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Abstract: The polymorphism of molecular crystals is a well-known phenomenon, resulting in
modifications of physicochemical properties of solid phases. Low temperatures and high pressures
are widely used to find phase transitions and quench new solid forms. In this study, L-Leucinium
hydrogen maleate (LLHM), the first molecular crystal that preserves its anomalous plasticity at
cryogenic temperatures, is studied at extreme conditions using Raman spectroscopy and optical
microscopy. LLHM was cooled down to 11 K without any phase transition, while high pressure
impact leads to perceptible changes in crystal structure in the interval of 0.0–1.35 GPa using pentane-
isopentane media. Surprisingly, pressure transmitting media (PTM) play a significant role in the
behavior of the LLHM system at extreme conditions—we did not find any phase change up to
3.05 GPa using paraffin as PTM. A phase transition of LLHM to amorphous form or solid–solid
phase transition(s) that results in crystal fracture is reported at high pressures. LLHM stability at low
temperatures suggests an alluring idea to prove LLHM preserves plasticity below 77 K.

Keywords: plastic crystals; Raman spectroscopy; low temperature; high-pressure; L-Leucinium
hydrogen maleate; plasticity; bending crystal

1. Introduction

Studying molecular crystals and their phase transitions is of great importance for many
scientific fields such as crystallography [1,2], thermodynamics [3,4], computational [5–7]
and solid state chemistry [8–10], etc. Solid forms of many organic molecules are being de-
veloped, studied, and produced in the pharmaceutical industry [11–15] and in arising sub-
fields of materials science [16–18]. The last one, among others, focuses the attention on the
mechanical properties of molecular crystals [19–25] and metal-organic complexes [26–28].
Several dozens of organic crystals show anomalous plasticity and elasticity at ambient
and extreme conditions under mechanical stress [29–33]. L-Leucinium hydrogen maleate
(LLHM) is a unique example of organic crystals that preserves plasticity at a cryogenic
temperature [34]. This phenomenon was studied and explained recently using a mainly
crystallographic approach [34,35].

One of the methods to understand the nature of an important property of molecu-
lar crystal is to apply significant outside impact—low temperature, hydrostatic pressure,
mechanochemical stress, etc. [36–39]. These methods help to follow the behavior of the
systems at changing environments at macroscopic (thermodynamics) and microscopic
(molecular contacts) levels, depending on the availability of experimental and theoret-
ical techniques [40–47]. Moreover, low temperatures and high pressures often trigger
phase transitions, resulting in new solid forms, including polymorphs. The application
of extreme conditions is a powerful tool to find and sometimes stabilize new forms of
organic molecules.
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Thus, studies of new forms of molecular crystals using extreme conditions [11,37,48]
as well as a search of new bending crystals [30,49,50] are of great interest for modern
science. Nevertheless, the interrelation of these two areas is just an emerging field. There
are very few works that search for new forms of plastic crystals at high pressures or low
temperatures [34,35,51]. To fulfill this gap, in this work we applied low temperatures and
high pressures to crystals of LLHM, chasing new forms of these bending crystals. In this
work we continue examination of the LLHM system at different conditions, reporting
experimental behavior of this crystal at extreme conditions.

L-Leucinium hydrogen maleate crystals were grown for the first time by Arkhipov et al. [52]
as an individual system in a series of amino acid maleates. Providing single crystal X-ray
diffraction (SCXRD) experiments, the plasticity of LLHM was noted and formulated as
“interesting mechanical behavior: mechanical action on crystals of (LLHM) results in elastic,
and then plastic bending”. Further, a detailed study showed that crystals preserve their
plasticity at temperatures down to 77 K. It was proven using video and photo recording
of the bending process [34]. Using SCXRD, authors showed that no significant changes
in crystal structure of LLHM occurred during the cooling down to 100 K, preserving the
layered structure [34]. The system behavior on bending was also investigated using optical
and scanning electron microscopy, as well as SCXRD [35]. Scrupulous analysis of crystal
structure allows authors to provide a simple model for bending LLHM crystals—layers of
L-Leucinium cations and maleic acid anions connected via H-bonds (forming bc planes)
were stacked over a direction (interacting with weak VdW interactions). This results in the
possible slipping of layers along b direction (Figure 1).

