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Abstract: The present work studied the microstructures of Cr19Fe22Co21Ni25Mo13 alloy, and tested
the polarization properties in deaerated 1M nitric acid and 1M hydrochloric solutions at differ-
ent temperatures. The alloy was processed by an argon atmosphere arc-melting. Results indi-
cated that the microstructure of Cr19Fe22Co21Ni25Mo13 alloy was a dendritic one. The dendrites of
Cr19Fe22Co21Ni25Mo13 alloy were an FCC structure, and the interdendrites of Cr19Fe22Co21Ni25Mo13

alloy were a eutectic structure with two phases of FCC and simple cubic (SC). The Cr19Fe22Co21Ni25Mo13

alloy had better corrosion resistance compared with commercial 304 stainless steel in both deaerated
1M HNO3 and 1M HCl solutions. The corrosion types of Cr19Fe22Co21Ni25Mo13 alloy in both of
1M HNO3 and 1M HCl solutions were uniform corrosion.
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1. Introduction

Iron, chromium, nickel, and cobalt are the main elements of stainless steels; many
corrosion-resistant alloys are developed based on these elements. The CoCrFeNiSn had a
good passivation in chloride solution because the surface had stable oxide films [1]. The
study of corrosion behaviors of AlxCrFeCoNi high-entropy alloys showed that the corrosion
resistance increased by decreasing aluminum content and increasing chromium content in
3.5% NaCl solution [2]. The corrosion study of (CoCrFeNi)100−xMox alloys indicated that
the addition of molybdenum could increase the corrosion resistance in 3.5% NaCl solution,
and these alloys would form the passivation films to improve corrosion resistance in
0.5M H2SO4 solution [3]. Al0.5CoCrCuFeNi high-entropy alloy was coated on the surface of
AZ91D magnesium alloy by laser cladding to improve the corrosion resistance, and results
showed the corrosion potential increased, and the corrosion current density decreased [4].
The non-equiatomic CrFeCoNiMo high-entropy alloy was irradiated by electron beam to
modify the surface, and the electrochemical results indicated that the alloy had a positive
potential and lower current density in 3.5 wt.% NaCl solution [5]. Only 0.1 mol addition of
Zr into AlCoCrFeNiZrx alloys could greatly improve the corrosion resistance of the alloys
in 0.5 M H2SO4 solution [6]. The Al0.1CoCrFeNi high-entropy alloy had higher polarization
resistance and lower corrosion rate compared with nickel-based Alloy 718 in a molten
Na2SO4-NaCl eutectic mixture at 750 ± 5 ◦C [7]. The CoCrFeNi (WC) coatings WC was
10–30 wt.%, and all enhanced corrosion resistance in 3.5% NaCl solution. Particularly, the
added 10 wt.% WC clearly enhanced the comprehensive corrosion resistance and easy
passivation of the alloy [8]. Our previous studies showed that the CrFeCoNi(Nb,Mo)
alloys [9] and CrFeCoNiNbx alloys [10] all had better corrosion resistance than commercial
304 stainless steel. These alloys indicated that the CrFeCoNi-based alloys had a potential
to develop alloys with good corrosion resistance. The alloys described above are all
high-entropy alloys. The researchers can develop new alloys based on the high-entropy
alloy concept and smartly choose the suitable elements to develop the alloys for the
applications [11,12].
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The CrFeCoNiMo high-entropy alloy [9] had a dual-phased dendritic structure; one
was FCC phase with a lattice constant of 3.577 Å, and the other was a simple cubic
(SC) phase with a lattice constant of 8.398 Å. Addition of molybdenum into CrFeCoNi
alloy would reduce the corrosion resistance of the alloy but significantly increase the
hardness of CrFeCoNi alloy. The present work selected the compositions of the FCC
phase in CrFeCoNiMo alloy to be a new alloy, Cr19Fe22Co21Ni25Mo13, and studied the
microstructure and polarization behaviors of this alloy in deaerated 1M nitric acid and 1M
hydrochloric acid solutions.

