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Abstract: Microbial-induced carbonate precipitation is an environmentally friendly foundation
treatment technology that effectively improves soil engineering performance. The various nutrient
components of liquid curing compounds significantly influence the curing effect. On the basis
of penetration, dry density, water absorption, and unconfined compressive strength tests, this
study showed the effect of nutrient solution composition, including urea, calcium chloride, sodium
bicarbonate, ammonium chloride, and nutrient broth, on the physicomechanical properties of bio-
cemented sand. The morphological differences of calcium carbonate precipitates under nutrient
solution composition were compared through scanning electron microscopy (SEM). Results showed
that the curing effect of compound nutrient solution was improved compared with the basic nutrient
solution (urea and calcium chloride). Among the individual components added, ammonium chloride
had the most remarkable effect, followed by sodium bicarbonate and nutrient broth. Among the
paired components added, sodium bicarbonate + ammonium chloride had the most significant effect,
followed by sodium bicarbonate + nutrient broth and ammonium chloride + nutrient broth. The
strength of bio-cemented sand cured with compound nutrient solution containing five components
could reach 3.43 MPa, which was 1.92 times higher than the strength of the basic nutrient solution. As
shown by the SEM image, the calcium carbonate precipitation in the solidified sand was distributed
in the clearance of sand particles, effectively bonding the sand particles. The calcium carbonate
obtained by the composition of the compound nutrient solution precipitated the sand particles, and
some of the sand particles were wrapped. Moreover, the amount of precipitation was evidently
greater than that of the basic nutrient solution. Compared with the basic nutrient solution, the
compound nutrient solution effectively reduced the apparent porosity and average pore size of the
sand. Thus, the curing effect of the compound nutrient solution was better than that of the basic
nutrient solution.

Keywords: microbial-induced carbonate precipitation; nutrient solution; sand; physicomechanical
index; SEM

1. Introduction

Microbial-induced carbonate precipitation (MICP) is an environmentally friendly soil
improvement technology. MICP occurs through calcium carbonate precipitation, which
binds sand particles and improves the engineering properties of the soil [1–3], including
strength characteristics of improved sand [4–6], and sandy soil liquefaction resistance [7,8].
MICP is also useful in heavy metal repair [9,10] and crack repair [11,12]. The mechanism
of action is that the microorganisms themselves metabolize to produce urease during
the process of microbial-induced calcium carbonate precipitation, which can hydrolyze
urea (Equation (1)). Carbonic acid and ammonia react further after urea is hydrolyzed
(Equations (2) and (3)). The cell itself carries a negative charge, calcium ions attach to the
cell surface, and microorganisms as nucleation sites bind carbonate ions to form calcium
carbonate precipitation (Equation (4)) [13,14].

CO(NH2)2 + H2O urea→ H2CO3 + 2NH3 (1)
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NH3 + H2O↔ NH4
+ + OH− (2)

H2CO3 ↔ HCO3
− + H+ ↔ CO2−

3 + 2H+ (3)

Ca2+ + Cell → Cell − Ca2+ + CO2−
3 → Cell − CaCO3 ↓ (4)

In addition, the hydrolysis of urea increase the pH of the soil. Calcium and bicar-
bonate ions form calcium carbonate precipitation under alkaline conditions (Equations (5)
and (6)) [15]

Ca2+ + HCO3
− + OH− → CaCO3 ↓ +H2O (5)

Ca2+ + 2HCO3
− → CaCO3 ↓ +CO2 + H2O (6)

