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Abstract: Machine learning techniques have become a popular solution to prediction problems.
These approaches show excellent performance without being explicitly programmed. In this paper,
448 sets of data were collected to predict the neutralization depth of concrete bridges in China.
Random forest was used for parameter selection. Besides this, four machine learning methods, such
as support vector machine (SVM), k-nearest neighbor (KNN) and XGBoost, were adopted to develop
models. The results show that machine learning models obtain a high accuracy (>80%) and an
acceptable macro recall rate (>80%) even with only four parameters. For SVM models, the radial
basis function has a better performance than other kernel functions. The radial basis kernel SVM
method has the highest verification accuracy (91%) and the highest macro recall rate (86%). Besides
this, the preference of different methods is revealed in this study.

Keywords: neutralization of concrete; support vector machine; random forest; machine learning;
k-nearest neighbor; XGBoost; AdaBoost

1. Introduction

The neutralization of concrete is a major factor that influences the service life of R.C.
bridges. The alkaline environment around steel bars will be impaired by carbon dioxide
and other acid materials, such as acid rain [1,2]. Subsequently, steel bars are likely to be
oxidized, especially with the effect of chloride ions and moisture in the concrete. Once the
steel bars are corroded, the bearing capacity of bridges will be impaired [3–5].

Currently, the total number of bridges in China is nearly one million, and many bridges
have been in service for more than ten years. It is necessary to provide a solution for the
prediction of the neutralization depth of existing bridges. However, in real engineering,
the influence factors are coupled, which makes it difficult to estimate the neutralization
status of concrete. Besides this, for existing bridges, another difficulty is the loss of original
bridge construction information. However, some information (e.g., water cement ratio,
maximum nominal aggregate size, and cement content) is often considered necessary
for the prediction of neutralization depth. Besides this, predicting the neutralization of
the concrete in inland river bridges is interesting as regards the special service ambiance
of these concrete components. The influences of the river, wind, traffic load and some
unknown factors are significant. However, accurately quantifying the effects of these
factors by formulas is difficult.

Machine learning (ML) is proving to be an efficient approach to solving the above
problems. ML refers to the capability of computers to obtain knowledge from datasets
without being explicitly programmed [6]. It includes many powerful methods, such as
support vector machine (SVM), decision tree, k-means, AdaBoost and k-nearest neighbor
(KNN). One ML method mainly consists of two parts: the decision function and objective
function. For a new data point, the decision function is used to predict its category. The de-
cision function contains some pending parameters that must be determined by optimizing
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the objective function. The objective function at least contains a loss function and a regular-
ization item. The loss function depicts the gap between true values and prediction values;
the regularization item is used to avoid model overfitting. ML methods have been widely
used in civil engineering. The first application of ML was to promote structural safety [7].
Nowadays, ML is used in structural health monitoring [8–11], reliability analysis [12,13],
and earthquake engineering [14–16].

In addition, machine learning techniques show great potential in the concrete industry.
The complexity of concrete makes it difficult to developing prediction models. However,
models developed by ML methods always achieve a high accuracy [17–20]. Topçu et al. [21]
proposed an artificial neural networks (ANN) model to evaluate the effect of fly ash on
the compressive strength of concrete. The results show that the root-mean-squared error
(RMSE) of the ANN model is less than 3.0. Bilim et al. [22] constructed an ANN model to
predict the compressive strength of ground granulated blast furnace slag (GGBFS) concrete.
Sarıdemir et al. [23] used ANN and a fuzzy logic method to predict the long-term effects
of GGBFS on the compressive strength of concrete. Their results show that the fuzzy
logic model has a low RMSE (3.379); however, the ANN model’s RMSE (2.511) is lower.
Golafshani et al. [24] used grey wolf optimizer to improve the performance of the ANN
model and an adaptive neuro-fuzzy inference system model in predicting the compressive
strength of concrete. Kandiri et al. [25] developed some ANN models with a slap swarm
algorithm to estimate the compressive strength of concrete. The results show that this
algorithm can reduce the RMSE of ANN models. Machine learning methods can be used
for classification problems, regress problems, feature selection and data mining. Compared
with conventional models, machine learning models are good at gaining information
from data.

Machine learning can select a few effective parameters for developing models. Han
et al. [26] measured the importance of parameters based on the random forest method,
and then used this approach to establish prediction models. Their results show that the
performance of models can be obviously improved by parameter selection. Random forest
is an effective feature selection method [27]. It is widely used in bioscience [28,29], computer
science [30], environmental sciences [31], and many other fields. Zhang et al. [32] used
random forest to select important features from a building energy consumption dataset.
Yuan et al. [33] employed random forest to rank the features of house coal consumption.

In this paper, random forest was adopted for parameter selection. SVM, KNN, Ad-
aBoost and XGBoost were used to develop prediction models. These ML methods have
been successfully used in many fields [34–37]. A comparison among these ML models
was also conducted to reveal the preference for different methods in the prediction of
neutralization depth.

2. Dataset Description and Analysis

The dataset, which focuses on the neutralization depth of R.C. bridges in China, in-
cludes 448 samples. Parameters such as service time, concrete strength, bridge load class
and environmental conditions were considered in this study. Figure 1 shows the distri-
bution of these bridges. The full information of the dataset is shown in the Appendix A.
The dataset was collected from references [38–68], and the meteorological data of the city
were collected from the environmental meteorological data center of China. These refer-
ences [38–68] are included in two professional Chinese document databases: CNKI and
WANFANG DATA. All the samples included in the Appendix A are the detection data of
existing bridges.

The neutralization depth of concrete was tested with phenolphthalein, and the com-
pressive strength was measured with a resiliometer and calculated according to the Tech-
nical Specification for Inspecting of Concrete Compressive Strength by Rebound Method
(JGJ/T 23-2011). The vehicle load of bridges was divided into two levels, according to the
General Specifications for Design of Highway Bridges and Culverts (JTG D60-2015). There
are no missing data in the dataset; any samples containing missing values were abandoned
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during collection. Table 1 gives a detailed description of the dataset. The climatic division
used in Table 1 is derived from the climatic division map of the geographic atlas of China
(Peking University) [69].
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The reliability of the ML models relies on the quality of the dataset. Generally, ML
models have an excellent performance within the scope of the training dataset. However,
predicting the neutralization depth of a new sample outside the range of the training
dataset is difficult for ML models. Therefore, a dataset with a wide scope is necessary for
the reliability of ML models. Table 1 shows the range of this dataset. The service time,
compressive strength, and load level of samples in the dataset can cover the main status of
existing bridges. The temperature, humidity, acid rain, and climate status can cover the
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majority of service environments of existing bridges in China. The distribution of samples
shown in Figure 1 also shows that the dataset has a large scope. Besides this, the histograms
in Table 1 show that the values of samples have good continuity. Therefore, it is believed
that this dataset is effective for developing ML models.