2. Materials and Methods

The nominal chemical compositions of experimental alloy, Cr19Fe22Co21Ni25Mo13,
was 16.0% of Cr, 19.9% of Fe, 20.1% of Co, 23.8% of Ni, and 20.2% of Mo in weight percent.
The alloy was made by an arc furnace in an argon atmosphere after accurately weighing.
The total weight of the melt was about 100 g. Following this, the work of microstructure
observing and polarization tests was done on the as-cast Cr19Fe22Co21Ni25Mo13 alloy.
The microstructure of Cr19Fe22Co21Ni25Mo13 alloy was observed by a scanning electron
microscope (SEM, JEOL JSM-6335, JEOL Ltd., Tokyo, Japan) operated at 10 kV after regular
metallurgical processes; the chemical compositions of the phases were measured by en-
ergy dispersive spectrometer (EDS). The phases in the alloy were identified by an x-ray
diffractometer (XRD, Rigaku ME510-FM2, Rigaku, Tokyo, Japan) with a scanning rate
of 0.04 degree per second. The Vicker’s hardness of the alloy was tested by Matsuzawa
Seiki MV1. The loading force for testing the overall hardness of the alloy was 19.61 N
(2000 gf), and the loading force for testing dendrites and interdendrities was 0.245 N (25 gf).
The potentiodynamic polarization curves of Cr19Fe22Co21Ni25Mo13 alloy were tested by
an electrochemical device (Autolab PGSTAT302N, Metrohm Autolab B.V., Utrecht, The
Netherlands), with three electrodes at different temperatures of 30, 40, 50, and 60 ◦C,
respectively. One electrode was the specimens, which was mounted in epoxy resin with an
exposed area of 0.196 cm2 (0.5 cm in diameter). The second electrode was a platinum wire
used as a counter. The other electrode was a saturated silver chloride electrode (Ag/AgCl,
SSE) used as a reference one, and this reference electrode had a potential was 0.197 V higher
than the standard hydrogen electrode (SHE) at 25 ◦C [13]. The polarization test was started
after setup for 900 s, and the scanning rate was 1 mV per second. Nitrogen bubble was
used to degas the oxygen in the solutions through the process. Two test solutions were 1M
nitric acid and 1M hydrochloric acid solutions, which were prepared from reagent-grade
acids and deionized water.

3. Results and Discussion

The SEM micrograph and XRD pattern of as-cast Cr19Fe22Co21Ni25Mo13 alloy are
shown in Figure 1a,b, respectively. Figure 1a is the micrograph that shows a typical
dendritic microstructure. The dendrites had a face-centered cubic (FCC) phase, and the
interdendritic regions were a eutectic structure with FCC and simple cubic (SC) phases.
The micrograph displays that the volume fraction of FCC phase is more than that of SC
phase. The chemical compositions of the overall, FCC, and SC phases are listed in Table 1.
The overall compositions of Cr19Fe22Co21Ni25Mo13 alloy indicates that actual compositions
of this alloy almost match the origin design. Additionally, the Fe, Co, and Ni content of
FCC phase are more than those of SC phase; but the Cr and Mo content of FCC phase
are less than those of SC phase. The SC phase is brighter than the FCC phase in the SEM
micrograph because SC phase has more Mo content, which atomic number is higher than
the other four elements. This is the backscattering effect of the electrons in SEM observing.
Figure 1b is the XRD pattern of as-cast Cr19Fe22Co21Ni25Mo13 alloy, and it shows only two
phases, FCC and SC, in this alloy. The lattice constants of FCC and SC phases are 3.611
and 8.320 Å, respectively. The structure of SC phase has been identified in our previous
work [9]; the large lattice constant of SC phase indicates that the unit cell of SC phase
has many atoms and a complex structure. The XRD pattern also proves that the FCC



Crystals 2021, 11, 1289 3 of 7

phase is more than SC phase by comparing the intensities of the peaks of FCC and SC
phases. The hardness of dendrites was 281 ± 11 HV because of the FCC structure. The
hardness of interdendrites was 414 ± 12 HV because of the eutectic structure of FCC and
HCP phases. The overall hardness of the Cr19Fe22Co21Ni25Mo13 alloy was 290 ± 5 HV.
The overall hardness of Cr19Fe22Co21Ni25Mo13 alloy was only slightly higher than that of
FCC-dendrites because the FCC phase was the major phase in this alloy. Therefore, the
overall hardness of the alloy was dominated by the FCC-dendrites.
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Figure 1. (a) A micrograph and (b) XRD pattern of as-cast Cr19Fe22Co21Ni25Mo13 alloy.

Table 1. Chemical compositions of as-cast Cr19Fe22Co21Ni25Mo13 alloy in atomic percent analyzed
by SEM/EDS.

