements of the P4 sample recorded a similar, low-temperature endothermic
effect as the one observed for the P3 sample. It began at approximately 38 ◦C and was
followed by an accelerating decrease in mass. Unlike in the P3 sample, the decrease did
not slow down after the temperature reached 86 ◦C. The decrease in mass might have been
a result of the release of moisture from the potassium carbonate and of reactions occurring
between AN and the carbonate salt. The assumed reaction 4 was expected to occur between
these two compounds. Obtained results are presented in Figure 13. MS signals, acquired
during the measurement, are shown in Figure 14. Gaseous products evolved from the
analyzer initially consisted of mostly H2O and small amounts of N2O, CO2 and NH3. After
the sample heated up to 125 ◦C, additional amounts of previous gasses were generated
together with NO and NO2.

2NH4NO3 + K2CO3 
 2KNO3 + (NH4)2CO3 (4)
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Figure 13. DTA−TG results for a sample containing ammonium nitrate and potassium carbonate (P4). Figure 13. DTA−TG results for a sample containing ammonium nitrate and potassium carbonate (P4).

XRD results at 25 ◦C, shown in Figure 15, indicated the presence of potassium nitrate,
ammonium hydrogen carbonate, potassium hydrogen carbonate and small amounts of
ammonium nitrate, while the XRD performed at 130 ◦C revealed crystal structures of
potassium nitrate, potassium carbonate and ammonium nitrate. These analyses could
suggest that the above-mentioned reaction 4 might only be a simplified, general chemical
reaction. To explain the presence of detected crystalline phases, multiple reactions would
have to occur, such as:

NH4NO3 + K2CO3 → KNO3 + KHCO3 + NH3 (5)

2NH4NO3 + K2CO3 → 2KNO3 + NH4HCO3 + NH3 (6)

2KHCO3 → K2CO3 + CO2 + H2O (7)

Reaction 5 presents the formation of potassium hydrogen carbonate in the studied
system. Reaction 6 could be defined as reaction 4 with the decomposition of ammonium
carbonate. The last one, reaction 7, represents the formation of potassium carbonate from
potassium hydrogen carbonate at temperatures above 120 ◦C. The high reactivity of the
system may also cause ammonium nitrate to decompose at temperatures that are not usual
for the pure compound.

SEM analysis made it possible to observe substantial structural differences between
the studied system at room temperature and at 130–160 ◦C. Obtained images are shown
in Figure 16.
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4. Conclusions

Performed analyses of mixtures containing ammonium nitrate and one of either
calcium carbonate, potassium carbonate or potassium hydrogen carbonate allowed us to
obtain a deeper understanding of studied systems. It was proven that phase transitions of
ammonium nitrate were heavily influenced by the presence of any chosen additive and that
carbonate salts of potassium reacted with ammonium nitrate at room temperature. The
addition of pure calcium carbonate to ammonium nitrate caused the absence of a III→ II
phase transition. Calcium carbonate was also more reactive towards AN than mineral
fillers such as dolomite, which resulted in a lowered temperature of mass decrease. Both
potassium compounds were extremely reactive in systems with ammonium nitrate and
proved to be impractical to use as fillers in a typical fertilizer production process, even
though they could be used in lesser amounts to remove the presence of low-temperature
phase transitions of AN. Such fertilizer products can be characterized with improved
mechanical properties since there is no volume change at standard storage temperatures.
The developed knowledge of studied systems may be useful in understanding reaction
mechanisms, thermal stability or other applications of mixtures containing ammonium
nitrate and carbonates. It is possible that a broader range of mass ratios, the influence
of other additives or other important parameters must be analyzed and studied to fully
comprehend phenomena occurring in AN:carbonates systems, and such studies can be
based on the initial data gathered during this research.
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