The imbalanced distribution of temperature and RH is also revealed in the histograms.
The RH of most of the samples is around 72.5–82.5%, and the temperature of most of the
samples is around 15 ◦C. The parts that have few points will receive less attention from the
ML models because of the imbalance in the dataset. However, this negative effect caused by
imbalances can be alleviated through increasing the penalty applied to the misclassification
of the samples in these parts.

3. Parameter Evaluation and Selection

This study aims to develop diagnosis models for existing R.C. bridges, so parameter
selection is important as it will alleviate the difficulty of obtaining parameters in real
engineering. Random forest is widely used in feature selection [27]. It is used for supervised
learning, and it does not require the dataset to obey normal distribution [33]. Obviously,
the dataset used in this study does not obey normal distribution.

3.1. Random Forest for Parameter Evaluation

Random forest is a combination of decision trees. First, n samples are selected from
the dataset as a training set through put-back sampling, and a decision tree is generated
from these n samples. Then d features are randomly selected and split at each node of the
decision tree. The above process is repeated k times (k is the number of decision trees in a
random forest), and finally a random forest model is generated.

In the process of generating decision trees, the Gini coefficient is usually used to split
nodes. Random forest evaluates the importance of parameters by calculating the average
change in the Gini coefficient of feature fi (i = 1, 2, . . . , d) during the splitting process of the
nodes. Assuming there are, in total, d features in kth decision tree, the probability of a sample
belonging to class m is pm, and there are M classes; then, the Gini coefficient is defined as:

Gini(p) =
M

∑
m=1

pm(1− pm) (1)

For dataset D, the Gini coefficient is:

Gini(D) =
M

∑
m=1

|Cm|
|D|

(
1− |Cm|

|D|

)
(2)

where Cm is the subset of samples belonging to class m in the dataset D. On node n, feature
fi divides dataset D into two parts, D1 and D2, so the changes in the Gini coefficient are:

VIMgini
i,n = Gini(D)− |D1|

|D| Gini(D1)−
|D2|
|D| Gini(D2) (3)

Therefore, the importance of parameter fi in the kth decision tree is:

VIMgini
i,k =

Ni

∑
n=1

VIMgini
i,n (4)

where Ni is the number of nodes divided by feature fi on dataset D. Therefore, the
importance of feature fi can be calculated by Equation (5):
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VIMgini
i =

K
∑

k=1
VIMgini

i,k

d
∑

j=1

K
∑

k=1
VIMgini

j,k

(5)

where d is the number of characteristics, and K is the number of decision trees in the
random forest.

3.2. Results and Discussions

Figure 2 shows the results of parameter evaluation. It is noted that temperature,
concrete strength f , RH and age are more important than climate, location of components,
acid rain, and load level. The cumulative importance of the top four parameters reaches
0.73. Climate, which represents the rough ambient conditions of neutralization, is often
considered an important feature. However, due to its high correlation with other environ-
ment parameters, the results show that it is not so important. The random forest approach
tends to place some of the highly correlated features on the top, but place the others at
the end.
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Figure 2. Importance of each parameter.

Further, Climate and Loc are noun parameters. Generally, a noun parameter cannot
be used directly to establish models. A common approach for preprocessing noun parame-
ters is unique heat coding, and this will create a new virtual parameter for each unique
value of the noun parameter. Therefore, the old parameter Climate will generate six new
parameters, and Loc will generate four new parameters. Adding so many new parameters
is unnecessary, because of their low importance. Therefore, Climate, Loc, pH and p were
omitted in the next study.

In addition, it is important to discuss the limitations of the ML models used in this
study. For ML models, their validity scope depends on the range of the dataset. These
models are actually empirical models. In this study, the ML models were based on age, RH,
f and t, so the validity scope of the models is a four-dimensional space determined by the
dataset. The search algorithm can be used to determine the valid scope of the models. For
example, when a new sample is obtained and one wants to know if the sample is in the
valid scope, one can search the dataset and find the new sample’s neighboring points. Then,
the neighboring points can be used for judging if the new sample is in the valid range.
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4. Machine Learning Models

The current prediction models require a large number of input parameters, and output
a mean value of neutral depth. However, the dispersion of concrete’s neutral depth is great.
Figure 3 illustrates the histogram of the neutralization depth data of the Nanjing Yangtze
river bridge’s concrete components. All components in Figure 3 have the same service
time and concrete mix proportion. It is noted that the discreteness of those components is
obvious. Thus, this paper decided to predict the level of neutral depth. Table 2 shows the
classification of the neutral depth of concrete of bridges. 6 mm was chose as a boundary
between slight level and medium level in this study. This is because the relationship be-
tween the neutralization depth and concrete’s compressive strength will become uncertain
in the appraisal of old buildings when the neutralization depth of concrete is greater than 6
mm. According to Technical Specification for Inspecting of Concrete Compressive Strength
by Rebound Method (JGJ/T 23-2011), when the neutralization depth is greater than 6
mm, the test results cannot reflect the actual strength of the concrete. In addition, 25mm
was selected as the boundary between the medium level and the serious level, since the
protective layer thickness of components of bridges in China is often between 20 and 30mm.
When the neutral depth reaches 25mm, the neutral area is likely to reach the surface of the
steel bars.
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Figure 3. Histogram of neutral depth of concrete components of the Nanjing Yangtze river’s bridge.

Table 2. The classification of neutralization depth.

Level Neutralization Depth

Slight level <6 mm
Medium level 6mm ≤ d < 25 mm
Serious level ≥25 mm

4.1. Support Vector Machine

SVM is a binary classification model; its purpose is to find a hyperplane in order to
classify samples into two classes [70]. SVM finds the hyperplane by maximizing the margin
between the two classes. The margin refers to the shortest distance between the closest data
points to the hyperplane. Therefore, only a few points, which are called support vectors,
can influence the hyperplane. Because the majority of the samples are insignificant, SVM
offers one of the most robust and accurate algorithms among all well-known modeling
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methods when the dataset is not huge [37]. Considering the size of the dataset used in this
study, SVM is obviously attractive. Figure 4 shows an illustration of SVM.
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Developing an SVM model can help in solving the following problem [70]:

min
α

1
2

N

∑
i=1

N

∑
j=1

αiαjyiyjK
(
xi·xj

)
−

N

∑
i=1

αis.t.C ≥ αi ≥ 0, i = 1, 2, 3, . . . , N
N

∑
i=1

αiyi = 0, (6)

K(x·z) is the kernel function. The data points in a low-dimensional space can be transformed
into the data points in a high-dimensional space through the kernel function [70]. Therefore,
a nonlinear problem can turn into a linear problem. Figure 5 depicts the effects of the
kernel function. Common kernel functions include polynomial kernel, radial basis kernel
and hyperbolic tangent kernel. (xi, yi) is the sample point, and N is the number of samples
in the dataset. C indicates the penalty for misclassification. α∗ = α∗1 , α∗2 , . . . , α∗N

T can be
obtained by solving Equation (6). Then, the decision function can finally be obtained:

f (x) = sign

(
N

∑
i=1

α∗i yiK(x, xi) + b∗
)