Based on the aforementioned reaction, urease-producing microorganisms, urea, and
calcium ions are necessary for the reaction to occur. The microorganisms are provided by
the bacterial solution, and urea and calcium ions are provided by the nutrient solution. The
cementing effect of MICP depends to a great extent on the composition and concentration of
cementation solution, which affect not only the crystal type, appearance, size, composition
of pore fluid, and pH value [16,17] but also the distribution of bacteria and crystals in the
pore spaces [18]. Macroscopically, it affects calcium carbonate production and precipita-
tion efficiency [19]. It also affects the pore size distribution, compression behavior, shear
strength, and stiffness of cemented geomaterials. The composition of cementation solution
controls the growth and metabolism of microorganisms and the precipitation process of
calcium carbonate. More specifically, the composition of cementing cementation affects
the activity of bacteria and urease, the type and morphology of calcium carbonate crystal,
and the properties of soils. The cementation solution plays an important role in the MICP
process. Variations in cementation solution composition can cause different cementing
effects [20]. Most basic nutrient solutions are composed of urea and calcium salt [21–23].
However, a compound nutrient solution that includes sodium bicarbonate, ammonium
chloride, and nutrient broth can also be added to the nutrient solution [15,24–27]. At
present, research on the effect of different components in the compound nutrient solution
on the cementation effect and its mechanism is relatively insufficient. In this study, the com-
position of the nutrient solution was changed in turn, and geotechnical test and scanning
electron microscopy (SEM) were performed to observe the changes in order to find the best
curing effect of the composition of cementation fluid on MICP solidified sand column and
provide reference value for the popularization of MICP in engineering application.

2. Materials and Methods
2.1. Materials

The primary material was Sporosarcina ureae (DSM33), a chemical heterotrophic bacte-
ria that was spherical or ovoid, Gram-positive, and with few flagellar movements. In this
experiment, the urease activity of the bacterial liquid was 1.15 mS (cm·min). The culture
medium for bacterial expansion was composed of 20 g/L yeast extract, 10 g/L ammonium
sulfate, and 2 g/L sodium hydroxide. Fujian (China) ISO standard sand is a fine sand
with uniform soil particles and poor gradation. It has a relative density of 2.653 and a
porosity of 0.6.

The size of the specimen was 39.1 mm in diameter and 80 mm in height. All tests were
triplicated for repeatability. The sample was loaded with a split PVC mold, and standard
sand was slowly poured into the mold, layered, and compacted. Two layers of geotextile
were used as filters at two ends of the PVC. Each sample was pumped into the bacterial or
nutrient solution at a constant rate using a peristaltic pump. Sample preparation required
three rounds of circular grouting, and each round of grouting included two processes:
bacterial liquid injection and nutrient liquid injection. The first process of each round of
grouting was the injection of bacterial liquid. Each sand column was injected with 50 mL
of bacterial liquid and 5 mL of 0.05 mol/L calcium chloride solution for each round of
grouting. The peristaltic pump controlled the injection speed at 3 mL/min. After injection,
the sample was allowed to stand for 2 h. The second process was the injection of nutrient



Crystals 2021, 11, 1572 3 of 12

solution. Each sand column was injected with 50 mL of nutrient solution at a time. The
peristaltic pump controlled the injection speed at 3 mL/min. After injection, the sample
was allowed to stand for 6–8 h, and the process was repeated nine times to complete a
round of grouting.

2.2. Test Plan

The compound nutrient solution consists of five main ingredients: calcium chloride,
urea, sodium bicarbonate, ammonium chloride, and nutrient broth (10 g/L peptone, 3 g/L
beef extract, and 5 g/L sodium chloride). The experimental program is based on the
components of the nutrient solution, which are divided into four categories: A, B, C,
and D. Category A is the basic group, and Groups B, C, and D represent the control
group. The nutrient solution of the basic group only contains calcium chloride and urea.
Group B is divided into three categories. On the basis of Group A, sodium bicarbonate,
ammonium chloride, and nutrient broth are added, respectively. Group C is divided into
three categories. On the basis of Group B, ammonium chloride and nutrient broth, sodium
bicarbonate and nutrient broth, and sodium bicarbonate and ammonium chloride are
added in two successive combinations. Group D consists of five components: calcium
chloride, urea, sodium bicarbonate, ammonium chloride, and nutrient broth. The detailed
test plan is shown in Table 1.

Table 1. Test plan.

Groups A B1 B2 B3 C1 C2 C3 D

CaCl2 55 g/L
√ √ √ √ √ √ √ √

Urea 30 g/L
√ √ √ √ √ √ √ √

NaHCO3 2.12 g/L
√ √ √ √

NH4Cl 10 g/L
√ √ √ √

Nutrient broth 3 g/L
√ √ √ √

After the MICP treatment, the permeability coefficient, dry density, water absorp-
tion, unconfined compressive strength, and calcium carbonate content were measured in
sequence. The effect of bio-cemented sand was evaluated through comprehensive analy-
sis of various physical and mechanical parameters, combined with SEM (Carl Zeiss AG,
Oberkochen, German) and binary processing of the SEM image by IPP software (IPP 7.0).

