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Abstract: Most of the diamond deposits in China are in the North China Craton. In addition to gem
diamonds in kimberlite, a large number of microdiamonds have also been discovered in alkaline
dolerites. These microdiamonds show very different characteristics from those recovered in kimber-
lite. Here, we report the morphology, colour, nitrogen contents, and carbon isotopic compositions of
the diamonds recovered from the alkalic dolerites in eastern China. The microdiamonds are mainly
cube and rhombic dodecahedron with diameters of 0.2 to 0.6 mm. Infrared spectrum analysis shows
that these microdiamonds are mostly type Ib with a small amount of type Ia. The Y centre is obvious
in type Ib diamond. Modelling mantle residence times for the IaAB diamonds is about 550 Ma.
Nitrogen contents of the diamonds range from 4.5–503 ppm, with a median value of 173 ppm. The
total δ13C range of the microdiamonds varies between −18.6 and −21.1‰ and are similar to those of
ophiolite diamond.

Keywords: microdiamond; FTIR; carbon isotopic; alkalic dolerite; North China Craton

1. Introduction

Diamonds on the Earth mainly occur in volcanic rocks such as kimberlites and lam-
proites [1–8], but can also be found in ultrahigh-pressure metamorphic rocks [9,10], mete-
orites [11] and alluvial deposits [12]. In recent years, diamonds have been recovered from
ophiolites [13–16] and alkalic dolerites [17,18]. The discovery of ophiolitic diamonds and
alkalic dolerites diamonds has drawn significant research interests to explore the origin of
this new class of diamond source and to infer the evolution of their hosting rocks [19–21].
This new type of diamond had been initially considered as a result of contamination.
However, more and more evidence either directly or indirectly demonstrates that these
diamonds are of natural origin [16,18,19,22–24].

During a geological survey from 2012 to 2015, the geologist from Nanjing Centre
of China Geological Survey discovered a large number of yellow microdiamonds in the
Langan area in northern Anhui Province [18,25–29]. The diamond-bearing rocks of these
microdiamonds mainly include dolerite and olivine basalt. From 2016 to 2018, four mi-
crodiamonds in basic rocks were recovered again in the prospecting work for primary
diamond deposits in the Tashan and Zhangji areas in Xuzhou, which is geographically
close to Langan [30]. All these diamonds are similar in colour and shape to ophiolite type
diamonds [31] and show different characteristics of kimberlite and lamproite diamonds.

Cai et al. (2019) reported the petrological characteristics of the diamondiferous
rocks [17,21,30]. In this paper, the morphology, infrared spectrum, and carbon isotope com-
positions of microdiamonds were analysed and discussed by Fourier infrared spectroscopy
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and carbon isotope test. The types of microdiamonds found in the North China Craton, the
age of mantle occurrence, and the source of carbon isotopes were revealed.

2. Geological Background and Samples

The North China Craton (NCC) is one of the oldest cratons on Earth [32–34]. It
was amalgamated after the collision of Eastern Block and Western Block at ca. 1.8 Ga,
which resulted in the intervening Central Orogenic Belt [34]. The basement of the NCC
mainly consists of Archean to Paleoproterozoic TTG (tonalitic–trondhjemite–granodioritic)
gneisses that are covered by Mesoproterozoic to Paleozoic sediments. The basement rocks
in the study area are composed of the Archaean Wuhe Group and the Paleoproterozoic
Fengyang Group and are overlined by the Proterozoic and Lower-Paleozoic cover rocks,
including dolomite, limestone, shale, and sandstone. Voluminous Mesozoic magmatic
rocks including diabase, basalts, quartz syenite porphyries, and spessartites occur in the
area [28].

Several diamond deposits have been reported in the North China Craton [33,35].
The two most significant deposits are in Wafangdian of Liaoning province and Mengyin
of Shandong Province [1]. They are distributed on both sides of the Tanlu fault—the
Wafangdian diamond ore area lies in the east and the Mengyin diamond ore area lies in the
west. Moreover, many microdiamonds have been found in the western side of the Tanlu
fault and the southern margin of the NCC, such as those in the northern Jiangsu and Anhui
provinces. The area where AD microdiamonds (microdiamonds from alkalic dolerites)
were found is located in the southeast margin of the NCC and west of the Tanlu fault.

Diamonds in basaltic rocks mostly coexist with high-pressure minerals such as pyrope
and hessonite [25,26,28]. The AD microdiamonds obtained in this study are cube and
rhombic dodecahedron with diameters of 0.2 to 0.6 mm. These microdiamonds are colour-
less to yellowish (Figure 1a–c) [30]. Microscopic observations revealed irregularly shaped
black to light-coloured mineral inclusions. High pressure minerals were also observed
in these microdiamonds. More detailed mineralogical characterization will be reported
in a separate paper. The surface characteristics of diamonds, such as dissolution, can
be observed on relatively large microdiamonds (Figure 1d) [30]. The characteristics of
diamonds are summarized in Table 1.