Figure 1. Crystallographic (left) and schematic (right) representation of the layered structure of
LLHM, showing layers that shift resulting in plasticity under mechanical stress (adapted from [34,35]).
Layers’ shifts are marked with an arrow sign depending on the direction of displacement.

Nevertheless, no experiments below 100 K and high pressures were provided before,
leaving an opportunity for a combined study of possible phase transitions at extreme
conditions using powerful methods of XRD and Raman spectroscopy.

2. Materials and Methods
2.1. Crystal Growth

Crystals of LLHM were obtained by slow evaporation of an equimolar aqueous
solution of L-leucine and maleic acid using the ‘sitting-drop’ approach [53] as described
in previous work [34]. L-leucine (>98%, HPLC) and maleic acid (>99%, HPLC) were
purchased from Sigma-Aldrich (St. Louis, MO, USA) and used without further purification.
The crystallization procedure leads to ‘hedgehog’ polycrystalline material as presented
in [35]. This bulk material was used to find and cut single crystals for low-temperature and
high-pressure experiments. Crystals were operated with care at every stage of isolation
and setting to the diamond anvil cell (DAC) to avoid accidental bending.

2.2. High-Pressure Generation and Measurement

Hydrostatic pressure was generated in diamond-anvil cells (DAC) of ‘Almax–Boehler’
type without beryllium backing plates [54] with natural diamonds suitable both for X-ray
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diffraction and for Raman experiments. Paraffin (ROTH GmbH, Karlsruhe, Germany,
hydrostatic limit ~3 GPa) and a 1:1 stoichiometric pentane–isopentane mixture (PIP) (hy-
drostatic limit 7 GPa) were used as a pressure-transmitting medium (PTM) in two separate
experiments [55]. A special chamber was used to facilitate the DAC loading [56]. Pres-
sure measurement was done with a precision of 0.05 GPa using the ruby fluorescence
method [57,58].

2.3. Optical Microscopy

Optical microscopy was provided using the OLYMPUS BX41 microscope (Olympus,
Tokyo, Japan) with a MPlan N 10×/0.25 FN22 objective. Euromex fiber optic light source
EK-1 was used for illumination.

2.4. Single-Crystal X-ray Diffraction (SCXRD)

Data were collected using an Oxford Diffraction Gemini R Ultra X-ray diffractometer
(Crawley, Australia) with a CCD area detector and Mo Kα radiation. The quality of data
was not high enough to refine the atomic coordinates or determine unit cell parameters,
mainly because of the DAC usage. It was mentioned before that the diffraction of LLHM
crystals is not very high for accessible laboratory instruments either. [34]

2.5. Raman Spectroscopy

Raman experiments were performed for low-temperature and high-pressure samples.
Raman spectra were recorded using a LabRam HR 300 spectrometer from HORIBA Jobin
Yvon (Edison, NJ, USA) with a CCD detector. For spectral excitation, a 488 nm line of an
Ar+ laser was used with a beam size of ~1 µm at the surface of the sample and a power of
~8 mW. All data were collected using a Raman microscope in backscattering geometry. The
spectral resolution was ~2 cm−1 providing seven scans 30 s each for every spectrum.

Raman spectra of LLHM were recorded in the temperature range of 300–11 K during
cooling without repeating on heating.

Two distinct experiments were performed for samples at high pressures. Raman
spectra for LLHM in PIP were recorded at pressures of 1.35, 2.03, 2.48, 3.06, 3.63, 4.05, 4.48,
5.03, 5.50, and 6.15 GPa on loading and 3.05, 1.82, 1.15, 0.41, and 0 GPa on pressure release.
Spectra for LLHM in Paraffin were recorded at pressures of 0, 0.38, 2.55, and 2.90 GPa.

