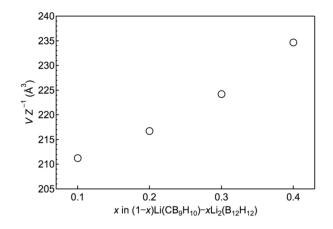
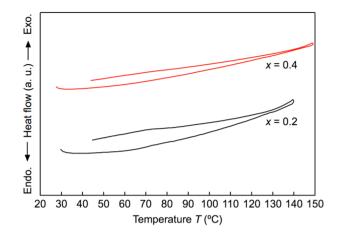
Supplementary Materials for


Stabilization of superionic-conducting high-temperature phase of Li(CB₉H₁₀) via solid solution formation with Li₂(B₁₂H₁₂)

Sangryun Kim^{1,*}, Kazuaki Kisu², and Shin–ichi Orimo^{1,2,*}


¹Institute for Materials Research, Tohoku University, 2–1–1 Katahira, Aoba–ku, Sendai 980–8577, Japan

²WPI–Advanced Institute for Materials Research (WPI–AIMR), Tohoku University, 2–1–1 Katahira, Aoba–ku, Sendai 980–8577, Japan

*Corresponding authors. E-mail: <u>sangryun@imr.tohoku.ac.jp</u>, <u>orimo@imr.tohoku.ac.jp</u>

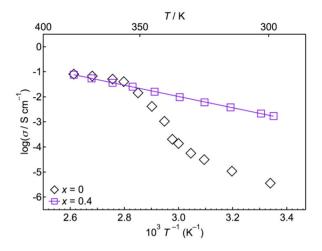

Figure S1. Compositional dependence of the lattice volume of the $(1-x)\text{Li}(\text{CB}_9\text{H}_{10})-x\text{Li}_2(\text{B}_{12}\text{H}_{12})$ compounds with $0.1 \le x \le 0.4$. The compounds with x = 0.1 and 0.2 were indexed to a hexagonal unit cell consistent with that of the low-*T* phase (space group P3c1, (Z = 6)) [3] of Li(CB₉H₁₀) (x = 0). The x = 0.3 and 0.4 compounds were indexed to a hexagonal unit cell consistent with that of the high-*T* phase (space group P31c, (Z = 2)) [21] of Li(CB₉H₁₀) (x = 0).

Figure S2. Enlarged DTA curves for the x = 0.2 and 0.4 compounds in Figure 2.

x	Ionic Conductivity	Activation Energy
	$(S \text{ cm}^{-1})$	$(kJ mol^{-1})$
0.1	$7.5 imes 10^{-4}$	-
0.2	1.4×10^{-3}	_
0.3	1.6×10^{-3}	40.5
0.4	$1.7 imes10^{-3}$	40.3
0.5	$5.8 imes 10^{-4}$	_

Table S1. Lithium-ion conductivities at 25 °C and activation energies of $(1-x)\text{Li}(\text{CB}_9\text{H}_{10})-x\text{Li}_2(\text{B}_{12}\text{H}_{12})$ (0.1 $\leq x \leq 0.5$).

Figure S3. Arrhenius plots of the lithium-ion conductivities for the compounds with x = 0 (Li(CB₉H₁₀)) and x = 0.4 (0.6Li(CB₉H₁₀)–0.4Li₂(B₁₂H₁₂)).

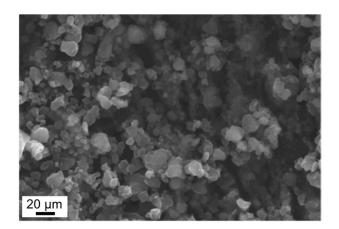
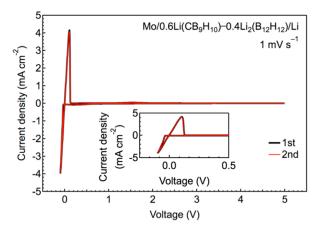



Figure S4. SEM micrograph of the x = 0.4 (0.6Li(CB₉H₁₀)–0.4Li₂(B₁₂H₁₂)) compound.

Figure S5. Cyclic voltammograms of a Mo/0.6Li(CB₉H₁₀)-0.4Li₂(B₁₂H₁₂)/Li cell at a scan rate of 1 mV s⁻¹ during two cycles. Insets show the magnified plots in the low-voltage region.

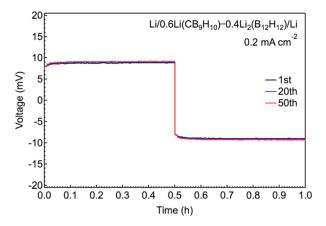
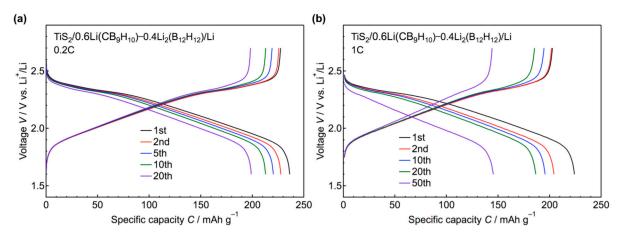



Figure S6. Galvanostatic cycling profiles of a Li/0.6Li(CB9H10)–0.4Li2(B12H12)/Li cell at 0.2 mA cm⁻².

Figure S7. Discharge–charge profiles for the $TiS_2/0.6Li(CB_9H_{10})-0.4Li_2(B_{12}H_{12})/Li$ cells for rates of (a) 0.2C and (b) 1C.