Phase Cr Fe Co Ni Mo

Overall 18.8 ± 0.6 22.0 ± 0.9 21.2 ± 2.5 24.8 ± 1.2 14.2 ± 0.6
FCC 18.2 ± 0.7 23.2 ± 1.0 20.8 ± 1.3 26.1 ± 0.8 11.7 ± 0.6
SC 20.6 ± 0.8 18.1 ± 1.2 17.8 ± 1.6 16.9 ± 1.9 26.6 ± 2.8

The potentiodynamic polarization curves of Cr19Fe22Co21Ni25Mo13 alloy in deaerated
1M HNO3 and 1M HCl solutions under different temperatures are shown in Figure 2a,b,
respectively. The corrosion potential (Ecorr) is the mixed potential, which means the rate
of anodic dissolution of the electrode equals to the rate of cathodic reaction. The curve
with potential negative than Ecorr indicates that the alloy is cathode (be protected), and
the curve with potential positive than Ecorr indicates that the alloy is anode (be corroded).
The slope of cathodic line of the alloy was Tafel slope (βc), which equals to ∆E/∆logi,
where E is potential, and i is current density. The corrosion current density (icorr) of each
curve was calculated by the intersection of the free corrosion potential and the cathodic
Tafel line. Both of the corrosion potential (Ecorr) and corrosion current density (icorr) of
Cr19Fe22Co21Ni25Mo13 alloy in these two solutions increased with increasing test tem-
perature. The important data of the curves are listed in Table 2. The potentiodynamic
polarization curves of Cr19Fe22Co21Ni25Mo13 alloy in HNO3 solution did not have pas-
sivation potential, which meant that this alloy could easily enter the passivation region.
The minimum current densities of Cr19Fe22Co21Ni25Mo13 alloy in passivation regions
(ipass) were about 24 µA/cm2, but ipass increased with increasing testing temperatures
after higher applied potential (>0.4 V vs. SSE) in HNO3 solution, shown in Figure 2a.
The passivation regions of the alloy under these four testing temperatures all entered
breakdown because of the oxygen evolution reaction [14]. The breakdown potential (Eb)
were about 0.95 V vs. SSE. The Cr19Fe22Co21Ni25Mo13 alloy had similar tendency, which
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was tested in deaerated 1M HCl solution, as shown in Figure 2b. However, the corro-
sion potentials of Cr19Fe22Co21Ni25Mo13 alloy were more negative, and corrosion current
densities of Cr19Fe22Co21Ni25Mo13 alloy were larger in deaerated 1M HCl solution com-
pared with the data tested in deaerated 1M HNO3 solution. In addition, smaller anodic
peaks were observed in the potentiodynamic polarization curves of Cr19Fe22Co21Ni25Mo13
alloy in deaerated 1M HCl solution. The passivation potentials (Epp) and anodic criti-
cal current densities (icrit) of these curves are listed in Table 2. The current densities of
Cr19Fe22Co21Ni25Mo13 alloy in passivation regions also increased with increasing testing
temperatures in HCl solution after larger applied potential (>0.2 V vs. SSE), shown in
Figure 2b. The passivation regions of the alloy under these four testing temperatures were
all in breakdown because of the oxygen evolution reaction. The breakdown potentials (Eb)
slightly decreased with increasing testing temperature.
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of the figures show that the corrosion potentials (Ecorr) of Cr19Fe22Co21Ni25Mo13 alloy were 
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Figure 2. Potentiodynamic polarization curves of Cr19Fe22Co21Ni25Mo13 alloy tested in the deaerated solutions of: (a) 1M
HNO3 solution and (b) 1M HCl solution under different temperatures.

Table 2. Corrosion potentials and corrosion current densities of Cr19Fe22Co21Ni25Mo13 alloy tested
under different temperatures.

Solution Items 30 ◦C 40 ◦C 50 ◦C 60 ◦C

1M Ecorr (V vs SSE) −0.029 0.031 0.064 0.113
HNO3 icorr (µA/cm2) 4.00 4.30 5.10 7.30

solution ipass (µA/cm2) 23.8 23.7 23.1 24.6
Eb (V vs. SSE) 0.951 0.951 0.951 0.949

1M Ecorr (V vs SSE) −0.30 −0.267 −0.203 −0.172
HCl icorr (µA/cm2) 6.00 6.30 9.80 20.0

solution Epp (V vs. SSE) −0.099 −0.091 −0.081 0.080
Icrit (µA/cm2) 33.0 47.3 38.2 50.6
ipass (µA/cm2) 41.0 53.0 58.0 48.6
Eb (V vs. SSE) 0.971 0.968 0.961 0.951

