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Abstract: SiC crystal is an excellent substrate material for high power electronic devices and high-
frequency electronic devices. Being cost-effective and defect-free are the two biggest challenges at
present. For the physical vapor transport (PVT) growth of a SiC single crystal, SiC powder is used
as the source material, which determines the cost and the quality of the crystal. In this paper, we
propose a new design in which graphite blocks are substituted for the non-sublimated SiC powder.
Temperature distribution in the SiC powder, the evolution of the SiC powder, and the vapor transport
are investigated by using finite element calculations. With the addition of graphite blocks, the
utilization and sublimation rate of SiC powder is higher. In addition, the reverse vapor transport
above the SiC powder is eliminated. This design provides a new idea to reduce the cost of SiC crystals
in industrialization.

Keywords: simulation; powder evolution; gas transport; graphite block; SiC crystal

1. Introduction

As one of the most important third-generation semiconductor materials, SiC has
received widespread attention due to its wide band gap, high breakdown field strength,
high thermal conductivity, and high carrier saturation mobility [1–4]. Devices based on
SiC substrate have been widely used in important fields such as electrical vehicles and 5G
communication [5,6]. Physical vapor transport (PVT) is the main method for growing a
large-size SiC single crystal, which needs to be cost-effective and defect-free.

SiC powder is used as the source material during the PVT growth of a SiC single
crystal [7]. The utilization rate and sublimation process of SiC powder directly affect the
crystal quality and fabrication cost of SiC. Previous studies used in situ X-ray technology to
analyze the evolution of the source material during the crystal growth [8–12]. Researchers
also established a crystal growth model to study the effect of the temperature, temperature
gradient, and the particle size of SiC powder on the sublimation of SiC powder and the
growth of a SiC single crystal [13–15]. Wang et al. found that the sublimation of SiC powder
was insufficient, and they increased the crystal growth rate by the optimization of powder
packaging [16]. Li et al. studied the sublimation process of SiC powder in a traditional
structure by the finite element method and found that the sublimation rate of SiC powder
can be improved by adjusting the coil height [17]. However, there are few research works
on the relationship between the graphite structure design and the utilization rate of SiC
powder [18].

In this work, we propose a new powder composition, in which part of the SiC powder
is replaced with a graphite block. The utilization rate of SiC powder is improved, reducing
the cost of SiC crystal growth. Moreover, the excellent thermal conductivity of graphite
optimizes the vapor transport above the powder helping to improve the crystal quality.
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2. Materials and Methods

The finite element method enabled by the software of Virtual Reactor 6.5 was em-
ployed to investigate the SiC crystal growth. This software can accurately assign values to
the crystal growth process, and the simulation results are close to the actual values [14,19].
Figure 1a is a 2D axis-symmetric global model for the PVT growth of a SiC single crystal.
This is an induction heating system. The outer layer of the system is an induction coil,
and the inner part is a graphite crucible wrapped by graphite felt, in which the crystal is
grown. Figure 1b is the meshing of the model for finite element calculation. The calculation
domain of powder is made of structured mesh with a side length of 2 mm, and the other
domains are unstructured mesh. During the PVT process, the seed crystal temperature is
2100 °C. The pressure is 500 Pa. The growth time is 50 h.
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Figure 1. Crystal growth system in finite element calculations: (a) global model for the PVT growth
of SiC single crystal. (b) the meshing of the calculation model.

In this paper, we focus on the SiC powder inside of the graphite crucible. In a
traditional process (Figure 2a), the seed crystal and SiC powder are placed in a graphite
crucible. The SiC powder is stacked at the bottom of the graphite crucible, while the SiC
seed crystal is placed on the top of the graphite crucible. Gas derived from the sublimation
of the SiC powder is transported to the surface of the seed crystal. However, previous
studies found that the difference in temperature in the SiC powder is too large, resulting
in excessive local sublimation of powder and a low utilization rate [17]. To improve the
utilization rate of powder, we propose a model with a new design of the powder (Figure 2b)
and investigate the temperature distribution in the SiC powder, the evolution of the SiC
powder, and the gas transport.
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The global heat transfer includes heat conduction in solid media, heat conduction and
convection in the gas, and radiation heat exchange in gas between solid surfaces. The heat
conduction is described by the following equations:

ρCP
∂T
∂t

+ ρCPu∇T +∇·q = Q (1)

q = −k∇T (2)

where ρ is the density, CP is the thermal capacity, u is the velocity, T is the temperature, q is
the local heat flux, and k is the thermal conductivity.