2.3. Test Methods

Beaker test: First, 24 beakers were taken, and their mass m1 was weighed. Then,
25 mL of the nutrient solutions of A, B, C, and D were poured into the beakers, followed by
25 mL of bacterial solution. The samples were allowed to stand for 24 h until the reaction
was completed. Then, the mass m2 of the breaker and calcium carbonate precipitation was
weighed after curing. The calcium carbonate content was m2 −m1. The urease activity was
measured after adding different nutrient solutions.

Permeability coefficient: Through the variable head penetration test, the initial water
height h1 and the end water height h2 were determined within a certain period ∆t. The
permeability coefficient of the sample was calculated according to the following formula:

k = 2.3
al

A∆t
log

h1

h2
(7)

where a was the cross-sectional area of the water pipe, A was the cross-sectional area of the
sample, and l was the height of the sample.

Dry density: The solidified sand column was dried in a blast drying oven at 80 ◦C
until the mass loss rate within 24 h was less than 0.1%. The dried sand column was cooled
at room temperature. Then, its quality, height, and diameter were measured to obtain its
dry density.
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Water absorption ratio: The mass m1 of the sand column was measured after drying.
Then, the sand column was placed in water for 24 h. The sand column was removed and
the excess water on its surface was wiped off. The weight of the sand column was m2. The
water absorption ratio of the sample was calculated according to the following formula:

w =
m1 −m2

m1
× 100% (8)

Unconfined compressive strength: After the bio-solidified sample was dried for 24 h,
it was placed on the testing machine so that the sample and the upper and lower loading
plates of the testing machine were in contact. Thereafter, the force was cleared, and the test
was started. The test loading rate was set to 1 mm/min, and the unconfined compressive
strength value was recorded after the sample was broken.

Secant modulus E50: Considering that the stress–strain curve of microbial solidified
sand materials is similar to the mechanical characteristics of sandstone, the secant modulus
E50 in rock mechanics was used to represent the elastic modulus of microbial solidified sand.
The secant modulus E50 is the ratio of the stress value to the strain value corresponding to
half of the peak stress in the stress–strain curve.

Calcium carbonate content: The broken sand block is placed in a beaker, and its mass
WS1 is weighed. The mass of the selected sand blocks for each group was approximately
40 g to ensure the accuracy of the test results (Figure 1). The sand block was soaked in
5 mol/L concentrated hydrochloric acid solution. Calcium carbonate is considered to be
completely dissolved when no air bubbles are generated. The completely reacted sand
sample is rinsed with deionized water and placed in an oven for drying. The mass of the
beaker and sand sample is called WS2. The calcium carbonate content of the sample is
calculated according to Formula (9) [28,29].

CCaCO3 =
ws1 − ws2

ws2
× 100% (9)

Figure 1. Sample.

SEM test: The dried sample is placed on the sample holder for gold spray pretreatment.
Then, the sample is scanned, and a picture with a magnification of 1000 on the screen is
taken. IPP software is used for binary processing of the SEM image [30–32].

3. Results
3.1. Beaker Test

According to the composition of the nutrient solution, the content of calcium carbonate
produced is added to the beaker with bacterial liquid and various nutrient solutions as
shown in Figure 2a. Among the four types of nutrient solutions (A, B, C, and D), the
average calcium carbonate content of the compound nutrient solution of Group D was
the highest, and the average calcium carbonate content of the basic nutrient solution of
Group A was the lowest. In the Group B test, the average calcium carbonate content only
added with ammonium chloride was the highest. In the Group C test, the average calcium
carbonate content added with sodium bicarbonate + ammonium chloride was the highest.
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These findings showed that the compound nutrient solution could effectively promote the
production of calcium carbonate. Figure 2b shows that the addition of the nutrient complex
increased the urease activity.

Figure 2. Average calcium carbonate content (a) and urease activity (b).