Figure 3a,b show the comparison of Cr19Fe22Co21Ni25Mo13 alloy and commercial 304
stainless steel tested in deaerated 1M HNO3 and HCl solutions at 30 ◦C, respectively. Both
of the figures show that the corrosion potentials (Ecorr) of Cr19Fe22Co21Ni25Mo13 alloy
were more positive than that of 304 stainless steel, and the corrosion current densities
(icorr) of Cr19Fe22Co21Ni25Mo13 alloy were less than that of 304 stainless steel. The 304
stainless steel had larger anodic peaks compared with Cr19Fe22Co21Ni25Mo13 alloy in these
two solutions. The current density of passivation region of Cr19Fe22Co21Ni25Mo13 alloy
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were also less than that of 304 stainless steel. These indicated that the corrosion resistance
of Cr19Fe22Co21Ni25Mo13 alloy was better than that of 304 stainless steel in these two
solutions, especially in the deaerated 1M HCl solution. The corrosion potentials (Ecorr) and
corrosion current densities (icorr) of Cr19Fe22Co21Ni25Mo13 alloy and 304 stainless steel are
listed in Table 3. Molybdenum could improve the localized corrosion resistance [15,16],
especially the attack from the chloride ions. The Cr19Fe22Co21Ni25Mo13 alloy thus had a
good corrosion resistance in 1M HCl solution.
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Figure 3. Polarization curves of Cr19Fe22Co21Ni25Mo13 alloy and 304 stainless steel tested in the deaerated solutions of:
(a) 1M HNO3 solution and (b) 1M HCl solution at 30 ◦C.

Table 3. Corrosion potentials and corrosion current densities of Cr19Fe22Co21Ni25Mo13 alloy and
304 stainless steel tested at 30 ◦C.

Alloy
1M HNO3 Solution 1M HCl Solution

Ecorr
(V vs SSE)

icorr
(A/cm2)

Ecorr
(V vs SSE)

icorr
(A/cm2)

Cr19Fe22Co21Ni25Mo13 −0.029 4.0 × 10−6 −0.300 6.0 × 10−6

304 stainless steel −0.399 3.9 × 10−2 −0.507 2.0 × 10−3

Figure 4a,b show the morphologies of Cr19Fe22Co21Ni25Mo13 alloy after polarization
test in the deaerated 1M HNO3 and HCl solutions, respectively. The corrosion time of
each specimen was 1500 s because anodic range was from open circuit potential (OCP) to
OCP+1.5V, and the scanning rate was 1 mV/s. These two figures indicates that the corrosion
type of Cr19Fe22Co21Ni25Mo13 alloy in these two solution were a uniform corrosion. The
FCC phase of Cr19Fe22Co21Ni25Mo13 alloy was concave in these two figures, which meant
that the FCC phase was more severely corroded than the SC phase in Cr19Fe22Co21Ni25Mo13
alloy. The standard electrode potentials (E◦ vs. SSE) of Cr, Fe, Co, Ni, and Mo are −0.962,
−0.662, −0.449, −0.472, and −0.422 V, respectively [17]. Molybdenum has the highest
standard electrode potential among these elements. The SC phase had higher Mo content,
listed in Table 1 and thus had more positive corrosion potential by comparing with the
corrosion potential of FCC phase in Cr19Fe22Co21Ni25Mo13 alloy. Therefore, the FCC phase
was severely corroded and formed a concave morphology.
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Figure 4. The micrographs of Cr19Fe22Co21Ni25Mo13 alloy after polarization tested in the deaerated
solutions of: (a) 1M HNO3 solution and (b) 1M HCl solution at 30 ◦C. The corrosion time of each
specimen was 1500 s.

4. Conclusions

The as-cast Cr19Fe22Co21Ni25Mo13 alloy had a dendritic structure. The dendrites were
an FCC phase, and the interdendritic regions were a eutectic structure of FCC and SC
phases. The SC phase had higher Cr and Mo content but lower Fe, Co and Ni content
compared with the FCC phase. Both of the corrosion potential and corrosion current density
of Cr19Fe22Co21Ni25Mo13 alloy increased with increasing testing temperature in deaerated
1M HNO3 and 1M HCl solutions. The passivation regions of Cr19Fe22Co21Ni25Mo13 alloy
tested in these two solutions entered breakdown at applied potential of about 0.95 V vs
SSE because of the oxygen evolution reaction. The potentiodynamic polarization curves of
Cr19Fe22Co21Ni25Mo13 alloy in both of 1M HNO3 and 1M HCl solutions showed better
corrosion resistance by comparing with commercial 304 stainless steel. The morphologies
of Cr19Fe22Co21Ni25Mo13 alloy after polarization tested in 1M HNO3 and 1M HCl solutions
showed a uniform corrosion type. The SC phase was slightly more corroded than the FCC
phase because of the higher Mo content.
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