The heat flux of the boundary conditions is calculated as:

qw = λ
Tw − Tc

dx
(3)

where λ is the thermal conductivity of the wall, Tw is the wall temperature, and Tc is cell
center temperature.

In the boundary conditions of the heat exchange walls, the radiative heat flux at the
wall is calculated as:

qw = σεw

(
T4

a − T4
w

)
(4)

where Ta is the ambient temperature, Tw is the wall temperature, σ is the Stefan-Boltzmann
constant, and εw is the wall emissivity.

The evolution of the powder and species transport in the porous source is also calcu-
lated. SiC powder is considered as a porous medium by local porosity, granule size, and
graphitization degree. The powder porosity is defined as:

ε =
Vf

Vcell
(5)

where Vcell is the total volume of the computational cell, and Vf is the volume of the fluid
fraction of the cell.

Species transport in the powder is described by the Darcy-Brinkman-Forchheimer
(DBF) flow model. The continuity equations for the whole vapor and for each species are
as follows:

∂ρ

∂t
+∇·

(
ρ
→
V
)
= Sm (6)

where
→
V is flow velocity inside the pores, and Sm is the mass source. Flow in the porous

medium is described by the DBF equations as follows:

ρ

ε

∂
→
V

∂t
+

1
ε
∇·

(
1
ε

ρ
→
V
→
V
)
= −∇p− µ

K

→
V +∇·τ − ρCF√

K

∣∣∣∣→V∣∣∣∣→V − ρ
→
g (7)

τ = 2µ
.
S− 2

3
µ

(
∇·
→
V
)

I (8)

where ε is powder porosity, p is the gas pressure, µ is the gas viscosity, K is the powder
permeability, CF is the inertial coefficient, τ is the stress tensor, g is the gravitational
acceleration, and I is the tensor unity.

The boundary conditions for the above set of equations at all reaction boundaries of
the powder can be written as:

Vn = Vste f (9)

Vτ = 0 (10)

where Vste f is the Stefan velocity and Vn and Vτ are normal velocity and tangential velocity.
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For the non-reaction boundaries:

→
V = 0 (11)

The values that appear in the above formula can be found in the Table 1.

Table 1. Major physical properties and operating parameters in the model.

Properties Value and Unit

Density of graphite crucible 1730 kg/m3

Density of insulation layer 200 kg/m3

Density of seed crystal 3220 kg/m3

Heat capacity of graphite crucible 2250 J/(kg·K)
Heat capacity of insulation layer 1000 J/(kg·K)

Heat capacity of seed crystal 1281 J/(kg·K)
Thermal conductivity of graphite crucible 22.3 + (2.3 × 107)/(1 + (T/0.00056)) W/(m·K)
Thermal conductivity of insulation layer 0.08 exp (0.00117 exp (T − 300)) W/(m·K)

Thermal conductivity of seed crystal 288 (T/300) − 1.29 W/(m·K)
Gas viscosity 8 × 10−5 Pa·s

Emissivity of wall 0.8
Emissivity of graphite crucible 0.8
Emissivity of insulation layer 0.8

Emissivity of seed crystal 0.9
Powder porosity 0.6

Powder permeability 0.8

3. Results and Discussion

Figure 3a,b shows the heat flux in different structures. The added graphite block
increased the heat flux of the powder in the top area by thermal contact. Figure 3c,d
shows the temperature distributions in the SiC powder for different structures. In both
structures, the highest temperature area was at the bottom corner of the graphite crucible,
and the lowest temperature area was at the top surface of the SiC powder. However, it was
different for the temperature gradient at the powder surface. As shown in Figure 3e, for the
optimized powder, the radial temperature was higher, and the temperature difference was
smaller. Figure 3f shows the axial temperature gradient. The temperature in the centerline
(line C-A) increased greatly compared to the traditional one. From the above results, we
conclude that the temperature distribution of powder surface is more uniform by adding
the graphite block.