2.6. Computational Methods

Gas-phase calculations of vibrational spectra (both IR and Raman) were done for
L-leucine cation, Maleic acid anion, and LLHM dimer to provide a more reasonable
assignment of experimental modes. Ions of L-Leucine, maleic acid, and their dimer were
extracted from the LLHM crystal structure from [34] and were further freely optimized
at B3LYP/6-311+G(d,p) level of theory, providing vibrational calculations subsequently.
None of the atoms or groups were fixed for gas-phase optimization, making possible the
ion formation of L-Leucine and Maleic acid in the gas phase calculations. Gaussian09
package was used for all calculations [59]

Solid state calculations, as suggested in literature, were attempted to perform for
the simulation of high-pressure behavior [3,7,46] and the vibrational band assignment.
Nevertheless, even the usage of supercomputers (80 cpu, 384 Gb RAM, max time for task
without interruption—240 h) did not allow for the performance of such calculations in
reasonable time, providing the ’simple’ optimization of one full unit cell in several months.
Thus, only gas-phase calculations were used for this work.

3. Results

Crystals of LLHM were grown as described in the’ Section 2. One crystal was used for
the low temperature experiment, and another two were used in high pressure experiments
in PIP and paraffin PTM. All crystals were selected using optical polarized microscopy.
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3.1. Room Temperature Raman Spectra and Vibrational Mode Assignment

The crystal structure of LLHM contains six molecules in the asymmetric unit cell,
resulting in 24 molecules in the full unit cell (Figure 2). Multiple H-bonds are located in
directions not coinciding with cell axes or crystal faces, which limits the utility of polarized
Raman spectroscopy.

Figure 2. Molecular (left) and crystal structure fragment of LLHM at 298 K (right), showing
12 molecules of L-leucine and maleic acid each in the unit cell (CCDC# 1889564). Hydrogen bonds
are shown by dashed lines.

The complicated structure of LLHM significantly constrains precise band assignment
in Raman spectra. Nevertheless, literature data and calculated gas-phase vibrational spectra
of L-Leucine and maleic acid ions and their dimer helps to assign main band regions of
obtained experimental spectra (Figure 3) [60–66]. All literature data except ref. [67], which
contains multiple inaccuracies, confirm the suggested band assignment.

Figure 3. Experimental Raman spectra bands assignment in LLHM crystal structure at 298 K. Calcu-
lated gas-phase vibrational spectra are presented in Figure S1 (please see Supplementary Materials).

Main changes are expected in the region before 200 cm−1 (lattice vibrations) and
3000–3400 cm−1 (valence –OH and –NH3 vibrations). A significant change in mode posi-
tion or appearance of new modes is key evidence of phase transition, while slight changes
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in peak positions or their intensities are traditional for low temperature or high-pressure
behavior of the original phase.

3.2. Low Temperature Study

Low temperature Raman spectra of LLHM crystal were recorded in the temperature
range of 300–11 K, cooling down the sample. No additional peaks of a new phase were
found in spectra (Figure 4). No crystal changes were also found using optical microscopy
on cooling.

Figure 4. LLHM Raman spectra at low temperatures, showing no phase transition on cooling. Lone
spurious peaks in the region of 2000–2500 cm−1 at temperatures 40 and 100 K were not vanished
from spectra to preserve original data. Same is true for spurious peaks at 40 K in the region between
3100–3250 cm−1.

Wide bands split on cooling due to the thermal motion decrease. At low temperatures,
the motions of functional groups in the molecule (e.g., different CH3 groups motion in
L-Leucine ion) become distinguishable in Raman spectra. Moreover, vibrations of the same
groups in symmetry unequal molecules are close in spectra, but they have slightly different
frequencies (2–10 cm−1) because of the crystalline environment and become distinguishable
at low temperatures as well. This is a typical behavior of molecular crystals, especially with
a high Z’ number [68–70]. Low and high-frequency regions are shown in detail in Figure S2.
Stretching vibration of CO2

− group (1699 cm−1 and 1734 cm−1 at 298 K, see Figure 3) has
a different intensity ratio, which changes at 160 K and 80 K, and may be evidence of a phase
transition, e.g., a doubling of the unit cell. Nevertheless, we assume change of this vibration
intensity is the result of structure shrinking and corresponding intermolecular interaction
changes, but not phase transition. SCXRD in ref. [34] showed no phase transition at 160 K
or at the 0–200 cm−1 region in Raman spectra. Based on scrupulous analysis of Raman
spectra at low temperatures, one can suggest no phase transition on cooling. This coincides
well with our previous X-Ray study in the temperature range of 100–300 K [34]. Summing
up these two experiments, LLHM plasticity preservation can be proposed below 77 K down
to liquid helium temperatures.