3.2. Geotechnical Test

Geotechnical tests were conducted on the solidified sand samples (Figure 3). Com-
pared with the basic nutrient solution, the compound nutrient solution after sodium
bicarbonate, ammonium chloride, and nutrient broth were arbitrarily added could effec-
tively reduce the permeability coefficient and water absorption rate of the sand column
after solidification. The dry density, unconfined compressive strength, calcium carbonate
content, and secant modulus E50 were effectively improved, indicating that the solidifica-
tion effect of the compound nutrient solution was significantly better than that of the basic
nutrient solution.

Figure 3. Physical and mechanical indicators of sand solidified with various nutrient solution
compositions. Permeability coefficient (a); water absorption ratio (b); dry density (c); unconfined
compressive strength (d); CaCO3 (e); E50 (f).

For Group B, in which sodium bicarbonate, ammonium chloride, and nutrient broth
were added, only adding ammonium chloride had the lowest permeability coefficient
and water absorption, followed by sodium bicarbonate and nutrient broth. Only adding
ammonium chloride had the highest dry density, unconfined compressive strength, cal-
cium carbonate content, and secant modulus E50, followed by sodium bicarbonate and
nutrient broth.
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For Group C with two kinds of sodium bicarbonate, ammonium chloride, and nutrient
broth, the compound nutrient solution of sodium bicarbonate + ammonium chloride
had the lowest permeability coefficient and water absorption rate, followed by sodium
bicarbonate + nutrient broth and ammonium chloride + nutrient broth. The compound
nutrient solution of sodium bicarbonate + ammonium chloride had the highest dry density,
unconfined compressive strength, calcium carbonate content, and secant modulus E50,
followed by sodium bicarbonate + nutrient broth and ammonium chloride + nutrient broth.

The sand column solidified by the compound nutrient solution of Group D had the
best solidification effect. Its permeability coefficient, water absorption rate, dry density,
unconfined compressive strength, calcium carbonate content, and secant modulus E50
were 1.8 × 10−5 m/s, 7.06%, 2.029 g/cm3, 3.43 MPa, 3.75%, and 81.414 MPa, respectively.
Compared with the basic nutrient solution, the permeability coefficient and water absorp-
tion rate were reduced by 53.96% and 26.92%, respectively. The dry density, unconfined
compressive strength, calcium carbonate content, and secant modulus E50 were increased
by 6.34%, 91.94%, 38.33%, and 148.55%, respectively.

The stress–strain curves of the sand samples solidified with different nutrient solution
compositions are shown in Figure 4. Regardless of whether the basic nutrient or the
compound nutrient solution was used, the stress–strain curve of the sand column after
solidification showed a similar trend. Before the peak stress was reached, the stress
increased with the increase of strain. The growth rate of the compound nutrient solution
solidified sand column was greater than that of the basic nutrient solution. After reaching
the peak, the strain continued to increase, whereas the stress gradually decreased, and the
column exhibited typical brittle failure characteristics.

Figure 4. Stress–strain curve of sand solidified with various nutrient solution compositions.Stress-
strain of group A (a); Stress-strain of group B (b); Stress-strain of group C (c); Stress-strain of
group D (d).

3.3. SEM

The solidified sand column with various nutrient solution components was analyzed
by SEM after drying, and the connections of sand particles were magnified 1000 times.
Figure 5 shows that the basic nutrient and compound nutrient solutions can produce
calcium carbonate precipitation at the contact parts of the sand particles and effectively
bind them, thereby improving the unconfined compressive strength. The calcium carbonate
precipitation produced by Group A was very limited, and those produced by Groups B, C,
and D were greater. Among them, Group D produced the highest level of precipitation,
followed by Groups C and B. Sodium bicarbonate, ammonium chloride, and nutrient broth
all promote microbial-induced calcium carbonate precipitation. However, one component
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was added in Group B, two components in Group C, and all components in Group D. Thus,
Group D produced the most precipitation, and its strength reached 3.43 MPa. The calcium
carbonate precipitates generated in Group D not only bound the sand particles but also
gradually wrapped part of the sand particles, effectively enhancing the connection strength
between the soil particles.