Table 1. Characteristic of the tested Diamonds.

Sample No. Color Shape Surface Character

AD1 yellow cubo-octahedral Shallow depressions

AD2 Light yellow Rounded
Dodecahedra

Stacked growth layers,
plastic deformation lines,
terraces, elongate hillocks

AD3 colorless fragment Stacked growth layers,
AD4 yellow cubo-octahedral Stacked growth layers,
AD5 yellow cubo-octahedral Stacked growth layers,
AD6 yellow cubo-octahedral

Shallow depressions,
abrasion, scratch mark

AD7 yellow cubo-octahedral
AD8 yellow cubo-octahedral
AD9 yellow cubo-octahedral
AD10 yellow cubo-octahedral
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Figure 1. (a) Ib type AD microdiamond; (b) IaA/Ib type AD microdiamonds; (c) IaAB type AD
microdiamond; (d) IaA type AD microdiamond.

3. Analytical Method
3.1. Fourier Transform Infrared Spectroscopy

Infrared absorption spectra were collected using Bruker Vertex80 (Second Institute
of Oceanography, MNR) and Thermo Fisher Nicolet Nexus 470 (University of Alberta)
FTIR spectrometer, equipped with a Continuum IR microscope with a motorized stage. A
midinfrared light source was used to collect spectra with a spectral range of 4000–650 cm−1.
Diamonds were placed on a KBr plane and measured under 20×magnification infrared
objective in transmission mode. Spectra were acquired by averaging 200 scans at a spectral
resolution of 1 cm−1 with an aperture size of 100× 100 µm. Baseline corrected spectra were
normalized to 1 cm sample thickness employing an absorption coefficient of 11.94 cm−1

for the intrinsic absorption of a diamond at 1995 cm−1 [36,37].

3.2. Carbon Isotopic Composition

Carbon isotopic compositions were measured at the University of Alberta. Diamond
grains weighing 129–314 ug were weighed and wrapped into a tin capsule, which was
then loaded and combusted in an Elemental Analyzer (Thermal Flash 2000) at 1050 ◦C.
The produced CO2 was carried by a high-purity helium stream to an isotope ratio mass
spectrometer (Thermo Delta V Plus) for isotopic measurement. Diamonds are resistant to
combustion and complete combustion generally required multiple burning. Cumulative
CO2 yields of 100% were normally achieved after 3–4 burns. CO2 gas from each burn was
measured for δ13C value unless the amount of CO2 gas in the last burn was too low to
give reliable data. The δ13C reproducibility of all the burns from individual diamonds was
better than 0.3‰. A weighted average δ13C value of all the burns was used to represent the
value of each diamond. CO2 blanks were carefully monitored between samples to ensure
no memory effect. The low-organic content soil standard (reference values: C = 1.61 wt%;
δ13CV-PDB = −26.66‰) and high-organic content sediment standard (reference values:
C = 7.45 wt%; δ13CV-PDB = −28.85‰) were measured in parallel to samples and used to
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calibrate the carbon yield and isotopic ratios of samples. Repeated analysis of the standards
gave a 2 standard deviation better than 0.2‰.

4. Analysis Result
4.1. Fourier Transform Infrared Spectroscopy

Infrared spectral data of ten samples were obtained and fitted by the OMNIC software.
The DiaMap software (DiaMap_CABX 17_11_07 version) was used for spectrum analysis
and N content calculation [37–40]. The concentration of C centres (in at. ppm) was
calculated by multiplying the absorption coefficient at 1344 cm−1 by a factor of 37 [41,42].

Microdiamonds exhibit a broad range of N concentration from 4.5–503 ppm, with a
median value of 173 ppm. Eight diamonds exhibit intense N absorption, and C centres were
found at 1344 cm−1 in these diamonds. Three diamonds that contain N predominantly in
the form of A centres also show a discernible C centre line at 1344 cm−1; these diamonds
are classified and referred to as Type Ia/Ib hereafter (Table 2). Bands or lines corresponding
to B, B′ and A centres were found co-existing in two diamonds.

Table 2. Types of tested microdiamonds and the data of the IR spectrums.