.s.t. b∗ = yj −
N

∑
i=1

α∗i yiK
(

xi, xj
)
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4.2. K-Nearest Neighbor

KNN is one of the most concise classification algorithms, and it is also recognized as
one of the top ten data mining algorithms [37]. For a new sample, KNN will find k samples
closest to this sample in the dataset. The classification of this new sample depends on
the voting results of those k samples. Figure 6 shows an illustration of KNN. In Figure 6,
we suppose k = 4, and the four closest data points to the new sample are marked with
numbers. Points 1, 2, and 3 belong to class C, and only point 4 belongs to class A. Therefore,
this new sample should be classified into class C. Compared with other ML methods, KNN
is simpler, but is also effective [71]. KNN is often used for comparison with other ML
methods in some studies [71,72], as well as this study.
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The decision function of KNN can be written as follows:

f (x) = argmax
cj

∑
xi∈Nk(x)

I(yi = ci) (8)

cj represents the class j (j = 1, 2, . . . , k). Nk(x) is the range that covers these k samples.
I(yi = ci) is an indicator function; if yi = ci, then I(yi = ci) = 1, otherwise, I(yi = ci) = 0
(i = 1, 2, . . . , N). The purpose of KNN is to find the optimal number k of nearest neighbors.

4.3. AdaBoost

AdaBoost is one of the most representative methods in machine learning [37]. Ad-
aBoost is a famous ensemble learning algorithm. This method will develop a lot of weak
classifiers, and finally combines these weak classifiers into a strong classifier. Therefore,
the decision function can be written as follows [37]:

f (x) =
M

∑
m=1

αmGm(x) (9)

Gm(x) is the decision function of the mth weak classifier (m = 1, 2, . . . , M). αm is the
weight of Gm(x), and this coefficient is calculated by the accuracy of Gm(x). In this study,
decision tree models were used as the weak classifiers. AdaBoost first generates a weak
decision tree model, gets its decision function G1(x), and updates the weight of the samples
according to the performance of G1(x). If one data point is misclassified by G1(x), it will
be assigned a greater weight in the next round. The weight of samples is updated in the
(m− 1)th round, and Gm(x) will be fitted based on these samples and their weights in the
mth round. αm, the weight of Gm(x), will be calculated via the accuracy of Gm(x).
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4.4. XGBoost

XGBoost (extreme gradient boosting) was proposed in 2016, and soon became a
popular method for its excellent performance in Kaggle competitions [73]. XGBoost is one
of the most popular emerging ML approaches. However, its application in civil engineering
is not as common as the application of other conventional ML methods, such as SVM, KNN,
and ANN. Most of the applications of XGBoost in civil engineering have been undertaken
in the last two years. Hu et al. [74] used XGBoost to predict the wind pressure coefficients
of buildings. Pei et al. [75] developed a pavement aggregate shape classifier based on
XGBoost. In this study, XGBoost is selected on behalf of the other new ML methods for the
comparison with other representative ML methods.

The XGBoost method first develops a weak classifier. Then, the next weak classifier
is designed to reduce the gap between the true value and the prediction value of the first
weak classifier. For mth training, the decision function can be written as follows:

fm(x) = fm−1(x) + αmFm(x) (10)

αm represents the weight of weak classifier Fm(x). When the mean-squared error is
chosen as the loss function of the models, the objective function requiring optimization in
generating a new weak classifier can be written as follows:

Objm =
N

∑
i=1

[yi − ( fm−1(xi) + αmFm(xi))]
2 +

m

∑
j=1

Ω
(

f j(x)
)

(11)

Ω
(

f j(x)
)

is a regularization item, and N is the number of samples. In this study, the
tree model was selected as the weak classifier. The tree model is the commonest weak
classifier in the application of XGBoost.

4.5. Multi-Class Problem

Some machine learning methods (e.g., SVM) are designed for binary classification
problems, but a multi-class problem was studied in this study. Therefore, a one-to-one
strategy (OVO) is considered. OVO is a common approach for multi-class problems [76–78].
OVO methods generate a hyperplane between any two categories, and will generate
N(N − 1)/2 hyperplanes for an N classification problem. For a new sample, all models
are utilized, and the final results depend on the vote among ML models.

4.6. Results and Discussions

Z-score normalization is used for the normalization of the dataset. Normalization can
alleviate the influence of the parameters’ different scales. Besides this, in order to improve
the reliability of ML models, it is necessary to divide all samples into two parts: T1 and T2.
T1, the training dataset, is used for training ML models, and T2, the testing dataset, is used
for testing the performance of ML models. This study made 70% of the original dataset
into a training dataset.

Training accuracy, verification accuracy and macro recall rate were used as the in-
dicators for the optimization of the parameters of the models. The mesh search tuning
approach was used to find the optimal values of the parameters of the models. Under-
fitting and over-fitting can be avoided by comparing the model’s training accuracy and
verification accuracy. Besides this, in order to improve the reliability of results, the dataset
was randomly divided 10 times, and each child dataset has the same distribution. The final
results were based on the performances of these 10 models. Table 3 shows the results of
mesh search tuning.
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Table 3. Results of mesh search tuning for SVM models.

Training
Accuracy

Verification
Accuracy

Macro
Recall Rate Parameters 4

SVM(rbf 1) 93 91 86 C = 8, γ = 1.5
SVM(tanh 2) 69 69 46 C = 0.01, γ = 10, c = 0.1
SVM(poly 3) 94 88 84 C = 10, γ = 1, c = 1, deg = 4

KNN 92 90 84 k = 1
AdaBoost 94 87 84 M = 5, learning rate = 0.5
XGBoost 94 87 76 M = 60, learning rate = 0.5

1 “rbf” represents radial basis kernel [70]. K(u, v) = e−γ|u−v|2 . 2 “tanh” represents hyperbolic tangent
kernel [79]. K(u, v) = tanh(γ·u·v + c). 3 “poly” represents polynomial kernel [79]. K(u, v) = (γ·u·v + c)deg.
4 Parameters C, k and M in this column are explained in Sections 4.1–4.4.

Table 3 shows that the training accuracy of ML models is very close to their verification
accuracy, which illustrates that overfitting is avoided. Both accuracy and macro recall rate
were adopted for estimating ML models. In fact, macro recall rate is more important than
accuracy when the imbalance of datasets is considered. Macro recall rate is an index for
depicting the ratio of samples correctly classified by the classifier to samples that should be
correctly classified. Obviously, the verification accuracy (91%) and the macro recall rate
(86%) of the radial basis kernel SVM model are higher than those of other models. Besides
this, the gap between the verification accuracy and the training accuracy of the radial basis
kernel SVM model is 2%, so there is no obvious evidence of overfitting. Besides this, the
performance of radial basis kernel and polynomial kernel are better than that of hyperbolic
tangent kernel. Radial basis kernel is the best kernel function in this study. Compared with
other methods, KNN also seemed to be attractive. Besides this, the maximum gap between
the models in terms of verification accuracy is 22%. However, for macro recall rate, the
maximum gap can reach 40%. This may be due to the influence of the uneven distribution
of the dataset. The macro recall rate is sensitive to imbalance data. As an evaluation index,
the macro recall rate is more representative.