Figure 5. SEM image of sand solidified with various nutrient solution compositions. SEM image of
group A (A); SEM image of group B1 (B1); SEM image of group B2 (B2); SEM image of group B3
(B3); SEM image of group C1 (C1); SEM image of group C2 (C2); SEM image of group C3 (C3); SEM
image of group D (D).

IPP software was used for the binary processing of SEM images of solidified sand
with various nutrient solution components (Figure 6). The quantitative analysis according
to binarization pictures, statistics of microscopic pore distribution, calculation of apparent
porosity, and average pore size were conducted (Figure 7 and Table 2).

Figure 6. SEM images of sand solidified with various nutrient solution compositions. SEM image
of group A (A); SEM image of group B1 (B1); SEM image of group B2 (B2); SEM image of group B3
(B3); SEM image of group C1 (C1); SEM image of group C2 (C2); SEM image of group C3 (C3); SEM
image of group D (D).
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Figure 7. Radar map of pore size distribution of solidified sand column with different
nutrient solutions.

Table 2. Statistical analysis of microstructure pore size distribution of sand solidified with different nutrient
solution compositions.

Sample
Percentage of Various Pores (µm) Apparent Porosity Average Pore Diameter

<2 2~5 5–20 20–50 >50 % µm

A 4.15 5.03 42.97 47.85 0.00 17.50 42.83
B1 4.91 4.90 49.60 40.59 0.00 10.15 26.45
B2 5.46 4.98 65.39 24.18 0.00 8.99 22.59
B3 3.90 4.04 50.29 41.76 0.00 11.98 33.60
C1 5.18 8.50 59.18 27.14 0.00 10.25 28.47
C2 6.50 8.68 63.26 21.57 0.00 7.88 19.99
C3 4.99 4.80 61.58 28.63 0.00 5.90 15.42
D 5.08 5.04 67.34 22.54 0.00 3.54 10.52

The various pore sizes of solidified sands with different nutrient solution components
are divided into five categories: hole (>50 µm), macropore (20–50 µm), mesopore (5–20 µm),
small pore (2–5 µm), and micropore (<2 µm) [33]. As shown in Table 2 and Figure 7, the
microscopic pores of sands solidified with various nutrient solution components have no
holes. The proportion of macropores and mesopores is relatively large, and that of small
pores and micropores is relatively small. A comparison of the unconfined compressive
strength (Figure 4) shows that the curing strength gradually increases, the proportion of
mesopores in the sand column gradually increases, and the proportion of macropores
gradually decreases from Group A to Group D. As shown in Figure 5, the increase in curing
strength may be due to the increase in calcium carbonate content, which caused some large
pores to be filled and transformed into mesopores.

Figures 6 and 8 show that Group A had the highest apparent porosity and average
pore size. After 1–3 kinds of sodium bicarbonate, ammonium chloride, and nutrient broth
were added, the apparent porosity and average pore diameter of the sand column were
reduced, with Group D showing the greatest decrease, followed by Groups C and B. The
apparent porosity and average pore size of the sand solidified by the compound nutrient
solution added with five components reached 3.54% and 10.52 µm, which were reduced by
79.77% and 75.44% compared with the basic nutrient solution, respectively.
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Figure 8. Quantitative analysis of SEM images of sand solidified with various nutrient solution
compositions. (a) Apparent porosity; (b) average pore size.

After solidification of the various nutrient solution components, the sand sample was
analyzed by SEM at 2000× magnification (Figure 9). The difference in the composition
of the nutrient solution affected not only the amount of calcium carbonate precipitation
but also the calcium carbonate crystal form. The calcium carbonate precipitates of Group
A showed prismatic crystals, and calcium carbonate particles were scattered in the sand
column. The calcium carbonate precipitates in Groups B, C, and D showed clusters of
interlaced particles. A comparison of Groups B and C show that the surface of calcium
carbonate precipitated crystals produced by the nutrient solution without nutrient broth
was relatively smooth. When the nutrient broth was added in the nutrient solution, the
surface of calcium carbonate precipitates was relatively rough and accompanied by fine
pores. The solidification effect was improved when 1–3 kinds of sodium bicarbonate,
ammonium bicarbonate, and nutrient broth were added to the nutrient solution to form a
compound nutrient solution. The calcium carbonate precipitates produced in Groups B, C,
and D presented stacked clusters with more content than Group A and Group D having
the greatest content.

