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Abstract: In this short contribution, we examine Raman spectroscopic data from high-pressure and
high-temperature experiments with an Ag-Cl2 system, and find that they are in good agreement with
previously observed and calculated spectra of polychloride species. Our results imply the formation
of a hitherto unknown AgClx compound, which warrants further study.

Keywords: silver; polyhalides; high pressure

1. Introduction

Among the three coinage metals known since antiquity—copper, silver and gold—the
chemistry of silver is perhaps the most elusive and challenging [1]. It adopts the oxidation
state +1 (with closed-subshell d10 electronic configuration) in the vast majority of its known
compounds [1]. However, it is the chemistry of silver(II) that has received greater attention
from solid state chemists and physicists, due to the unpaired d electron giving rise to
magnetic interactions in AgF2 and its ternary derivatives [2,3]. Ag2+ cation is also one
of the strongest known oxidizers and because of that, it is found predominantly in the
coordination environment of fluorine (the most electronegative element) as the ligand in
known compounds of AgII.

In this work, we are concerned with the possibility of obtaining novel combinations
of silver and chlorine (the third most electronegative element). Phase diagram of binary
Ag/Cl system features only one stable compound—silver(I) chloride AgCl (a well-known
photosensitive agent in traditional photography). There exists a variety of other com-
pounds containing silver and chlorine, e.g., ionic conductors Ag5Te2Cl [4] or AgF1−xClx [5],
complex chlorides such as Ag[AuCl4] [6] and Ag[AlCl4] [7], or even ternary chloroargen-
tates, such as CsAgCl2 [8,9], Cs2AgCl3 [9], and Rb2AgCl3 [9,10]. All of the above, however,
feature silver in the oxidation state +1—as does AgCl. An interesting example can be found
in the case of Cs2AgIAgIIICl6—a mixed-valence chloroargentate with a perovskite-like
structure, in which Ag centers are coordinated by Cl atoms in compressed (for AgI) or
elongated (for AgIII) octahedra [11]. The latter compound serves as an example of charge-
transfer instability of AgII species in homoleptic environment of ligands less electronegative
than fluorine, evidenced also by the case of AgIAgIIIO2 [12,13], which has been found to
retain its mixed-valent (and insulating) character even when compressed to 80 GPa [14].
This tendency, along with the aforementioned high reactivity of AgII species (towards
ligands less electronegative than fluorine), can be used to explain the scarcity of known
AgClx compounds. Nevertheless, a possibility of obtaining novel binary silver chlorides
has been investigated computationally in recent years. Our previous studies have looked
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at the relative stability of various structural candidates for AgCl2 [15], and a different work
has identified a candidate structure for a silver subchloride [16]. All of the aforementioned
compounds or polymorphs turn out to be metastable with respect to decomposition into
AgCl. However, the list of possible candidates for new AgClx combinations is not ex-
hausted by the aforementioned studies. As another example of possible configurations,
one can mention recently discovered higher chlorides of sodium [17,18] and potassium [19].
The ionic radius of AgI is similar to that of NaI [20] and thus chemistry of their respective
polychlorides could also be similar. Indeed, we argue that the experimental data obtained
and reported in this contribution points to formation of a hitherto unknown compound,
which contains AgI and polychloride Clx– anions [21].

2. Materials and Methods

High-pressure experiments involving mixtures of Ag or AgCl with Cl2 were performed
using a diamond-anvil cell (DAC) supplied by Almax EasyLab (Diksmuide, Belgium), with
diamond culets 250 µm in diameter. Gaskets were prepared as follows: a rhenium gasket
blank was indented to ca. 10 GPa (using ruby fluorescence as pressure gauge [22]), after
which a hole ca. 100 µm in diameter was cut out using an infrared laser. A cylinder-shaped
piece of hastelloy, matching in size, was inserted into the hole and welded together with
the rhenium gasket through further compression, after which a hole was again cut out.
The gasket was placed on one of the seats of the DAC and fit tightly to the diamond anvil
using a Seger ring. A thin layer of alumina (Al2O3) was deposited on parts of the gasket
in contact with diamond facets, in order to avoid sliding of the gasket lubricated by Cl2.
(These parts were not in contact with the sample chamber.) Gaseous Cl2 was then loaded
from a capillary into the gasket hole while the entire system was being cooled in liquid
nitrogen inside an argon-filled glove-box with desiccant, in order to ensure condensation
of chlorine uncontaminated by moisture. Ag or AgCl (depending on the experiment) was
loaded by placing a microcrystalline sample on the other diamond anvil.

Raman spectra were collected using a 532 nm laser. Pressure in samples was deter-
mined using the high-edge frequency of first-order Raman band of diamond from diamond
anvil [23]. Infrared laser was used in selected experiments to heat the studied Ag-Cl2
sample.