Table 4 shows the obfuscation matrixes of models. All models were established by
scikit-learn. For Li and Lj (i, j = 1, 2, 3) in Table 4, the value in row Li and column Lj
represents the number of samples that are actually class Li but are predicted to be class
Lj by the models. The green area in Table 4 shows the number of test samples that are
rightly classified, and the yellow area shows the number of test samples that are wrongly
classified. Based on Table 4, the accuracy of the models in terms of the neutralization level
of concrete can be obtained (Figure 7).

Even though the radial basis kernel SVM model has the highest verification accuracy
and the highest macro recall rate, Table 4 and Figure 7 show that the KNN model is better at
classifying the samples with a slight level than other methods (accuracy > 97%). However,
compared with other models, the KNN model only achieves a moderate performance in
the prediction of medium-level samples (accuracy = 81%). The AdaBoost model is the best
classifier in predicting the neutralization depth of medium-level samples (accuracy > 93%).

Table 4. The obfuscation matrixes of models.

SVM(rbf) SVM(tanh) SVM(poly) KNN AdaBoost XGBoost

L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3
L1 1 67 6 0 60 13 0 65 8 0 71 2 0 61 12 0 63 10 0
L2 2 4 53 1 25 33 0 7 51 0 10 47 1 4 54 0 5 53 0
L3 3 0 1 3 1 3 0 0 1 3 0 1 3 0 1 3 0 2 2
1 L1 represents the slight level. 2 L2 represents the medium level. 3 L3 represents the serious level.
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Figure 7. Accuracy of models on different neutralization levels of concrete.

Besides this, Figures 8 and 9 show that most ML models reach a high accuracy in
predicting the neutralization depth of concrete components with a longer service life
(20–39 years) and a higher compressive strength (40–59 Mpa). Figures 10 and 11 show that
most ML models achieve a high accuracy in predicting the neutralization depth of concrete
component in a lower temperature (13–16 ◦C) and a lower humidity (71–75%) environment.
It is believed that when the neutralization depth of concrete reaches the boundary of two
levels, the accuracy will decline. Therefore, a rough warning range for the neutralization
depth of concrete in terms of parameters can be obtained. For instance, for service time,
the range is 10–19. The warning range implies that the neutralization depth of concrete is
likely to reach the next level, and more attention should be paid to these bridges.
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Figure 8. The accuracy of models in terms of the service time of concrete.
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Figure 9. The accuracy of models in terms of the compressive strength of concrete.
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Figure 10. The accuracy of models in terms of the temperature of exposure situations.
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Figure 11. The accuracy of models in terms of the relative humidity of exposure situations.
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5. Conclusions

In this paper, four-parameter ML models for predicting the neutralization depth levels
of the concrete components of existing bridges were established. Four representative ML
methods were used in this study. The following conclusions can be drawn:

1. This study used SVM, KNN, AdaBoost and XGBoost to predict the neutralization
depth level of the concrete of existing bridges, and the results show that the radial
basis kernel SVM model has the highest validation accuracy (91%) and the highest
macro recall rate (86%), with only four parameters. The radial basis kernel function is
the best kernel functions in this study. Compared with other models, the radial basis
kernel SVM model and KNN model achieve a better performance;

2. The results reveal the preference of ML methods. KNN is good at classifying slight-
level samples (accuracy > 97%), and AdaBoost is the best method for the prediction
of medium-level samples (accuracy > 93%). Machine learning shows great potential
in predicting the neutralization depth of concrete with very few parameters, and
evaluating the durability level of existing bridges;

3. Random forest was used for parameter selection. The results show that temperature,
concrete strength, RH and service time are more important than climate, acid rain,
location of components, and load level. The cumulative importance of these top four
parameters reaches 73%. The performance of the models shows that random forest is
an effective approach for parameter selection.
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Appendix A

Table A1. Detailed information of 448 sets of data.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

49 25 16 75 5 2 north
subtropics Ar 19.72 self-test 7 45 21.8 83 6 1 edge

tropics Bpier 2.8 [56]

49 35 16 75 5 2 north
subtropics Ar 11.48 7 45 21.8 83 6 1 edge

tropics Bpier 1.5

49 25 16 75 5 2 north
subtropics Ar 17.02 23 35 20.5 77 4 2 south

subtropics Ar 7.483

[57]