3.3. High Pressure Study

High pressure experiments were provided in different PTMs using DAC as reported in
the Section 2. Usage of SCXRD was limited due to the poor diffraction data, which is a result
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of the nature of the LLHM crystal structure (defining plasticity) and DAC construction.
Thus, only Raman spectra were recorded for all high-pressure experiments.

Surprisingly, the behavior of LLHM crystals differs significantly in paraffin and PIP.
An effect of PTM, as well as experiment protocol on molecular crystals phase transition
at high pressure, is a documented phenomenon [43,71,72]. The low-frequency region in
Raman spectra shows no phase transition in paraffin up to 2.9 GPa (close to pressure limit
for paraffin) and some changes in LLHM crystal in PIP at 1.35 GPa (Figure 5).

Figure 5. Raman spectra of LLHM at multiple pressures at (a,c) low-frequency and (b,d) high-
frequency regions, showing different behavior in paraffin (left) and PIP (right) PTM.

The high-frequency Raman region is not very informative, lacking -OH and -NH3
vibrational modes information at high pressures [73,74]. Nevertheless, some changes in
-CHx vibration modes confirm crystal changes in PIP in contrast to paraffin (full Raman
spectra at all pressures are shown in Figure S3). We also report spectra of LLHM crystal
in PIP at 0 GPa before pressure impact and after relaxation from 6.15 Gpa (Figure 6).
Significant background level (halo) may be explained with possible amorphization of
plastic LLHM crystal at high pressure or luminescence, which was not observed before
pressure impact.

Possible phase transition in PIP was additionally confirmed by optical microscopy,
which recorded crystal destruction at 1.35 GPa (Figure 7). No obvious changes of LLHM
crystal in paraffin occurred in the whole pressure range according to optical microscopy.
This confirms different behavior of LLHM crystals under pressure in different media.

An absence of SCXRD did not allow for the report of phase transition in LLHM
crystal at high pressure in PIP unequivocally. Nevertheless, relevant changes in optical
microscopy and Raman spectra allowed us to speculate about crystal destruction because
of one or a cascade of phase transitions in the crystal structure or amorphization of the
LLHM sample.
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Figure 6. Raman spectra of LLHM at PIP PTM at 0 GPa before (bottom black line) and after (upper
red line) pressure impact. * Asterisk mark the signal from DAC.

Figure 7. Photographs showing LLHM crystal destruction in PIP at pressure 1.35 GPa. LLHM crystal
at 0 GPa (left) and 1.35 GPa (right). Crystal size is 0.3 mm × 0.05 mm × 0.02 mm.

4. Discussion

A search of new phases of molecular crystals at extreme conditions is an important area
of modern chemistry. In this work, a unique bending crystal of LLHM, which preserves its
plasticity at 77 K, was studied at low temperatures and high pressure. Based on literature
data and computational vibrational spectra, major band regions were assigned to follow
their changes at extreme conditions. Raman spectra of LLHM were recorded down to 11 K,
showing no phase transition. Based on this experimental fact, we suggest the possibility to
preserve LLHM plasticity below liquid nitrogen temperature. High pressure experiments
showed different behavior of LLHM crystal in paraffin and PIP used as PTM. We found no
phase transition using paraffin up to 2.95 GPa. Raman spectra and optical microscopy gave
reasons to postulate the LLHM phase transition, phase transition cascade, or amorphization
at high pressure, which results in crystal destruction at PIP PTM at 1.35 GPa. Additional
XRPD or SCXRD using synchrotron radiation may be applied to highlight additional details
of LLHM high pressure behavior in future studies.
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Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst11121575/s1, Figure S1: Gas phase calculated (a) Raman and (b) IR spectra of L-Leucine
(Black), Maleic acid (Red), and L-Leucinium hydrogen maleate (Blue), Figure S2: Experimental
LLHM Raman spectra at low temperatures, showing no phase transition on cooling. Detailed three
different regions of Raman spectra, Figure S3: Raman spectra of LLHM at multiple pressures in PIP
(left) and paraffin (right) PTM. Diamond peak from anvil cell is marked with *.
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