Figure 4 shows the porosity change of the powder after crystal growth for 50 h in
different structures. We defined the porosity of the SiC powder as 0.6 before growth. In
the process of crystal growth, the porosity of SiC powder increased after sublimation and
decreased after recrystallization. Therefore, the evolution of SiC powder during growth
can be investigated by the change in porosity. In the traditional structure (Figure 4a), we
find that only the powder close to the crucible wall sublimated, the powder at the top
and bottom of the powder recrystallized, and the powder in the middle part was basically
unchanged. This means that the utilization rate of the SiC powder in the traditional
structure was very low. In the optimized structure, we used graphite block instead of
SiC powder, which did not participate in the reaction. As can be seen from Figure 4b, the
powder above the graphite block also sublimated, and the powder that did not participate
in the reaction was greatly reduced.
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In the process of crystal growth, the sublimation rate of powder will directly affect the
concentration of reaction gas. The non-stoichiometric decomposition products of the SiC
powder are mainly SiC2 and Si2C. We kept the pressure in the growth chamber constant at
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500 Pa and calculated the pressure fraction of the SiC2 and Si2C gas on the surface of the
seed crystal with the increase in growth time. Figure 5 shows that during the whole growth
process, the pressure fraction of SiC2 and Si2C in the optimized structure were higher than
those in the traditional structure, indicating that the sublimation rate of SiC powder in the
optimized structure was higher.
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In order to explore the influence of temperature and powder evolution on the gas
transport, we investigated the gas transport process in different structures. Figure 6a shows
the flow path of the sublimated SiC (Si, Si2C, SiC2) during the growth process. In the
traditional structure, the vapor in the powder flowed out close to the crucible wall. Part of
the vapor reached the surface of the seed crystal. The rest flowed in the reverse direction.
We believe that the reverse transport was caused by the evolution difference between the
surface powder and the bottom powder. The low temperature of the powder on the surface
led to low vapor saturation, and the vapor transport from the high temperature on both
sides recrystallized on the surface, forming the reverse transport. The reverse transport
not only caused gas turbulence in the growth area but also prevented internal gas from
flowing out of the central area. Yang [20] studied the carbon inclusions in PVT-grown SiC
single crystal. They pointed out that carbon inclusions were induced by the graphitization
of raw materials. Our current results show that vapor could only be transported from the
highly graphitized powder because of the reverse transport, which undoubtedly increased
the possibility of carbon inclusion.
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structure model.

Figure 6b shows the gas transport in the optimized structure. After the graphite
block was added, there was no longer reverse transport above the powder, and the gas
in the powder flowed uniformly and in the same direction when it flowed to the surface
of the seed crystal. We believe that the graphite blocks raised the temperature of the
surface powder, and the powder on the surface was constantly evaporating rather than
recrystallizing so that the vapor from both sides could not transport to the surface powder
and only deposited on the surface of the seed crystal. The gas was no longer concentrated
in the graphitized area, reducing the possibility of carbon inclusions during crystal growth.

We find that the size of the graphite block directly affected the growth rate of the
SiC crystal. When the size of the graphite block was too large, the SiC powder in the
graphite crucible could not maintain the crystal growth process for a long time, and the
growth rate of the late crystal was low. Therefore, the radius and the height of the graphite
block were controlled at 35–45 mm and at 80–95 mm, respectively. The growth rate of
SiC crystal after adding graphite blocks of different sizes was simulated, the results are
shown in Figure 7a. When the radius was 35 mm, and the height was 80 mm, the average
crystal growth rate was fastest with 280 µm/h. Figure 6b shows the growth rate at different
times. By comparing the growth rates of the two structures, it was found that the growth
rate of the optimized structure was firstly higher then slightly lower than that of the
traditional structure before 35 h of crystal growth. The graphite blocks increase the powder
sublimation rate of the surface area in the early growth stage, resulting in an increase in
the growth rate. After long-time growth, with the complete sublimation of powder in the
surface area, the growth rate decreases slightly.
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4. Conclusions

In this paper, we simulated the temperature distribution in the powder, the evolution
of the powder, and the gas transport in different crystal growth structures. The simulation
results of the traditional structure showed that the temperature difference of the powder
was large. In the process of crystal growth, only the powder on both sides of the graphite
crucible was sublimated. The powder at the top and bottom was recrystallized due to
the low temperature. We found the utilization rate of the powder was very low in the
traditional structure. Furthermore, the simulation results of the gas transport showed that
there was a reverse transfer phenomenon above the powder, which caused the convection of
the vapor inside the powder, and increased the possibility of inclusion of carbon inclusions
during crystal growth. We proposed a new structure, which used a graphite block to
replace part of the SiC powder. The high thermal conductivity of graphite improved the
temperature and sublimation rate of the surface powder, resulting in the reverse transport
phenomenon being eliminated. We conclude that the new structure with the graphite block
inside the powder can greatly reduce the cost and improve the crystal quality.
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