49 20 16 75 5 2 north
subtropics Ar 20.23 23 45 20.5 77 4 2 south

subtropics Ar 5.937

49 15 16 75 5 2 north
subtropics Ar 16.47 23 40 20.5 77 4 2 south

subtropics Ar 11.453

49 20 16 75 5 2 north
subtropics Ar 20.23 23 45 20.5 77 4 2 south

subtropics Ar 4.917

49 25 16 75 5 2 north
subtropics Ar 11.11 23 50 20.5 77 4 2 south

subtropics Ar 4.35

49 20 16 75 5 2 north
subtropics Ar 12.15 23 35 20.5 77 4 2 south

subtropics Ar 4.563

49 25 16 75 5 2 north
subtropics Ar 16.38 23 60 20.5 77 4 2 south

subtropics Ar 4
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

49 15 16 75 5 2 north
subtropics Ar 23.45 23 60 20.5 77 4 2 south

subtropics Ar 3.577

49 20 16 75 5 2 north
subtropics Ar 20.62 23 55 20.5 77 4 2 south

subtropics Ar 3.673

49 15 16 75 5 2 north
subtropics Ar 21.57 23 55 20.5 77 4 2 south

subtropics Ar 4.12

49 30 16 75 5 2 north
subtropics Bpla 8.4 23 50 20.5 77 4 2 south

subtropics Ar 3.63

49 30 16 75 5 2 north
subtropics Bpla 8.4 23 55 20.5 77 4 2 south

subtropics Ar 3.56

49 30 16 75 5 2 north
subtropics Bpla 5.43 23 50 20.5 77 4 2 south

subtropics Ar 4.343

49 30 16 75 5 2 north
subtropics Bpla 5.43 23 50 20.5 77 4 2 south

subtropics Ar 3.853

49 15 16 75 5 2 north
subtropics Bpier 18.55 23 60 20.5 77 4 2 south

subtropics Ar 4.497

49 15 16 75 5 2 north
subtropics Bpier 18.55 23 50 20.5 77 4 2 south

subtropics Ar 5.067

19 55 16 75 5 1 north
subtropics Bm 1 23 60 20.5 77 4 2 south

subtropics Ar 3.3

19 45 16 75 5 1 north
subtropics Bm 1.5 23 55 20.5 77 4 2 south

subtropics Ar 3.267

19 50 16 75 5 1 north
subtropics Bm 2 23 55 20.5 77 4 2 south

subtropics Ar 4.453

19 55 16 75 5 1 north
subtropics Bm 1.5 23 45 20.5 77 4 2 south

subtropics Ar 4.097

19 50 16 75 5 1 north
subtropics Bm 2 23 55 20.5 77 4 2 south

subtropics Ar 4.47

19 50 16 75 5 1 north
subtropics Bm 1.5 23 50 20.5 77 4 2 south

subtropics Ar 4.31

19 35 16 75 5 1 north
subtropics Bm 1 23 45 20.5 77 4 2 south

subtropics Ar 5.18

19 50 16 75 5 1 north
subtropics Bm 1 23 45 20.5 77 4 2 south

subtropics Ar 4.7

19 45 16 75 5 1 north
subtropics Bm 1 23 20 20.5 77 4 2 south

subtropics Ar 14.773

19 45 16 75 5 1 north
subtropics Bm 1 23 45 20.5 77 4 2 south

subtropics Ar 3.85

19 40 16 75 5 1 north
subtropics Bm 1 23 40 20.5 77 4 2 south

subtropics Ar 4.513

19 45 16 75 5 1 north
subtropics Bm 0.5 23 45 20.5 77 4 2 south

subtropics Ar 4.467

19 40 16 75 5 1 north
subtropics Bm 0.5 23 50 20.5 77 4 2 south

subtropics Ar 9.923

19 45 16 75 5 1 north
subtropics Bpier 1 23 50 20.5 77 4 2 south

subtropics Ar 6.83

19 45 16 75 5 1 north
subtropics Bpier 1.5 23 30 20.5 77 4 2 south

subtropics Bpier 16.51

19 45 16 75 5 1 north
subtropics Bpier 1.5 23 30 20.5 77 4 2 south

subtropics Bpier 6.037

19 50 16 75 5 1 north
subtropics Bpier 1 23 25 20.5 77 4 2 south

subtropics Bpier 5.857

19 40 16 75 5 1 north
subtropics Bpier 2 23 20 20.5 77 4 2 south

subtropics Bpier 6.753

19 50 16 75 5 1 north
subtropics Bpier 1 23 25 20.5 77 4 2 south

subtropics Bpier 16.21

19 45 16 75 5 1 north
subtropics Bpier 0.5 23 35 20.5 77 4 2 south

subtropics Bpier 11.597

20 40 16.2 82 4 1 mid-
subtropics Ar 4

[38]

3 25 5.8 65 6 2
mid

temperate
zone

Bm 6.2

[58]20 45 16.2 82 4 1 mid-
subtropics Bm 3.5 3 25 5.8 65 6 2

mid
temperate

zone
Bm 6

20 45 16.2 82 4 1 mid-
subtropics Bm 3.5 3 25 5.8 65 6 2

mid
temperate

zone
Bm 6

20 40 16.2 82 4 1 mid-
subtropics Bm 3.5 3 25 5.8 65 6 2

mid
temperate

zone
Bm 6.5

20 40 16.2 82 4 1 mid-
subtropics Bm 4 3 25 5.8 65 6 2

mid
temperate

zone
Bm 5.5

20 40 16.2 82 4 1 mid-
subtropics Bpier 3.5 3 25 5.8 65 6 2

mid
temperate

zone
Bm 5.5
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

35 40 17.4 80 4 1 mid-
subtropics Ar 3

[39]

3 25 5.8 65 6 2
mid

temperate
zone

Bm 5.8

35 25 17.4 80 4 1 mid-
subtropics Ar 2.5 3 25 5.8 65 6 2

mid
temperate

zone
Bm 6.2

35 40 17.4 80 4 1 mid-
subtropics Bpla 3 20 25 14.4 72 6 1 warm

temperate Bm 9.7 [59]

35 45 17.4 80 4 1 mid-
subtropics Bm 1.5 20 35 14.4 72 6 1 warm

temperate Bpier 11.2

32 45 16.2 78 4 2 north
subtropics Ar 8.53

[40]

12 30 22.7 76 5 2 south
subtropics Bm 1.68

[60]32 45 16.2 78 4 2 north
subtropics Ar 8.63 12 35 22.7 76 5 2 south

subtropics Bm 1.46

32 45 16.2 78 4 2 north
subtropics Ar 8.4 12 30 22.7 76 5 2 south

subtropics Bm 1.63

32 40 16.2 78 4 2 north
subtropics Ar 8.73 12 30 22.7 76 5 2 south

subtropics Bm 1.53

32 40 16.2 78 4 2 north
subtropics Ar 8.93 26 25 4.2 62 6 1

mid
temperate

zone
Bm 7.6 https://

wenku.
baidu.
com/

view/f6
6434

afce2f006
6f53322
d8.html?
sxts=15

75776593
501 (ac-
cessed
on 20

February
2021)

32 40 16.2 78 4 2 north
subtropics Ar 9.07 26 25 4.2 62 6 1

mid
temperate

zone
Bm 9.1

32 35 16.2 78 4 2 north
subtropics Ar 8.7 26 30 4.2 62 6 1

mid
temperate

zone
Bm 9

32 35 16.2 78 4 2 north
subtropics Ar 9 26 25 4.2 62 6 1

mid
temperate

zone
Bm 9.5

32 35 16.2 78 4 2 north
subtropics Ar 8.6 26 25 4.2 62 6 1

mid
temperate

zone
Bm 10.2

32 35 16.2 78 4 2 north
subtropics Ar 8.83 26 20 4.2 62 6 1

mid
temperate

zone
Bpla 13.5

32 35 16.2 78 4 2 north
subtropics Ar 9.2 26 25 4.2 62 6 1

mid
temperate

zone
Bpier 9.72

32 40 16.2 78 4 2 north
subtropics Ar 9.2 26 20 4.2 62 6 1

mid
temperate

zone
Bpier 8.8

32 40 16.2 78 4 2 north
subtropics Ar 8.63 12 50 17.2 77 4 1 north

subtropics Bm 1.9

https://
wenku.

baiducom/
view/73
a61a52f5
335a810
2d220b8
.html?

sxts=15
75779109
843 (ac-
cessed
on 20

February
2021)

32 40 16.2 78 4 2 north
subtropics Ar 8.83 12 50 17.2 77 4 1 north

subtropics Bm 2.5

32 35 16.2 78 4 2 north
subtropics Ar 9.37 12 50 17.2 77 4 1 north

subtropics Bm 3

32 45 16.2 78 4 2 north
subtropics Ar 8.47 12 55 17.2 77 4 1 north

subtropics Bm 2.7

32 40 16.2 78 4 2 north
subtropics Ar 8.9 12 50 17.2 77 4 1 north

subtropics Bm 1.5

32 40 16.2 78 4 2 north
subtropics Ar 7.97 12 50 17.2 77 4 1 north

subtropics Bm 3.1

32 45 16.2 78 4 2 north
subtropics Ar 8.83 12 50 17.2 77 4 1 north

subtropics Bm 3.5

32 40 16.2 78 4 2 north
subtropics Ar 8.2 12 50 17.2 77 4 1 north

subtropics Bm 3

32 40 16.2 78 4 2 north
subtropics Ar 7.93 12 55 17.2 77 4 1 north

subtropics Bm 2.5

32 40 16.2 78 4 2 north
subtropics Ar 9.23 12 55 17.2 77 4 1 north

subtropics Bm 3.5

32 40 16.2 78 4 2 north
subtropics Ar 8.83 12 50 17.2 77 4 1 north

subtropics Bm 2.9

32 40 16.2 78 4 2 north
subtropics Ar 8.6 12 50 17.2 77 4 1 north

subtropics Bm 2.5

41 40 14.5 70 5 2 warm
temperate Bm 6

[41]