Sample No. Major Peak (cm−1) Type of C-N Type N Concentration (10−6) N total (10−6)

AD1 1280, 1344, 1976, 2852.2, 2925 A, C IaA/Ib 143.0 (C centre) 143.0

AD2 1172, 1288, 1361, 1650, 1976, 1851, 2919 A, B’, B IaAB 60.9 (A centre), 134.2 (B
centre) 195.1

AD3 1650, 1976, 2850, 2919 A Ia 4.5 (A centre) 4.5
AD4 1130, 1344, 1976 C Ib 10.7 (C centre) 10.7
AD5 1128, 1344, 1650, 1976, 2850, 2919, 3290 C Ib 76.9 (C centre) 76.9

AD5 1130, 1284, 1344.6, 1645, 1976.7, 2848,
2919.7, 3201, 3394 A, C IaA/Ib 23.6 (C centre) 23.6

AD7 1128, 1272, 1344, 1976, 2848, 2921 C Ib 393.5 (C centre) 393.5
AD8 1128, 1282, 1344, 1596, 1976, 2854, 2919 A, C IaA/Ib 240.9 (C centre) 240.9
AD9 1344, 1645, 1976, 2848, 2919, 3191, 3394 C Ib 137.0 (C centre) 137.0

AD10 1128, 1272, 1344, 1600, 1976, 2848, 2917 C Ib 503.5 (C centre) 503.5

4.2. C Isotope

The C isotopic results of microdiamonds are listed in Table 3. The overall range of
δ13C values in the microdiamonds is between −18.6 and −21.1‰ (Table 3).

Table 3. δ13C values (‰) of the microdiamonds.

Sample ID δ13C (‰)

AD5 −20.2
AD6 −19.1
AD7 −18.6
AD8 −20.5
AD9 −21.1

AD10 −20.6

5. Discussion
5.1. FTIR Spectra of AD Microdiamonds
5.1.1. C-C Absorption Lines

All the diamond samples showed clear absorptions between 1970 and 2300 cm−1,
which were the vibration absorption of C-C, mainly at 1976, 2027 and 2158, among which
the absorption at 1976 was the most clear [43].



Crystals 2021, 11, 1325 5 of 11

5.1.2. C-N Absorption Lines

Natural diamonds are commonly classified according to the presence or absence
of nitrogen. Nitrogen is incorporated in the lattice, first as single nitrogen, and then
progressively aggregated by natural annealing over time in the sequence of single nitrogen
(C centre)–A-aggregate (A centre)–B aggregate (B centre) [44].

In the studied diamonds, A centre (1282 cm−1) was detected in five diamonds, B
centre was detected in one diamond and C-centre was detected in eight diamonds. So,
these samples can be classified as type IaA (Figure 2, AD3), IaAB (Figure 2, AD2), IaA/Ib
(Figure 3), and Ib (Figure 4).
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Figure 4. Infrared absorption spectrum collected from diamonds exhibiting C centres.

The eight diamonds are distinctly of type Ib character and three of the samples contain
the 1344 cm−1 single nitrogen absorptions, together with the 1282 cm−1 A-aggregate
(Figure 3). However, the di-nitrogen (A centre) abortion was not strong, indicating that
the diamonds have low nitrogen conversion rates in the mantle and still retain most of
the single nitrogen. This could be attributed to 1) the mantle temperature is relatively low,
and/or 2) the mantle residence time is short [45].

Bands or lines corresponding to B and B’ centres were found co-existing in sample
AD2, which is confirmed to be Type IaAB with a total N concentration of 195 at. ppm and a
B centre proportion [100 NB/(NB+NA)] of 68.8%.

5.1.3. H2O and C-H Absorption Line

In these samples, the vast majority of samples showed the absorption of H2O at about
1645 cm−1, which was caused by the bending vibration of H2O molecule [39]. Meanwhile,
many samples also had the symmetric stretching vibration of H2O at about 3200 cm−1.
However, the antisymmetric stretching vibration absorption of H2O around 3630 cm−1

was not detected in these samples.
C-H-related absorption was common in the spectra [39], with typical 2920 and

2850 cm−1 absorption being detected in most samples. The VN3H line at 3107 cm−1

was detected in samples AD2 and AD3. The absorption near 3394 cm−1 was detected in
some samples, which was related to the N-H bond [39].

5.1.4. Y-Centre

In this study, Y-centres (Figure 5) were also detected in 4 microdiamonds. The centre
is characterized by the dominant asymmetric absorption centred at approximately 1145 to
1150 cm−1. The defect was discovered by Hainschwang (2012) through infrared spectro-
scopic determination and analysis of a large number of natural and synthetic type Ib yellow
diamonds. The large sampling for that study shows that in natural type Ib samples from
recent diamond productions the Y-centre is very common. So far, the Y-centre has neither
been detected in synthetic diamonds, nor in single nitrogen free type Ia diamonds [40].
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Type Ib diamonds are very rare in nature (<1% of cape series yellow diamonds in
nature). So far, type Ib diamonds have only been discovered in Helam/Swartruggens
in the eastern block of the Kaapvaal craton [46,47], Lac de Gras in the Slave Craton [48],
Dachine in the Amazon Craton [49–51], Orapa rock tubes in the southwest of the Zimbabwe
Craton [52], Qilalugaq of the Rae Craton and the Kankan region of the West African
Craton [53,54], Tibet of China and Pozanti-Karsanti of Turkey [19].