Complementary density functional theory (DFT) calculations were carried out using
VASP software [24–28], with GGA-type Perdew-Burke-Ernzerhof functional adapted for solids
(PBEsol) [29]. More detailed description of settings can be found in Supplementary Materials.

3. Results

We performed several runs of compression experiments with either Ag or AgCl loaded
together with Cl2 into a DAC. In general, assuming no reaction taking place, we expect the
Raman spectrum to be dominated by features originating from Cl2—a molecular crystal
(chlorine solidifies at room temperature at pressure as low as 1.45 GPa [30]). AgCl, as an
ionic solid with rocksalt structure at ambient pressure, would likely produce only relatively
low-intensity overtone bands below 400 cm−1 at ambient pressure [31,32]. In addition,
AgCl undergoes a series of phase transitions in the range 7–13 GPa, ultimately leading
to CsCl-type polymorph [33]. Although Raman spectra of CsCl-type AgCl have not been
reported, selection rules indicate that only the overtone of IR-active T1u mode can be
Raman-active, as is the case with isostructural AgF at high pressure [34]. We simulated the
pressure dependence of those frequencies using DFT calculations for reference in further
discussion (methodology and results are shown in Supplementary Materials). Similarly,
Ag, as a metal with fcc crystal structure, is not expected to produce any Raman signal at
all. Accordingly, in one of the experiments—where we compressed AgCl with Cl2 and
measured Raman spectra at various pressure points between 8 and 52 GPa (initially without
any laser heating), we observed bands characteristic of solid Cl2, whose frequencies and
pressure dependence were previously reported by Johannsen et al. [35].
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In Figure 1, we plot chlorine band frequencies measured in this work as a function
of pressure. Overall, our results for chlorine are in very good agreement with previously
reported data [35], although we extended our assignment to bands appearing in the
region up to ca. 1100 cm−1. We present example spectra and more detailed assignment
in Supplementary Materials. For the purpose of this work, signals originating from Cl2
serve as a backdrop for identification of additional bands, which were observed in further
experiments, as discussed below.
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Figure 1. Pressure dependence of bands identified as originating from solid molecular chlorine, taken
from one of the experimental runs. Based on ref. [35], we assign these bands as: squares—lattice
phonons, circles—intramolecular Cl-Cl vibrations. (More detailed information on the assignment can
be found in Supplementary Materials).

We performed two other experimental runs: (A) AgCl + Cl2 mixture compressed to
ca. 40 GPa, laser-heated several times and further compressed to ca. 60 GPa in several
steps, and (B) Ag + Cl2 mixture compressed initially to ca. 4 GPa and further compressed
to ca. 27 GPa in several steps, without laser heating. Raman spectra were collected at each
compression step in both samples.

In Figure 2, we present spectra collected for sample A. The two most prominent ones
can be assigned to chlorine as Cl-Cl vibron (at ca. 550 cm−1 at 42 GPa) and as Ag lattice
phonon (at ca. 310 cm−1 at 42 GPa). The lower-intensity signal in the range 350–390 cm−1

(depending on pressure) is most likely the B3g solid Cl2 lattice phonon. In the higher-
frequency region, the previously mentioned overtone of Cl-Cl vibron is also visible at
1070–1090 cm−1. Importantly, we can discern several new bands appearing in the range
just below the Cl-Cl vibron (400–500 cm−1). The bands are relatively weak, but repeatable,
and the spectrum is still dominated by features from Cl2. Several weak signals can also
be discerned in the higher-frequency region (600–1000 cm−1). It is important to stress that
these new bands appeared after laser-heating and therefore cannot be assigned to AgCl
or to any other constituent present in DAC from the beginning. Overtone bands which
could originate from CsCl-type AgCl (cf. Supplementary Materials) are not observed in
the spectrum, indicating very low Raman activity of this system.
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Figure 2. Comparison of spectra obtained in experiment A: AgCl + Cl2 mixture compressed initially to ca. 40 GPa and
laser-heated. (a) 200–650 cm−1 range, (b) 600–1200 cm−1 range. See text for further details.