12 50 17.2 77 4 1 north
subtropics Bm 2.5

41 40 14.5 70 5 2 warm
temperate Bm 9 12 55 17.2 77 4 1 north

subtropics Bm 1.6

41 40 14.5 70 5 2 warm
temperate Bm 7 12 50 17.2 77 4 1 north

subtropics Bm 3.8

41 40 14.5 70 5 2 warm
temperate Bm 8 12 50 17.2 77 4 1 north

subtropics Bm 3.5

https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baidu.com/view/f66434afce2f0066f53322d8.html?sxts=1575776593501
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
https://wenku.baiducom/view/73a61a52f5335a8102d220b8.html?sxts=1575779109843
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

41 35 14.5 70 5 2 warm
temperate Bm 6 12 35 17.2 77 4 1 north

subtropics Bm 4

41 35 14.5 70 5 2 warm
temperate Bm 5 12 30 17.2 77 4 1 north

subtropics Bpier 3.5

41 35 14.5 70 5 2 warm
temperate Bm 9 12 35 17.2 77 4 1 north

subtropics Bpier 2.5

41 30 14.5 70 5 2 warm
temperate Bm 5 12 30 17.2 77 4 1 north

subtropics Bm 2.6

41 30 14.5 70 5 2 warm
temperate Bm 5 12 30 17.2 77 4 1 north

subtropics Bpier 3.5

41 45 14.5 70 5 2 warm
temperate Bm 7 12 35 17.2 77 4 1 north

subtropics Bpier 4

41 35 14.5 70 5 2 warm
temperate Bm 4 12 30 17.2 77 4 1 north

subtropics Bm 4

41 35 14.5 70 5 2 warm
temperate Bm 6 12 30 17.2 77 4 1 north

subtropics Bpier 3

41 35 14.5 70 5 2 warm
temperate Bm 10 12 30 17.2 77 4 1 north

subtropics Bpier 3.5

16 20 19.9 78 4 2 mid-
subtropics Bpier 4

[42]

12 35 17.2 77 4 1 north
subtropics Bm 3.9

16 15 19.9 78 4 2 mid-
subtropics Bpier 4.5 12 30 17.2 77 4 1 north

subtropics Bpier 3.8

16 35 19.9 78 4 2 mid-
subtropics Bpier 4 12 35 17.2 77 4 1 north

subtropics Bpier 2.5

16 20 19.9 78 4 2 mid-
subtropics Bpier 5 20 60 4.2 62 6 1

mid
temperate

zone
Bpier 0

[61]

16 20 19.9 78 4 2 mid-
subtropics Bpier 4 20 60 4.2 62 6 1

mid
temperate

zone
Bpier 0

16 20 19.9 78 4 2 mid-
subtropics Bpier 4.5 20 55 4.2 62 6 1

mid
temperate

zone
Bpier 0

16 30 19.9 78 4 2 mid-
subtropics Bpier 5.5 20 60 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 40 16.6 77 4 2 mid-
subtropics Ar 1

[43]

20 50 4.2 62 6 1
mid

temperate
zone

Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 1 20 50 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 1 20 55 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 30 16.6 77 4 2 mid-
subtropics Ar 1 20 55 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 40 16.6 77 4 2 mid-
subtropics Ar 1 20 50 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 30 16.6 77 4 2 mid-
subtropics Ar 1 20 45 4.2 62 6 1

mid
temperate

zone
Bpier 0.8

20 35 16.6 77 4 2 mid-
subtropics Ar 1 20 60 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 1 20 40 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 40 16.6 77 4 2 mid-
subtropics Ar 1 20 35 4.2 62 6 1

mid
temperate

zone
Bpier 0.8

20 35 16.6 77 4 2 mid-
subtropics Ar 3 20 45 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 4 20 35 4.2 62 6 1

mid
temperate

zone
Bpier 1.4

20 35 16.6 77 4 2 mid-
subtropics Ar 2 20 30 4.2 62 6 1

mid
temperate

zone
Bpier 2.6

20 35 16.6 77 4 2 mid-
subtropics Ar 2 20 35 4.2 62 6 1

mid
temperate

zone
Bpier 1.8
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

20 45 16.6 77 4 2 mid-
subtropics Ar 1 20 40 4.2 62 6 1

mid
temperate

zone
Bpier 0.2

20 40 16.6 77 4 2 mid-
subtropics Ar 1 20 55 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 2 20 40 4.2 62 6 1

mid
temperate

zone
Bpier 1.8

20 35 16.6 77 4 2 mid-
subtropics Ar 2 20 50 4.2 62 6 1

mid
temperate

zone
Bpier 0.4

20 45 16.6 77 4 2 mid-
subtropics Ar 3 20 50 4.2 62 6 1

mid
temperate

zone
Bpier 0

20 35 16.6 77 4 2 mid-
subtropics Ar 1 21 35 12.8 55 6 1 warm

temperate Bm 12

[62]

20 40 16.6 77 4 2 mid-
subtropics Ar 1 21 35 12.8 55 6 1 warm

temperate Bm 10

20 45 16.6 77 4 2 mid-
subtropics Ar 2 21 35 12.8 55 6 1 warm

temperate Bm 9

20 35 16.6 77 4 2 mid-
subtropics Ar 2 21 25 12.8 55 6 1 warm

temperate Bm 10

20 35 16.6 77 4 2 mid-
subtropics Ar 2 21 30 12.8 55 6 1 warm

temperate Bpier 11

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5

[44]

21 35 12.8 55 6 1 warm
temperate Bpier 12

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 30 12.8 55 6 1 warm

temperate Bpier 14

9 55 16.5 79 4 1 mid-
subtropics Bm 1 21 35 12.8 55 6 1 warm

temperate Bpier 10

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 45 12.8 55 6 2 warm

temperate Bm 13

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 35 12.8 55 6 2 warm

temperate Bm 12

9 55 16.5 79 4 1 mid-
subtropics Bm 1 21 40 12.8 55 6 2 warm

temperate Bm 11

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 35 12.8 55 6 2 warm

temperate Bm 8

9 55 16.5 79 4 1 mid-
subtropics Bm 1 21 30 12.8 55 6 2 warm

temperate Bm 9

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 25 12.8 55 6 2 warm

temperate Bm 12

9 55 16.5 79 4 1 mid-
subtropics Bm 1 21 30 12.8 55 6 2 warm

temperate Bm 13

9 55 16.5 79 4 1 mid-
subtropics Bm 1 21 35 12.8 55 6 2 warm

temperate Bm 10

9 55 16.5 79 4 1 mid-
subtropics Bm 0.5 21 30 12.8 55 6 2 warm

temperate Bpier 10

15 50 12.7 63 5 1 warm
temperate Bm 3.5

[45]