5.2. Modelling of Mantle Residence Time

Modelling mantle residence times for the diamonds requires N concentration, N
aggregation state and mantle residence temperature as input parameters [44,55–58]. The
model is also based on the assumption that the total N concentration of diamond is reflected
in the infrared absorption spectrum and that there is a smooth aggregation process from C
to A to B centres [55]. The requisite nitrogen concentrations and aggregation states were
determined via FTIR analyses (see above). The mantle residence temperature was assumed
to be in the range of 1200–1225 ◦C [33].

The infrared spectra of four points from the core (location 01) to the edge (location
04) of the diamond were determined. According to the analytical results, the content and
accumulation degree of N in diamonds do show spatial variations. The FTIR spectrum of
sample AD3 illustrates that the absorption of diamond core was at 1370 and 1175 cm−1

with strong absorption rate, which suggests a IaAB type. However, the absorption rate was
weakened as the transition to the edge, where the absorption was mainly at 1282 cm−1,
a character of IaA type (Table 4). These characteristics may also reflect the changes of
crystallization environment and conditions of diamond with complex structure in different
growth stages, or the ability of diamond to capture N. The model ages calculated by N
ranged from 1.29 Ga to 0.74 Ga from the core to edge, so mantle residence time modelled at
1200 ◦C is estimated to be 0.55 Ga (Figure 6).

Table 4. Calculation of N concentration and tMR.

Location NA/ppm NB/ppm NT
(×10−6)

Modelling Age/Ga

(~1282 cm−1) NB(~1175 cm−1)

01 41.590 56.615 98.205 1.29
02 58.767 71.982 130.750 0.87
03 56.229 59.316 115.545 0.85
04 74.587 109.528 184.115 0.74
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Carbon isotopic compositions of diamonds from kimberlite, lamproite and metamor-
phic rocks have been extensively studied [23,49,60–62]. According to Cartigny (2005),
eclogitic diamonds (E-type) have δ13C ranging from −38.5 to +2.7‰ and peridotitic dia-
monds have δ13C from −26.4 to +0.2‰. Despite the different δ13C ranges between eclogitic
and peridotitic diamonds, both groups of diamonds are characterized by a mode at δ13C
~ −5‰, which is consistent with the mantle range of carbon isotopic composition [62].
Ultra-high pressure (UHP) metamorphic diamonds mainly have δ13C out of the normal
mantle range [9,62]. Diamonds from alkalic dolerites studied here are all characterized
by low δ13C values with a narrow range (Figure 7). These low δ13C values of dolerites-
hosted diamonds overlap with the lower ends of peridotitic diamonds and metamorphic
diamonds, and the upper end of the ophiolitic diamonds.
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6. Conclusions

In the past, many deposits of macro-diamonds, mostly of type Ia or IIa, were found in
the North China Craton, and they have been extensively studied. Microdiamonds which
were recovered from the alkalic dolerites of the North China Craton were studied by FTIR
and Carbon isotopic.

These diamonds are similar in colour and shape to ophiolite type diamonds and
show different characteristics of kimberlite and lamproite diamonds. These diamonds are
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usually light yellow to yellow, with a few colourless, and cubic, octahedral or rhomboidal
dodecahedron, and octahedron in shape. The surface characteristics of diamonds, such
as dissolution, can be observed. The overall N concentration is not high, with an average
of 173 ppm. The infrared spectra show that most of these diamonds were type Ib, and
C centres were found at 1344 cm−1 in these diamonds. Three diamonds of our samples
are classified as Type Ia/Ib, because of A centres and C centres in these diamonds. Two
diamonds are classified as type IaAB because B, B′ and A centres were found co-existing.
FTIR microscopic measurements from the core to the edge of the type IaAB diamond
suggest a mantle residence time of approximately 550 Ma. The C isotopic analysis reveals
that these diamonds are strongly depleted in 13C. These low δ13C values of dolerites-
hosted diamonds overlap with the lower ends of peridotitic diamonds and metamorphic
diamonds, and the upper end of the ophiolitic diamonds. Additionally, the reason for the
strong deficit δ13C shown by the carbon isotope should be studied in the future.
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