Raman spectra collected from experiment B are shown in Figure 3. In this case, we can
also observe new bands appearing in the 400–500 cm−1 region. Interestingly, this occurs
in sample B even without laser heating. Assuming that the origin of these new signals is
a product of reaction in the Ag-Cl2 system, such observation is not surprising—we can
expect that the activation barrier for the reaction between metallic Ag and Cl2 will be lower
than for the respective reaction of AgCl and Cl2, since AgCl is thermodynamically stable
with respect to Ag and Cl2 at room temperature within the studied pressure range [33].
The possible origin of new bands appearing in Figures 2 and 3 is discussed below.
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The appearance of bands which cannot be assigned to any of the constituents of
the initial mixture clearly indicate that a reaction has taken place. The system Ag/AgCl
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+ Cl2 can in principle also interact with the gasket material (hastelloy, a material made
up mostly of Ni, Cr and Mo) and the diamond anvil, particularly in the heated samples.
However, we have chosen hastelloy as a gasket material due to its chemical resistance,
and the reaction between it and Cl2 (especially without laser heating) appears unlikely.
Known spectral data for possible products of such reaction, i.e., nickel, chromium, and
molybdenum chlorides, also testify against such assignment of the new bands in the
400–500 cm−1 region [36–38]. Furthermore, a reaction between Cl2 and diamond could
conceivably occur, although previous experimental works with similar setup and heating
do not mention such outcome [39]. Chlorinated diamond surfaces have been analyzed
by Raman spectroscopy [40]; C-Cl vibrations in such systems are expected to fall in the
600–800 cm−1 range. In this work, a faint band appearing in sample A between 660 and
700 cm−1 may originate from such vibrations. Its intensity is very weak and thus the extent
of such chlorination can be considered very low, if it occurs at all. Finally, CCl4 could in
principle be another product of reaction between diamond and Cl2. Raman spectra and
phase transitions of CCl4 have been previously studied, and known frequencies of its bands
from those works have been taken into account when analyzing new bands in experiments
A and B [41].

Figures 4 and 5 plot pressure dependence of new bands observed in samples A and B,
together with previously reported bands of CCl4 [41]. Although the range of data for CCl4
is only up to ca. 30 GPa, we can still see that the new bands in 400–500 cm−1 cannot be
accounted for by this compound. Several of the higher-frequency bands (in 600–1200 cm−1)
can be assigned to Cl2 vibron overtones and to combination modes mentioned previously.
The bands in the 850–950 cm−1 region, regardless of their chemical origin, are likely
overtones of the bands between 400 and 500 cm−1, since in general, overtones are a
common occurrence in Raman spectroscopy (cf. Supplementary Materials for assignment
of overtones and combination modes in Cl2 spectrum). Overtones tend to be strong when
Raman spectra have resonance character, which is quite likely in the case of the dark brown
sample (cf. Supplementary Materials) illuminated with a visible laser beam.
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4. Discussion

Having ruled out possible candidates for undesirable reaction products, we can
attempt to determine the identity of system constituents which give rise to the new bands
in the 400–500 cm−1 region. Discontinuities in pressure dependence and relative positions
of these bands (Figures 4 and 5) between sets A and B suggest that they may belong either
to different polymorphs of the same compound (obtained as one phase in experiment A
and as another in B) or to different compounds altogether. These bands are located just
below the dominant Cl-Cl vibron band, and simple considerations based on the harmonic
oscillator model indicate that they could originate from: (a) X-Cl vibrations, where X is
an atom heavier that Cl, (b) Cl-Cl vibrations from a species featuring Cl-Cl bonds longer
than in Cl2 molecule, such as polychloride anions [42–44], or (c) a lattice phonon in a solid
compounds featuring (a) and/or (b). Figure 6 shows the spectrum obtained for sample
B at 3.9 GPa, and compares it with simulated spectra of example polychloride species at
ambient pressure, with frequencies taken from refs. [42,43]. While not an exact match, it
is worth noting that (i) these values were observed/calculated for different compounds
containing complex organic cations, so we can expect these frequencies to vary to some
extent depending on the system, and (ii) there is no data on the pressure dependence of
Raman spectra of polychlorides, so a certain discrepancy (a positive shift) can be expected
between previously reported values and spectra presented in this work. However, the
comparison in Figure 6 gives strong credibility to the hypothesis that polychloride species
such as Cl5– or Cl9– are indeed present in the sample. Lastly, the sample obtained in
experiment A turned visibly brown at the irradiation spot (cf. Supplementary Materials,
Figure S6), which indicates formation of a product with a charge-transfer transition in the
visible range. Given that Ag(I) polychloride(s) is/are present in the sample, the transition
responsible for the color may correspond to metal-to-ligand charge transfer excitation
from occupied d states in AgI and empty σ* antibonding states in Cl2 molecule within
polychloride anion or array (AgI d→ Cl2 σ*).
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5. Conclusions

We have obtained and analyzed Raman spectra probing several experiments with
binary Ag-Cl2 system, and we argue that the data is indicative of the formation of an
as-yet unknown phase or phases. Based on the positions of new Raman bands observed
in the experiments, these new phase(s) most likely contain polychloride anions [42] or
in general, a more complex arrangement of Cl atoms [43]. Recent computational work
investigating different stoichiometries of AgClx compounds using evolutionary algorithm
has indeed pointed to a possibility of formation of polymorphs with polychloride anions
for x > 2 [45]. A common feature emerging in those solutions are Cl3– anions, and [Cl3 . . .
Cl2]– or [Cl2 . . . Cl2]– infinite networks. Further study is needed in order to elucidate the
exact nature of reaction products reported here. Unfortunately, high-pressure synchrotron
X-ray diffraction measurements, which could provide insight into the crystal structure of
these systems, have been severely delayed due to the ongoing COVID-19 pandemic.
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