21 35 12.8 55 6 2 warm
temperate Bpier 9

15 45 12.7 63 5 1 warm
temperate Bm 5.5 21 30 12.8 55 6 2 warm

temperate Bpier 9

15 55 12.7 63 5 1 warm
temperate Bm 4 21 30 12.8 55 6 2 warm

temperate Bpier 11

15 50 12.7 63 5 1 warm
temperate Bm 5.5 21 45 12.4 57 6 1 warm

temperate Bpier 7

15 50 12.7 63 5 1 warm
temperate Bm 7 21 30 12.4 57 6 1 warm

temperate Bpier 11

15 45 12.7 63 5 1 warm
temperate Bm 6.5 21 40 12.4 57 6 1 warm

temperate Bpier 13

15 50 12.7 63 5 1 warm
temperate Bm 5.5 21 35 12.4 57 6 1 warm

temperate Bpier 9

15 45 12.7 63 5 1 warm
temperate Bm 8 16 45 12.4 57 6 1 warm

temperate Bpier 5

15 45 12.7 63 5 1 warm
temperate Bm 8.5 16 45 12.4 57 6 1 warm

temperate Bpier 7

15 45 12.7 63 5 1 warm
temperate Bm 10.5 16 45 12.4 57 6 1 warm

temperate Bpier 4

15 50 12.7 63 5 1 warm
temperate Bm 12 16 45 12.4 57 6 1 warm

temperate Bpier 13

15 45 12.7 63 5 1 warm
temperate Bm 11.5 16 45 12.4 57 6 1 warm

temperate Bpier 9

15 45 12.7 63 5 1 warm
temperate Bm 8.5 16 45 12.4 57 6 1 warm

temperate Bpier 10

15 50 12.7 63 5 1 warm
temperate Bm 6.5 14 50 12.4 57 6 1 warm

temperate Bm 6
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

15 50 12.7 63 5 1 warm
temperate Bm 3.5 14 55 12.4 57 6 1 warm

temperate Bm 7

15 45 12.7 63 5 1 warm
temperate Bm 5.5 14 55 12.4 57 6 1 warm

temperate Bm 8

15 50 12.7 63 5 1 warm
temperate Bm 4 14 45 12.4 57 6 1 warm

temperate Bm 6

15 45 12.7 63 5 1 warm
temperate Bm 5.5 14 45 12.4 57 6 1 warm

temperate Bm 7

15 45 12.7 63 5 1 warm
temperate Bm 3.5 14 45 12.4 57 6 1 warm

temperate Bm 10

15 50 12.7 63 5 1 warm
temperate Bm 6.5 14 55 12.4 57 6 1 warm

temperate Bpier 11

15 35 12.7 63 5 1 warm
temperate Bpier 5 14 55 12.4 57 6 1 warm

temperate Bpier 5

15 35 12.7 63 5 1 warm
temperate Bpier 3 14 55 12.4 57 6 1 warm

temperate Bpier 9

15 40 12.7 63 5 1 warm
temperate Bpier 5.5 12 55 12.4 57 6 1 warm

temperate Bpier 6

15 40 12.7 63 5 1 warm
temperate Bpier 6 12 55 12.4 57 6 1 warm

temperate Bpier 7

15 35 12.7 63 5 1 warm
temperate Bpier 3.5 12 55 12.4 57 6 1 warm

temperate Bpier 8

15 40 12.7 63 5 1 warm
temperate Bpier 3 12 55 12.4 57 6 1 warm

temperate Bpier 6

20 25 15 57 6 1 warm
temperate Ar 6

[46]
12 55 12.4 57 6 1 warm

temperate Bpier 9

20 30 15 57 6 1 warm
temperate Ar 6 12 50 12.4 57 6 1 warm

temperate Bpier 7

20 25 15 57 6 1 warm
temperate Ar 6 12 55 12.4 57 6 1 warm

temperate Bpier 8

31 45 17.5 80 4 2 mid-
subtropics Bm 11.3

[47]

12 55 12.4 57 6 1 warm
temperate Bpier 6

31 35 17.5 80 4 2 mid-
subtropics Bm 10.8 9 55 12.7 54 6 1 warm

temperate Bpier 2

31 40 17.5 80 4 2 mid-
subtropics Bm 10.7 9 55 12.7 54 6 1 warm

temperate Bpier 1

31 40 17.5 80 4 2 mid-
subtropics Bm 8.7 9 55 12.7 54 6 1 warm

temperate Bpier 2

31 55 17.5 80 4 2 mid-
subtropics Bpier 12.3 9 55 12.7 54 6 1 warm

temperate Bpier 1

31 50 17.5 80 4 2 mid-
subtropics Bpier 10.3 9 55 12.7 54 6 1 warm

temperate Bpier 1

31 25 17.5 80 4 2 mid-
subtropics Bm 13.7 9 55 12.7 54 6 1 warm

temperate Bpier 1

31 45 17.5 80 4 2 mid-
subtropics Bm 11.5 7 55 12.7 56 6 1 warm

temperate Bpier 2

31 50 17.5 80 4 2 mid-
subtropics Bm 7.7 7 50 12.7 56 6 1 warm

temperate Bpier 3

31 45 17.5 80 4 2 mid-
subtropics Bm 11.3 7 55 12.7 56 6 1 warm

temperate Bpier 2

31 40 17.5 80 4 2 mid-
subtropics Ar 11 7 50 12.7 56 6 2 warm

temperate Bpier 3

31 50 17.5 80 4 2 mid-
subtropics Ar 11.3 7 55 12.7 56 6 2 warm

temperate Bpier 3

19 25 15.3 77 4 2 north
subtropics Bm 2

[48]

7 50 12.7 56 6 2 warm
temperate Bpier 4

[62]

19 20 15.3 77 4 2 north
subtropics Bm 2 8 60 12.4 57 6 1 warm

temperate Bpier 2

19 25 15.3 77 4 2 north
subtropics Bm 2 8 60 12.4 57 6 1 warm

temperate Bpier 3

19 25 15.3 77 4 2 north
subtropics Bm 2 8 60 12.4 57 6 1 warm

temperate Bpier 2

19 20 15.3 77 4 2 north
subtropics Bm 2 8 60 12.4 57 6 1 warm

temperate Bpier 3

19 25 15.3 77 4 2 north
subtropics Bm 2 6 55 12.7 56 6 1 warm

temperate Bpier 5

19 25 15.3 77 4 2 north
subtropics Bm 2 6 55 12.7 56 6 1 warm

temperate Bpier 4

19 20 15.3 77 4 2 north
subtropics Bm 2 6 55 12.7 56 6 1 warm

temperate Bpier 5

19 25 15.3 77 4 2 north
subtropics Bm 2 6 55 12.7 56 6 1 warm

temperate Bpier 5

19 25 15.3 77 4 2 north
subtropics Bm 2 18 25 17.2 78 5 1 mid-

subtropics Bm 13

[63]