Figure 9. Calcium carbonate crystal form of sand solidified with various nutrient solutions.
Calcium carbonate crystal form of group A (A); Calcium carbonate crystal form of group B1 (B1);
Calcium carbonate crystal form of group B2 (B2); Calcium carbonate crystal form of group B3 (B3);
Calcium carbonate crystal form of group C1 (C1); Calcium carbonate crystal form of group C2 (C2);
Calcium carbonate crystal form of group C3 (C3); Calcium carbonate crystal form of group D (D).
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3.4. Influence Mechanism of Various Nutrient Solution Components

The test results showed that the compound nutrient solution enhances the sand
solidification effect more effectively than the basic nutrient solution does. Among the
compound nutrient solutions with one ingredient added, ammonium chloride had the best
lifting effect, followed by sodium bicarbonate and nutrient broth.

The reason is that, from the perspective of reaction balance, the addition of sodium
bicarbonate promotes the hydrolysis of bicarbonate radicals. By enhancing the reaction
Formula (10), the generated carbonate ions increase, thereby promoting the generation
of calcium carbonate precipitation and increasing the curing effect [34,35]. The addition
of ammonium chloride promotes the reaction Formula (11) [35,36]. The ammonium ion
combines with the hydroxide ion to form ammonia gas and water. The addition of nutrient
broth can provide microorganisms with nutrients and promote their growth as well as
the formation of microbial-induced calcium carbonate precipitation. The addition of
sodium bicarbonate and ammonium chloride mainly affects chemical reactions, whereas
the addition of nutrient broth mainly affects microorganisms. Microorganism-induced
calcium carbonate precipitation involves not only microorganisms but also related chemical
reactions. Therefore, ammonium chloride, sodium bicarbonate, and nutrient broth have a
mutual influence in promoting microbe-induced calcium carbonate precipitation. The best
solidification effect occurs when ammonium chloride, sodium bicarbonate, and nutrient
broth are added to the nutrient solution at the same time. However, these compounds
have various promotion effects on the solidification effect, and the mechanism behind their
effects remains to be further explored.

HCO3
− + H+ + OH− ↔ CO2−

3 + 2H2O (10)

NH4
+ + OH− ↔ NH3 ↑ +H20 (11)

Figure 3 shows that the stress of Groups B, C, and D increases with strain significantly
faster than that of Group A. The addition of sodium bicarbonate, ammonium chloride, and
nutrient broth effectively promotes the formation of calcium carbonate precipitation and
improves the strength and rigidity of the sand column. In the SEM images (Figures 4 and 5),
the number of calcium carbonate deposits used to bond the sand particles generated in
Groups B, C, and D were greater than those in Group A.

4. Conclusions

Through the comparative analysis of the composition of the compound nutrient solu-
tion, we obtained several conclusions. The addition of sodium bicarbonate, ammonium
chloride, and nutrient broth in the compound nutrient solution could effectively improve
the curing effect. For the compound nutrient solution added with one ingredient, ammo-
nium chloride had the best lifting effect. For the compound nutrient solution with two
ingredients added, sodium bicarbonate and nutrient broth had the best lifting effect. For
the compound nutrient solution that contained components including sodium bicarbonate,
chloride, and nutrient broth, the lifting effect was better than that of either adding with
one or two components of the compound nutrient solution. The strength of bio-cemented
sand cured with the compound nutrient solution containing five components could reach
3.43 MPa, which was 1.92 times higher than the strength of the basic nutrient solution. In
the SEM image, the calcium carbonate precipitates generated by the bio-solidified sand
were distributed in the interstices of the sand particles, effectively binding the sand parti-
cles to increase the strength. Moreover, the calcium carbonate content of the sand solidified
with compound nutrient solution was significantly higher than that of the basic nutrient
solution. The results of SEM image binarization showed that the compound nutrient
solution could effectively reduce the apparent porosity and average pore size of the sand
compared with the basic nutrient solution, and its curing effect was better than that of
the latter.
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