19 25 15.3 77 4 2 north
subtropics Bm 2 18 30 17.2 78 5 1 mid-

subtropics Bm 12

19 20 15.3 77 4 2 north
subtropics Bm 2 18 30 17.2 78 5 1 mid-

subtropics Bm 15
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

38 30 15.3 77 4 2 north
subtropics Bm 5 18 15 17.2 78 5 1 mid-

subtropics Bm 16

31 25 15.3 77 4 2 north
subtropics Ar 5.5 18 25 17.2 78 5 1 mid-

subtropics Bm 16

21 30 15.3 77 4 2 north
subtropics Ar 5 18 25 17.2 78 5 1 mid-

subtropics Bm 18

10 30 22.1 77 4 1 south
subtropics Bm 10.5 [49] 18 20 17.2 78 5 1 mid-

subtropics Bm 17

10 50 22.1 77 4 1 south
subtropics Bm 7.5 18 20 17.2 78 5 1 mid-

subtropics Bm 20

28 30 18.1 79 4 2 mid-
subtropics Ar 7

[50]

18 20 17.2 78 5 1 mid-
subtropics Bm 18

28 35 18.1 79 4 2 mid-
subtropics Ar 11.5 18 20 17.2 78 5 1 mid-

subtropics Bm 18

28 30 18.1 79 4 2 mid-
subtropics Ar 14.5 18 20 17.2 78 5 1 mid-

subtropics Bpier 16

28 35 18.1 79 4 2 mid-
subtropics Ar 18.5 18 20 17.2 78 5 1 mid-

subtropics Bpier 20

28 35 18.1 79 4 2 mid-
subtropics Ar 18.5 18 20 17.2 78 5 1 mid-

subtropics Bpier 20

28 30 18.1 79 4 2 mid-
subtropics Ar 20 18 20 17.2 78 5 1 mid-

subtropics Bpier 19

28 30 18.1 79 4 2 mid-
subtropics Ar 22 18 20 17.2 78 5 1 mid-

subtropics Bpier 17

28 25 18.1 79 4 2 mid-
subtropics Ar 22.5 18 25 17.2 78 5 1 mid-

subtropics Bpla 16

28 25 18.1 79 4 2 mid-
subtropics Ar 25 15 50 13 71 5 1 warm

temperate Bm 1.96

[64]28 25 18.1 79 4 2 mid-
subtropics Ar 26.5 15 50 13 71 5 1 warm

temperate Bm 1.71

37 45 11.3 65 5 2 warm
temperate Ar 3.6

[51]

15 45 13 71 5 1 warm
temperate Bm 1.51

37 45 11.3 65 5 2 warm
temperate Ar 4.5 15 45 13 71 5 1 warm

temperate Bm 1.5

37 40 11.3 65 5 2 warm
temperate Ar 3.7 15 50 13 71 5 1 warm

temperate Bm 1.39

37 40 11.3 65 5 2 warm
temperate Ar 3.2 15 40 13 71 5 1 warm

temperate Bm 1.88

37 35 11.3 65 5 2 warm
temperate Ar 3.3 35 25 9.5 51 6 2

mid
temperate

zone
Bm 49.87

[65]

37 45 11.3 65 5 2 warm
temperate Ar 4.4 35 30 9.5 51 6 2

mid
temperate

zone
Bm 45.46

10 30 15.3 77 4 1 north
subtropics Bm 6.5

[52]

35 25 9.5 51 6 2
mid

temperate
zone

Bm 45.99

10 25 15.3 77 4 1 north
subtropics Bm 5 35 25 9.5 51 6 2

mid
temperate

zone
Bm 49.79

10 30 15.3 77 4 1 north
subtropics Bm 7.5 13 25 24 78 5 1 edge

tropics Bpier 33.11

[66]

10 30 15.3 77 4 1 north
subtropics Bm 1 13 40 23 80 5 1 edge

tropics Bm 24.75

10 15 15.3 77 4 1 north
subtropics Bm 3 12 50 23 80 5 1 edge

tropics Bm 17.02

10 15 15.3 77 4 1 north
subtropics Bpier 6 11 50 24 80 5 1 edge

tropics Bm 15.2

10 35 15.3 77 4 1 north
subtropics Bpier 3.5 11 25 23 80 5 1 edge

tropics Bpla 21.14

10 25 15.3 77 4 1 north
subtropics Bpier 5.5 13 40 26 80 5 1 edge

tropics Bm 25.69

10 40 15.3 77 4 1 north
subtropics Bpier 2 13 50 26 80 5 1 edge

tropics Bm 21.36

10 30 15.3 77 4 1 north
subtropics Bpier 5 10 40 22 86 5 1 edge

tropics Bm 7.1

59 35 12.7 62 6 2 warm
temperate Bm 47

[53]
15 40 26 80 5 1 edge

tropics Bm 21

59 30 12.7 62 6 2 warm
temperate Bm 42 9 30 26 80 5 1 edge

tropics Bpier 31

59 30 12.7 62 6 2 warm
temperate Bm 35 14 30 26 82 5 1 edge

tropics Bpier 15.7

15 15 25.9 78 5 1 edge
tropics Bm 7

[54]
11 25 26 82 5 1 edge

tropics Bpier 17

15 20 25.9 78 5 1 edge
tropics Bm 7.5 13 30 26 82 5 1 edge

tropics Bpier 11.2

15 25 25.9 78 5 1 edge
tropics Bm 6 1 30 22 82 5 1 edge

tropics Bpier 3
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Table A1. Cont.

Age f t RH pH p Climate Loc 1 d Reference Age f t RH pH p Climate Loc
1 d Reference

11 25 13 65 6 2 warm
temperate Bm 9.7 [55] 13 30 26 78 5 1 edge

tropics Bpier 35.6

7 55 21.8 83 6 1 edge
tropics Bm 1.32

[56]

30 20 13 71 5 1 warm
temperate Bm 10

[67]
7 50 21.8 83 6 1 edge

tropics Bm 3.18 30 15 13 71 5 1 warm
temperate Bm 34

7 55 21.8 83 6 1 edge
tropics Bm 1.39 30 15 13 71 5 1 warm

temperate Bm 22

7 50 21.8 83 6 1 edge
tropics Bm 0.62 28 55 16.1 71 5 1 north

subtropics Bm 7
[68]

7 40 21.8 83 6 1 edge
tropics Bm 2.19 28 60 16.1 71 5 1 north

subtropics Bm 7.5

7 40 21.8 83 6 1 edge
tropics Bm 1.01 28 35 16.1 71 5 1 north

subtropics Bpier 23

1 “Ar” represents arch ring; “Bm” represents beam; “Bpier” represents bridge pier; “Bpla” represents bridge platform.
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